1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
|
//===----------------------------------------------------------------------===//
//
// This source file is part of the SwiftNIO open source project
//
// Copyright (c) 2017-2018 Apple Inc. and the SwiftNIO project authors
// Licensed under Apache License v2.0
//
// See LICENSE.txt for license information
// See CONTRIBUTORS.txt for the list of SwiftNIO project authors
//
// SPDX-License-Identifier: Apache-2.0
//
//===----------------------------------------------------------------------===//
import NIOConcurrencyHelpers
import Dispatch
/// Returned once a task was scheduled on the `EventLoop` for later execution.
///
/// A `Scheduled` allows the user to either `cancel()` the execution of the scheduled task (if possible) or obtain a reference to the `EventLoopFuture` that
/// will be notified once the execution is complete.
public struct Scheduled<T> {
/* private but usableFromInline */ @usableFromInline let _promise: EventLoopPromise<T>
@inlinable
public init(promise: EventLoopPromise<T>, cancellationTask: @escaping () -> Void) {
self._promise = promise
promise.futureResult.whenFailure { error in
guard let err = error as? EventLoopError else {
return
}
if err == .cancelled {
cancellationTask()
}
}
}
/// Try to cancel the execution of the scheduled task.
///
/// Whether this is successful depends on whether the execution of the task already begun.
/// This means that cancellation is not guaranteed.
@inlinable
public func cancel() {
self._promise.fail(EventLoopError.cancelled)
}
/// Returns the `EventLoopFuture` which will be notified once the execution of the scheduled task completes.
@inlinable
public var futureResult: EventLoopFuture<T> {
return self._promise.futureResult
}
}
/// Returned once a task was scheduled to be repeatedly executed on the `EventLoop`.
///
/// A `RepeatedTask` allows the user to `cancel()` the repeated scheduling of further tasks.
public final class RepeatedTask {
private let delay: TimeAmount
private let eventLoop: EventLoop
private let cancellationPromise: EventLoopPromise<Void>?
private var scheduled: Optional<Scheduled<EventLoopFuture<Void>>>
private var task: Optional<(RepeatedTask) -> EventLoopFuture<Void>>
internal init(interval: TimeAmount, eventLoop: EventLoop, cancellationPromise: EventLoopPromise<Void>? = nil, task: @escaping (RepeatedTask) -> EventLoopFuture<Void>) {
self.delay = interval
self.eventLoop = eventLoop
self.cancellationPromise = cancellationPromise
self.task = task
self.scheduled = nil
}
internal func begin(in delay: TimeAmount) {
if self.eventLoop.inEventLoop {
self.begin0(in: delay)
} else {
self.eventLoop.execute {
self.begin0(in: delay)
}
}
}
private func begin0(in delay: TimeAmount) {
self.eventLoop.assertInEventLoop()
guard let task = self.task else {
return
}
self.scheduled = self.eventLoop.scheduleTask(in: delay) {
task(self)
}
self.reschedule()
}
/// Try to cancel the execution of the repeated task.
///
/// Whether the execution of the task is immediately canceled depends on whether the execution of a task has already begun.
/// This means immediate cancellation is not guaranteed.
///
/// The safest way to cancel is by using the passed reference of `RepeatedTask` inside the task closure.
///
/// If the promise parameter is not `nil`, the passed promise is fulfilled when cancellation is complete.
/// Passing a promise does not prevent fulfillment of any promise provided on original task creation.
public func cancel(promise: EventLoopPromise<Void>? = nil) {
if self.eventLoop.inEventLoop {
self.cancel0(localCancellationPromise: promise)
} else {
self.eventLoop.execute {
self.cancel0(localCancellationPromise: promise)
}
}
}
private func cancel0(localCancellationPromise: EventLoopPromise<Void>?) {
self.eventLoop.assertInEventLoop()
self.scheduled?.cancel()
self.scheduled = nil
self.task = nil
// Possible states at this time are:
// 1) Task is scheduled but has not yet executed.
// 2) Task is currently executing and invoked `cancel()` on itself.
// 3) Task is currently executing and `cancel0()` has been reentrantly invoked.
// 4) NOT VALID: Task is currently executing and has NOT invoked `cancel()` (`EventLoop` guarantees serial execution)
// 5) NOT VALID: Task has completed execution in a success state (`reschedule()` ensures state #2).
// 6) Task has completed execution in a failure state.
// 7) Task has been fully cancelled at a previous time.
//
// It is desirable that the task has fully completed any execution before any cancellation promise is
// fulfilled. States 2 and 3 occur during execution, so the requirement is implemented by deferring
// fulfillment to the next `EventLoop` cycle. The delay is harmless to other states and distinguishing
// them from 2 and 3 is not practical (or necessarily possible), so is used unconditionally. Check the
// promises for nil so as not to otherwise invoke `execute()` unnecessarily.
if self.cancellationPromise != nil || localCancellationPromise != nil {
self.eventLoop.execute {
self.cancellationPromise?.succeed(())
localCancellationPromise?.succeed(())
}
}
}
private func reschedule() {
self.eventLoop.assertInEventLoop()
guard let scheduled = self.scheduled else {
return
}
scheduled.futureResult.whenSuccess { future in
future.hop(to: self.eventLoop).whenComplete { (_: Result<Void, Error>) in
self.reschedule0()
}
}
scheduled.futureResult.whenFailure { (_: Error) in
self.cancel0(localCancellationPromise: nil)
}
}
private func reschedule0() {
self.eventLoop.assertInEventLoop()
guard self.task != nil else {
return
}
self.scheduled = self.eventLoop.scheduleTask(in: self.delay) {
// we need to repeat this as we might have been cancelled in the meantime
guard let task = self.task else {
return self.eventLoop.makeSucceededFuture(())
}
return task(self)
}
self.reschedule()
}
}
/// An iterator over the `EventLoop`s forming an `EventLoopGroup`.
///
/// Usually returned by an `EventLoopGroup`'s `makeIterator()` method.
///
/// let group = MultiThreadedEventLoopGroup(numberOfThreads: 1)
/// group.makeIterator().forEach { loop in
/// // Do something with each loop
/// }
///
public struct EventLoopIterator: Sequence, IteratorProtocol {
public typealias Element = EventLoop
private var eventLoops: IndexingIterator<[EventLoop]>
/// Create an `EventLoopIterator` from an array of `EventLoop`s.
public init(_ eventLoops: [EventLoop]) {
self.eventLoops = eventLoops.makeIterator()
}
/// Advances to the next `EventLoop` and returns it, or `nil` if no next element exists.
///
/// - returns: The next `EventLoop` if a next element exists; otherwise, `nil`.
public mutating func next() -> EventLoop? {
return self.eventLoops.next()
}
}
/// An EventLoop processes IO / tasks in an endless loop for `Channel`s until it's closed.
///
/// Usually multiple `Channel`s share the same `EventLoop` for processing IO / tasks and so share the same processing `NIOThread`.
/// For a better understanding of how such an `EventLoop` works internally the following pseudo code may be helpful:
///
/// ```
/// while eventLoop.isOpen {
/// /// Block until there is something to process for 1...n Channels
/// let readyChannels = blockUntilIoOrTasksAreReady()
/// /// Loop through all the Channels
/// for channel in readyChannels {
/// /// Process IO and / or tasks for the Channel.
/// /// This may include things like:
/// /// - accept new connection
/// /// - connect to a remote host
/// /// - read from socket
/// /// - write to socket
/// /// - tasks that were submitted via EventLoop methods
/// /// and others.
/// processIoAndTasks(channel)
/// }
/// }
/// ```
///
/// Because an `EventLoop` may be shared between multiple `Channel`s it's important to _NOT_ block while processing IO / tasks. This also includes long running computations which will have the same
/// effect as blocking in this case.
public protocol EventLoop: EventLoopGroup {
/// Returns `true` if the current `NIOThread` is the same as the `NIOThread` that is tied to this `EventLoop`. `false` otherwise.
var inEventLoop: Bool { get }
/// Submit a given task to be executed by the `EventLoop`
func execute(_ task: @escaping () -> Void)
/// Submit a given task to be executed by the `EventLoop`. Once the execution is complete the returned `EventLoopFuture` is notified.
///
/// - parameters:
/// - task: The closure that will be submitted to the `EventLoop` for execution.
/// - returns: `EventLoopFuture` that is notified once the task was executed.
func submit<T>(_ task: @escaping () throws -> T) -> EventLoopFuture<T>
/// Schedule a `task` that is executed by this `EventLoop` at the given time.
///
/// - parameters:
/// - task: The synchronous task to run. As with everything that runs on the `EventLoop`, it must not block.
/// - returns: A `Scheduled` object which may be used to cancel the task if it has not yet run, or to wait
/// on the completion of the task.
///
/// - note: You can only cancel a task before it has started executing.
@discardableResult
func scheduleTask<T>(deadline: NIODeadline, _ task: @escaping () throws -> T) -> Scheduled<T>
/// Schedule a `task` that is executed by this `EventLoop` after the given amount of time.
///
/// - parameters:
/// - task: The synchronous task to run. As with everything that runs on the `EventLoop`, it must not block.
/// - returns: A `Scheduled` object which may be used to cancel the task if it has not yet run, or to wait
/// on the completion of the task.
///
/// - note: You can only cancel a task before it has started executing.
/// - note: The `in` value is clamped to a maximum when running on a Darwin-kernel.
@discardableResult
func scheduleTask<T>(in: TimeAmount, _ task: @escaping () throws -> T) -> Scheduled<T>
/// Asserts that the current thread is the one tied to this `EventLoop`.
/// Otherwise, the process will be abnormally terminated as per the semantics of `preconditionFailure(_:file:line:)`.
func preconditionInEventLoop(file: StaticString, line: UInt)
/// Asserts that the current thread is _not_ the one tied to this `EventLoop`.
/// Otherwise, the process will be abnormally terminated as per the semantics of `preconditionFailure(_:file:line:)`.
func preconditionNotInEventLoop(file: StaticString, line: UInt)
/// Return a succeeded `Void` future.
///
/// Semantically, this function is equivalent to calling `makeSucceededFuture(())`.
/// Contrary to `makeSucceededFuture`, `makeSucceededVoidFuture` is a customization point for `EventLoop`s which
/// allows `EventLoop`s to cache a pre-succeded `Void` future to prevent superfluous allocations.
func makeSucceededVoidFuture() -> EventLoopFuture<Void>
}
extension EventLoop {
/// Default implementation of `makeSucceededVoidFuture`: Return a fresh future (which will allocate).
public func makeSucceededVoidFuture() -> EventLoopFuture<Void> {
return EventLoopFuture(eventLoop: self, value: (), file: "n/a", line: 0)
}
}
extension EventLoopGroup {
public var description: String {
return String(describing: self)
}
}
/// Represents a time _interval_.
///
/// - note: `TimeAmount` should not be used to represent a point in time.
public struct TimeAmount: Hashable {
@available(*, deprecated, message: "This typealias doesn't serve any purpose. Please use Int64 directly.")
public typealias Value = Int64
/// The nanoseconds representation of the `TimeAmount`.
public let nanoseconds: Int64
private init(_ nanoseconds: Int64) {
self.nanoseconds = nanoseconds
}
/// Creates a new `TimeAmount` for the given amount of nanoseconds.
///
/// - parameters:
/// - amount: the amount of nanoseconds this `TimeAmount` represents.
/// - returns: the `TimeAmount` for the given amount.
public static func nanoseconds(_ amount: Int64) -> TimeAmount {
return TimeAmount(amount)
}
/// Creates a new `TimeAmount` for the given amount of microseconds.
///
/// - parameters:
/// - amount: the amount of microseconds this `TimeAmount` represents.
/// - returns: the `TimeAmount` for the given amount.
public static func microseconds(_ amount: Int64) -> TimeAmount {
return TimeAmount(amount * 1000)
}
/// Creates a new `TimeAmount` for the given amount of milliseconds.
///
/// - parameters:
/// - amount: the amount of milliseconds this `TimeAmount` represents.
/// - returns: the `TimeAmount` for the given amount.
public static func milliseconds(_ amount: Int64) -> TimeAmount {
return TimeAmount(amount * (1000 * 1000))
}
/// Creates a new `TimeAmount` for the given amount of seconds.
///
/// - parameters:
/// - amount: the amount of seconds this `TimeAmount` represents.
/// - returns: the `TimeAmount` for the given amount.
public static func seconds(_ amount: Int64) -> TimeAmount {
return TimeAmount(amount * (1000 * 1000 * 1000))
}
/// Creates a new `TimeAmount` for the given amount of minutes.
///
/// - parameters:
/// - amount: the amount of minutes this `TimeAmount` represents.
/// - returns: the `TimeAmount` for the given amount.
public static func minutes(_ amount: Int64) -> TimeAmount {
return TimeAmount(amount * (1000 * 1000 * 1000 * 60))
}
/// Creates a new `TimeAmount` for the given amount of hours.
///
/// - parameters:
/// - amount: the amount of hours this `TimeAmount` represents.
/// - returns: the `TimeAmount` for the given amount.
public static func hours(_ amount: Int64) -> TimeAmount {
return TimeAmount(amount * (1000 * 1000 * 1000 * 60 * 60))
}
}
extension TimeAmount: Comparable {
public static func < (lhs: TimeAmount, rhs: TimeAmount) -> Bool {
return lhs.nanoseconds < rhs.nanoseconds
}
}
extension TimeAmount: AdditiveArithmetic {
/// The zero value for `TimeAmount`.
public static var zero: TimeAmount {
return TimeAmount.nanoseconds(0)
}
public static func + (lhs: TimeAmount, rhs: TimeAmount) -> TimeAmount {
return TimeAmount(lhs.nanoseconds + rhs.nanoseconds)
}
public static func +=(lhs: inout TimeAmount, rhs: TimeAmount) {
lhs = lhs + rhs
}
public static func - (lhs: TimeAmount, rhs: TimeAmount) -> TimeAmount {
return TimeAmount(lhs.nanoseconds - rhs.nanoseconds)
}
public static func -=(lhs: inout TimeAmount, rhs: TimeAmount) {
lhs = lhs - rhs
}
public static func * <T: BinaryInteger>(lhs: T, rhs: TimeAmount) -> TimeAmount {
return TimeAmount(Int64(lhs) * rhs.nanoseconds)
}
public static func * <T: BinaryInteger>(lhs: TimeAmount, rhs: T) -> TimeAmount {
return TimeAmount(lhs.nanoseconds * Int64(rhs))
}
}
/// Represents a point in time.
///
/// Stores the time in nanoseconds as returned by `DispatchTime.now().uptimeNanoseconds`
///
/// `NIODeadline` allow chaining multiple tasks with the same deadline without needing to
/// compute new timeouts for each step
///
/// ```
/// func doSomething(deadline: NIODeadline) -> EventLoopFuture<Void> {
/// return step1(deadline: deadline).flatMap {
/// step2(deadline: deadline)
/// }
/// }
/// doSomething(deadline: .now() + .seconds(5))
/// ```
///
/// - note: `NIODeadline` should not be used to represent a time interval
public struct NIODeadline: Equatable, Hashable {
@available(*, deprecated, message: "This typealias doesn't serve any purpose, please use UInt64 directly.")
public typealias Value = UInt64
// This really should be an UInt63 but we model it as Int64 with >=0 assert
private var _uptimeNanoseconds: Int64 {
didSet {
assert(self._uptimeNanoseconds >= 0)
}
}
/// The nanoseconds since boot representation of the `NIODeadline`.
public var uptimeNanoseconds: UInt64 {
return .init(self._uptimeNanoseconds)
}
public static let distantPast = NIODeadline(0)
public static let distantFuture = NIODeadline(.init(Int64.max))
private init(_ nanoseconds: Int64) {
precondition(nanoseconds >= 0)
self._uptimeNanoseconds = nanoseconds
}
public static func now() -> NIODeadline {
return NIODeadline.uptimeNanoseconds(DispatchTime.now().uptimeNanoseconds)
}
public static func uptimeNanoseconds(_ nanoseconds: UInt64) -> NIODeadline {
return NIODeadline(Int64(min(UInt64(Int64.max), nanoseconds)))
}
}
extension NIODeadline: Comparable {
public static func < (lhs: NIODeadline, rhs: NIODeadline) -> Bool {
return lhs.uptimeNanoseconds < rhs.uptimeNanoseconds
}
public static func > (lhs: NIODeadline, rhs: NIODeadline) -> Bool {
return lhs.uptimeNanoseconds > rhs.uptimeNanoseconds
}
}
extension NIODeadline: CustomStringConvertible {
public var description: String {
return self.uptimeNanoseconds.description
}
}
extension NIODeadline {
public static func - (lhs: NIODeadline, rhs: NIODeadline) -> TimeAmount {
// This won't ever crash, NIODeadlines are guaranteed to be within 0 ..< 2^63-1 nanoseconds so the result can
// definitely be stored in a TimeAmount (which is an Int64).
return .nanoseconds(Int64(lhs.uptimeNanoseconds) - Int64(rhs.uptimeNanoseconds))
}
public static func + (lhs: NIODeadline, rhs: TimeAmount) -> NIODeadline {
let partial: Int64
let overflow: Bool
(partial, overflow) = Int64(lhs.uptimeNanoseconds).addingReportingOverflow(rhs.nanoseconds)
if overflow {
assert(rhs.nanoseconds > 0) // this certainly must have overflowed towards +infinity
return NIODeadline.distantFuture
}
guard partial >= 0 else {
return NIODeadline.uptimeNanoseconds(0)
}
return NIODeadline(partial)
}
public static func - (lhs: NIODeadline, rhs: TimeAmount) -> NIODeadline {
if rhs.nanoseconds < 0 {
// The addition won't crash because the worst that could happen is `UInt64(Int64.max) + UInt64(Int64.max)`
// which fits into an UInt64 (and will then be capped to Int64.max == distantFuture by `uptimeNanoseconds`).
return NIODeadline.uptimeNanoseconds(lhs.uptimeNanoseconds + rhs.nanoseconds.magnitude)
} else if rhs.nanoseconds > lhs.uptimeNanoseconds {
// Cap it at `0` because otherwise this would be negative.
return NIODeadline.init(0)
} else {
// This will be positive but still fix in an Int64.
let result = Int64(lhs.uptimeNanoseconds) - rhs.nanoseconds
assert(result >= 0)
return NIODeadline(result)
}
}
}
extension EventLoop {
/// Submit `task` to be run on this `EventLoop`.
///
/// The returned `EventLoopFuture` will be completed when `task` has finished running. It will be succeeded with
/// `task`'s return value or failed if the execution of `task` threw an error.
///
/// - parameters:
/// - task: The synchronous task to run. As everything that runs on the `EventLoop`, it must not block.
/// - returns: An `EventLoopFuture` containing the result of `task`'s execution.
@inlinable
public func submit<T>(_ task: @escaping () throws -> T) -> EventLoopFuture<T> {
let promise: EventLoopPromise<T> = makePromise(file: #file, line: #line)
self.execute {
do {
promise.succeed(try task())
} catch let err {
promise.fail(err)
}
}
return promise.futureResult
}
/// Submit `task` to be run on this `EventLoop`.
///
/// The returned `EventLoopFuture` will be completed when `task` has finished running. It will be identical to
/// the `EventLoopFuture` returned by `task`.
///
/// - parameters:
/// - task: The asynchronous task to run. As with everything that runs on the `EventLoop`, it must not block.
/// - returns: An `EventLoopFuture` identical to the `EventLoopFuture` returned from `task`.
@inlinable
public func flatSubmit<T>(_ task: @escaping () -> EventLoopFuture<T>) -> EventLoopFuture<T> {
return self.submit(task).flatMap { $0 }
}
/// Schedule a `task` that is executed by this `EventLoop` at the given time.
///
/// - parameters:
/// - task: The asynchronous task to run. As with everything that runs on the `EventLoop`, it must not block.
/// - returns: A `Scheduled` object which may be used to cancel the task if it has not yet run, or to wait
/// on the full execution of the task, including its returned `EventLoopFuture`.
///
/// - note: You can only cancel a task before it has started executing.
@discardableResult
@inlinable
public func flatScheduleTask<T>(deadline: NIODeadline,
file: StaticString = #file,
line: UInt = #line,
_ task: @escaping () throws -> EventLoopFuture<T>) -> Scheduled<T> {
let promise: EventLoopPromise<T> = self.makePromise(file:#file, line: line)
let scheduled = self.scheduleTask(deadline: deadline, task)
scheduled.futureResult.flatMap { $0 }.cascade(to: promise)
return .init(promise: promise, cancellationTask: { scheduled.cancel() })
}
/// Schedule a `task` that is executed by this `EventLoop` after the given amount of time.
///
/// - parameters:
/// - task: The asynchronous task to run. As everything that runs on the `EventLoop`, it must not block.
/// - returns: A `Scheduled` object which may be used to cancel the task if it has not yet run, or to wait
/// on the full execution of the task, including its returned `EventLoopFuture`.
///
/// - note: You can only cancel a task before it has started executing.
@discardableResult
@inlinable
public func flatScheduleTask<T>(in delay: TimeAmount,
file: StaticString = #file,
line: UInt = #line,
_ task: @escaping () throws -> EventLoopFuture<T>) -> Scheduled<T> {
let promise: EventLoopPromise<T> = self.makePromise(file: file, line: line)
let scheduled = self.scheduleTask(in: delay, task)
scheduled.futureResult.flatMap { $0 }.cascade(to: promise)
return .init(promise: promise, cancellationTask: { scheduled.cancel() })
}
/// Creates and returns a new `EventLoopPromise` that will be notified using this `EventLoop` as execution `NIOThread`.
@inlinable
public func makePromise<T>(of type: T.Type = T.self, file: StaticString = #file, line: UInt = #line) -> EventLoopPromise<T> {
return EventLoopPromise<T>(eventLoop: self, file: file, line: line)
}
/// Creates and returns a new `EventLoopFuture` that is already marked as failed. Notifications will be done using this `EventLoop` as execution `NIOThread`.
///
/// - parameters:
/// - error: the `Error` that is used by the `EventLoopFuture`.
/// - returns: a failed `EventLoopFuture`.
@inlinable
public func makeFailedFuture<T>(_ error: Error, file: StaticString = #file, line: UInt = #line) -> EventLoopFuture<T> {
return EventLoopFuture<T>(eventLoop: self, error: error, file: file, line: line)
}
/// Creates and returns a new `EventLoopFuture` that is already marked as success. Notifications will be done using this `EventLoop` as execution `NIOThread`.
///
/// - parameters:
/// - result: the value that is used by the `EventLoopFuture`.
/// - returns: a succeeded `EventLoopFuture`.
@inlinable
public func makeSucceededFuture<Success>(_ value: Success, file: StaticString = #file, line: UInt = #line) -> EventLoopFuture<Success> {
if Success.self == Void.self {
// The as! will always succeed because we previously checked that Success.self == Void.self.
return self.makeSucceededVoidFuture() as! EventLoopFuture<Success>
} else {
return EventLoopFuture<Success>(eventLoop: self, value: value, file: file, line: line)
}
}
/// Creates and returns a new `EventLoopFuture` that is marked as succeeded or failed with the value held by `result`.
///
/// - Parameters:
/// - result: The value that is used by the `EventLoopFuture`
/// - Returns: A completed `EventLoopFuture`.
@inlinable
public func makeCompletedFuture<Success>(_ result: Result<Success, Error>) -> EventLoopFuture<Success> {
switch result {
case .success(let value):
return self.makeSucceededFuture(value)
case .failure(let error):
return self.makeFailedFuture(error)
}
}
/// An `EventLoop` forms a singular `EventLoopGroup`, returning itself as the 'next' `EventLoop`.
///
/// - returns: Itself, because an `EventLoop` forms a singular `EventLoopGroup`.
public func next() -> EventLoop {
return self
}
/// Close this `EventLoop`.
public func close() throws {
// Do nothing
}
/// Schedule a repeated task to be executed by the `EventLoop` with a fixed delay between the end and start of each
/// task.
///
/// - parameters:
/// - initialDelay: The delay after which the first task is executed.
/// - delay: The delay between the end of one task and the start of the next.
/// - promise: If non-nil, a promise to fulfill when the task is cancelled and all execution is complete.
/// - task: The closure that will be executed.
/// - return: `RepeatedTask`
@discardableResult
public func scheduleRepeatedTask(initialDelay: TimeAmount, delay: TimeAmount, notifying promise: EventLoopPromise<Void>? = nil, _ task: @escaping (RepeatedTask) throws -> Void) -> RepeatedTask {
let futureTask: (RepeatedTask) -> EventLoopFuture<Void> = { repeatedTask in
do {
try task(repeatedTask)
return self.makeSucceededFuture(())
} catch {
return self.makeFailedFuture(error)
}
}
return self.scheduleRepeatedAsyncTask(initialDelay: initialDelay, delay: delay, notifying: promise, futureTask)
}
/// Schedule a repeated asynchronous task to be executed by the `EventLoop` with a fixed delay between the end and
/// start of each task.
///
/// - note: The delay is measured from the completion of one run's returned future to the start of the execution of
/// the next run. For example: If you schedule a task once per second but your task takes two seconds to
/// complete, the time interval between two subsequent runs will actually be three seconds (2s run time plus
/// the 1s delay.)
///
/// - parameters:
/// - initialDelay: The delay after which the first task is executed.
/// - delay: The delay between the end of one task and the start of the next.
/// - promise: If non-nil, a promise to fulfill when the task is cancelled and all execution is complete.
/// - task: The closure that will be executed. Task will keep repeating regardless of whether the future
/// gets fulfilled with success or error.
///
/// - return: `RepeatedTask`
@discardableResult
public func scheduleRepeatedAsyncTask(initialDelay: TimeAmount,
delay: TimeAmount,
notifying promise: EventLoopPromise<Void>? = nil,
_ task: @escaping (RepeatedTask) -> EventLoopFuture<Void>) -> RepeatedTask {
let repeated = RepeatedTask(interval: delay, eventLoop: self, cancellationPromise: promise, task: task)
repeated.begin(in: initialDelay)
return repeated
}
/// Returns an `EventLoopIterator` over this `EventLoop`.
///
/// - returns: `EventLoopIterator`
public func makeIterator() -> EventLoopIterator {
return EventLoopIterator([self])
}
/// Asserts that the current thread is the one tied to this `EventLoop`.
/// Otherwise, if running in debug mode, the process will be abnormally terminated as per the semantics of
/// `preconditionFailure(_:file:line:)`. Never has any effect in release mode.
///
/// - note: This is not a customization point so calls to this function can be fully optimized out in release mode.
@inlinable
public func assertInEventLoop(file: StaticString = #file, line: UInt = #line) {
debugOnly {
self.preconditionInEventLoop(file: file, line: line)
}
}
/// Asserts that the current thread is _not_ the one tied to this `EventLoop`.
/// Otherwise, if running in debug mode, the process will be abnormally terminated as per the semantics of
/// `preconditionFailure(_:file:line:)`. Never has any effect in release mode.
///
/// - note: This is not a customization point so calls to this function can be fully optimized out in release mode.
@inlinable
public func assertNotInEventLoop(file: StaticString = #file, line: UInt = #line) {
debugOnly {
self.preconditionNotInEventLoop(file: file, line: line)
}
}
/// Checks the necessary condition of currently running on the called `EventLoop` for making forward progress.
@inlinable
public func preconditionInEventLoop(file: StaticString = #file, line: UInt = #line) {
precondition(self.inEventLoop, file: file, line: line)
}
/// Checks the necessary condition of currently _not_ running on the called `EventLoop` for making forward progress.
@inlinable
public func preconditionNotInEventLoop(file: StaticString = #file, line: UInt = #line) {
precondition(!self.inEventLoop, file: file, line: line)
}
}
/// Internal representation of a `Registration` to an `Selector`.
///
/// Whenever a `Selectable` is registered to a `Selector` a `Registration` is created internally that is also provided within the
/// `SelectorEvent` that is provided to the user when an event is ready to be consumed for a `Selectable`. As we need to have access to the `ServerSocketChannel`
/// and `SocketChannel` (to dispatch the events) we create our own `Registration` that holds a reference to these.
/// The `RegistrationID` is used by the `Selector` to tag registrations with a sequence number that can be
/// used for external registrations (e.g. epoll, kqueue) to filter out outdated events when registrations with the same fd is repeatedly registered/deregistered.
struct NIORegistration: Registration {
enum ChannelType {
case serverSocketChannel(ServerSocketChannel)
case socketChannel(SocketChannel)
case datagramChannel(DatagramChannel)
case pipeChannel(PipeChannel, PipeChannel.Direction)
}
var channel: ChannelType
/// The `SelectorEventSet` in which this `NIORegistration` is interested in.
var interested: SelectorEventSet
/// The registration ID for this `NIORegistration` used by the `Selector`.
var registrationID: SelectorRegistrationID
}
/// Provides an endless stream of `EventLoop`s to use.
public protocol EventLoopGroup: AnyObject {
/// Returns the next `EventLoop` to use.
///
/// The algorithm that is used to select the next `EventLoop` is specific to each `EventLoopGroup`. A common choice
/// is _round robin_.
func next() -> EventLoop
/// Shuts down the eventloop gracefully. This function is clearly an outlier in that it uses a completion
/// callback instead of an EventLoopFuture. The reason for that is that NIO's EventLoopFutures will call back on an event loop.
/// The virtue of this function is to shut the event loop down. To work around that we call back on a DispatchQueue
/// instead.
func shutdownGracefully(queue: DispatchQueue, _ callback: @escaping (Error?) -> Void)
/// Returns an `EventLoopIterator` over the `EventLoop`s in this `EventLoopGroup`.
///
/// - returns: `EventLoopIterator`
func makeIterator() -> EventLoopIterator
}
extension EventLoopGroup {
public func shutdownGracefully(_ callback: @escaping (Error?) -> Void) {
self.shutdownGracefully(queue: .global(), callback)
}
public func syncShutdownGracefully() throws {
if let eventLoop = MultiThreadedEventLoopGroup.currentEventLoop {
preconditionFailure("""
BUG DETECTED: syncShutdownGracefully() must not be called when on an EventLoop.
Calling syncShutdownGracefully() on any EventLoop can lead to deadlocks.
Current eventLoop: \(eventLoop)
""")
}
let errorStorageLock = Lock()
var errorStorage: Error? = nil
let continuation = DispatchWorkItem {}
self.shutdownGracefully { error in
if let error = error {
errorStorageLock.withLock {
errorStorage = error
}
}
continuation.perform()
}
continuation.wait()
try errorStorageLock.withLock {
if let error = errorStorage {
throw error
}
}
}
}
/// This type is intended to be used by libraries which use NIO, and offer their users either the option
/// to `.share` an existing event loop group or create (and manage) a new one (`.createNew`) and let it be
/// managed by given library and its lifecycle.
public enum NIOEventLoopGroupProvider {
/// Use an `EventLoopGroup` provided by the user.
/// The owner of this group is responsible for its lifecycle.
case shared(EventLoopGroup)
/// Create a new `EventLoopGroup` when necessary.
/// The library which accepts this provider takes ownership of the created event loop group,
/// and must ensure its proper shutdown when the library is being shut down.
case createNew
}
private let nextEventLoopGroupID = NIOAtomic.makeAtomic(value: 0)
/// Called per `NIOThread` that is created for an EventLoop to do custom initialization of the `NIOThread` before the actual `EventLoop` is run on it.
typealias ThreadInitializer = (NIOThread) -> Void
/// An `EventLoopGroup` which will create multiple `EventLoop`s, each tied to its own `NIOThread`.
///
/// The effect of initializing a `MultiThreadedEventLoopGroup` is to spawn `numberOfThreads` fresh threads which will
/// all run their own `EventLoop`. Those threads will not be shut down until `shutdownGracefully` or
/// `syncShutdownGracefully` is called.
///
/// - note: It's good style to call `MultiThreadedEventLoopGroup.shutdownGracefully` or
/// `MultiThreadedEventLoopGroup.syncShutdownGracefully` when you no longer need this `EventLoopGroup`. In
/// many cases that is just before your program exits.
/// - warning: Unit tests often spawn one `MultiThreadedEventLoopGroup` per unit test to force isolation between the
/// tests. In those cases it's important to shut the `MultiThreadedEventLoopGroup` down at the end of the
/// test. A good place to start a `MultiThreadedEventLoopGroup` is the `setUp` method of your `XCTestCase`
/// subclass, a good place to shut it down is the `tearDown` method.
public final class MultiThreadedEventLoopGroup: EventLoopGroup {
private enum RunState {
case running
case closing([(DispatchQueue, (Error?) -> Void)])
case closed(Error?)
}
private static let threadSpecificEventLoop = ThreadSpecificVariable<SelectableEventLoop>()
private let myGroupID: Int
private let index = NIOAtomic<Int>.makeAtomic(value: 0)
private let eventLoops: [SelectableEventLoop]
private let shutdownLock: Lock = Lock()
private var runState: RunState = .running
private static func runTheLoop(thread: NIOThread,
canEventLoopBeShutdownIndividually: Bool,
selectorFactory: @escaping () throws -> NIO.Selector<NIORegistration>,
initializer: @escaping ThreadInitializer,
_ callback: @escaping (SelectableEventLoop) -> Void) {
assert(NIOThread.current == thread)
initializer(thread)
do {
let loop = SelectableEventLoop(thread: thread,
selector: try selectorFactory(),
canBeShutdownIndividually: canEventLoopBeShutdownIndividually)
threadSpecificEventLoop.currentValue = loop
defer {
threadSpecificEventLoop.currentValue = nil
}
callback(loop)
try loop.run()
} catch {
// We fatalError here because the only reasons this can be hit is if the underlying kqueue/epoll give us
// errors that we cannot handle which is an unrecoverable error for us.
fatalError("Unexpected error while running SelectableEventLoop: \(error).")
}
}
private static func setupThreadAndEventLoop(name: String,
selectorFactory: @escaping () throws -> NIO.Selector<NIORegistration>,
initializer: @escaping ThreadInitializer) -> SelectableEventLoop {
let lock = Lock()
/* the `loopUpAndRunningGroup` is done by the calling thread when the EventLoop has been created and was written to `_loop` */
let loopUpAndRunningGroup = DispatchGroup()
/* synchronised by `lock` */
var _loop: SelectableEventLoop! = nil
loopUpAndRunningGroup.enter()
NIOThread.spawnAndRun(name: name, detachThread: false) { t in
MultiThreadedEventLoopGroup.runTheLoop(thread: t,
canEventLoopBeShutdownIndividually: false, // part of MTELG
selectorFactory: selectorFactory,
initializer: initializer) { l in
lock.withLock {
_loop = l
}
loopUpAndRunningGroup.leave()
}
}
loopUpAndRunningGroup.wait()
return lock.withLock { _loop }
}
/// Creates a `MultiThreadedEventLoopGroup` instance which uses `numberOfThreads`.
///
/// - note: Don't forget to call `shutdownGracefully` or `syncShutdownGracefully` when you no longer need this
/// `EventLoopGroup`. If you forget to shut the `EventLoopGroup` down you will leak `numberOfThreads`
/// (kernel) threads which are costly resources. This is especially important in unit tests where one
/// `MultiThreadedEventLoopGroup` is started per test case.
///
/// - arguments:
/// - numberOfThreads: The number of `Threads` to use.
public convenience init(numberOfThreads: Int) {
self.init(numberOfThreads: numberOfThreads, selectorFactory: NIO.Selector<NIORegistration>.init)
}
internal convenience init(numberOfThreads: Int,
selectorFactory: @escaping () throws -> NIO.Selector<NIORegistration>) {
precondition(numberOfThreads > 0, "numberOfThreads must be positive")
let initializers: [ThreadInitializer] = Array(repeating: { _ in }, count: numberOfThreads)
self.init(threadInitializers: initializers, selectorFactory: selectorFactory)
}
/// Creates a `MultiThreadedEventLoopGroup` instance which uses the given `ThreadInitializer`s. One `NIOThread` per `ThreadInitializer` is created and used.
///
/// - arguments:
/// - threadInitializers: The `ThreadInitializer`s to use.
internal init(threadInitializers: [ThreadInitializer],
selectorFactory: @escaping () throws -> NIO.Selector<NIORegistration> = NIO.Selector<NIORegistration>.init) {
let myGroupID = nextEventLoopGroupID.add(1)
self.myGroupID = myGroupID
var idx = 0
self.eventLoops = threadInitializers.map { initializer in
// Maximum name length on linux is 16 by default.
let ev = MultiThreadedEventLoopGroup.setupThreadAndEventLoop(name: "NIO-ELT-\(myGroupID)-#\(idx)",
selectorFactory: selectorFactory,
initializer: initializer)
idx += 1
return ev
}
}
/// Returns the `EventLoop` for the calling thread.
///
/// - returns: The current `EventLoop` for the calling thread or `nil` if none is assigned to the thread.
public static var currentEventLoop: EventLoop? {
return threadSpecificEventLoop.currentValue
}
/// Returns an `EventLoopIterator` over the `EventLoop`s in this `MultiThreadedEventLoopGroup`.
///
/// - returns: `EventLoopIterator`
public func makeIterator() -> EventLoopIterator {
return EventLoopIterator(self.eventLoops)
}
/// Returns the next `EventLoop` from this `MultiThreadedEventLoopGroup`.
///
/// `MultiThreadedEventLoopGroup` uses _round robin_ across all its `EventLoop`s to select the next one.
///
/// - returns: The next `EventLoop` to use.
public func next() -> EventLoop {
return eventLoops[abs(index.add(1) % eventLoops.count)]
}
/// Shut this `MultiThreadedEventLoopGroup` down which causes the `EventLoop`s and their associated threads to be
/// shut down and release their resources.
///
/// Even though calling `shutdownGracefully` more than once should be avoided, it is safe to do so and execution
/// of the `handler` is guaranteed.
///
/// - parameters:
/// - queue: The `DispatchQueue` to run `handler` on when the shutdown operation completes.
/// - handler: The handler which is called after the shutdown operation completes. The parameter will be `nil`
/// on success and contain the `Error` otherwise.
public func shutdownGracefully(queue: DispatchQueue, _ handler: @escaping (Error?) -> Void) {
// This method cannot perform its final cleanup using EventLoopFutures, because it requires that all
// our event loops still be alive, and they may not be. Instead, we use Dispatch to manage
// our shutdown signaling, and then do our cleanup once the DispatchQueue is empty.
let g = DispatchGroup()
let q = DispatchQueue(label: "nio.shutdownGracefullyQueue", target: queue)
let wasRunning: Bool = self.shutdownLock.withLock {
// We need to check the current `runState` and react accordingly.
switch self.runState {
case .running:
// If we are still running, we set the `runState` to `closing`,
// so that potential future invocations know, that the shutdown
// has already been initiaited.
self.runState = .closing([])
return true
case .closing(var callbacks):
// If we are currently closing, we need to register the `handler`
// for invocation after the shutdown is completed.
callbacks.append((q, handler))
self.runState = .closing(callbacks)
return false
case .closed(let error):
// If we are already closed, we can directly dispatch the `handler`
q.async {
handler(error)
}
return false
}
}
// If the `runState` was not `running` when `shutdownGracefully` was called,
// the shutdown has already been initiated and we have to return here.
guard wasRunning else {
return
}
var result: Result<Void, Error> = .success(())
for loop in self.eventLoops {
g.enter()
loop.initiateClose(queue: q) { closeResult in
switch closeResult {
case .success:
()
case .failure(let error):
result = .failure(error)
}
g.leave()
}
}
g.notify(queue: q) {
for loop in self.eventLoops {
loop.syncFinaliseClose(joinThread: true)
}
var overallError: Error?
var queueCallbackPairs: [(DispatchQueue, (Error?) -> Void)]? = nil
self.shutdownLock.withLock {
switch self.runState {
case .closed, .running:
preconditionFailure("MultiThreadedEventLoopGroup in illegal state when closing: \(self.runState)")
case .closing(let callbacks):
queueCallbackPairs = callbacks
switch result {
case .success:
overallError = nil
case .failure(let error):
overallError = error
}
self.runState = .closed(overallError)
}
}
queue.async {
handler(overallError)
}
for queueCallbackPair in queueCallbackPairs! {
queueCallbackPair.0.async {
queueCallbackPair.1(overallError)
}
}
}
}
/// Convert the calling thread into an `EventLoop`.
///
/// This function will not return until the `EventLoop` has stopped. You can initiate stopping the `EventLoop` by
/// calling `eventLoop.shutdownGracefully` which will eventually make this function return.
///
/// - parameters:
/// - callback: Called _on_ the `EventLoop` that the calling thread was converted to, providing you the
/// `EventLoop` reference. Just like usually on the `EventLoop`, do not block in `callback`.
public static func withCurrentThreadAsEventLoop(_ callback: @escaping (EventLoop) -> Void) {
let callingThread = NIOThread.current
MultiThreadedEventLoopGroup.runTheLoop(thread: callingThread,
canEventLoopBeShutdownIndividually: true,
selectorFactory: NIO.Selector<NIORegistration>.init,
initializer: { _ in }) { loop in
loop.assertInEventLoop()
callback(loop)
}
}
}
extension MultiThreadedEventLoopGroup: CustomStringConvertible {
public var description: String {
return "MultiThreadedEventLoopGroup { threadPattern = NIO-ELT-\(self.myGroupID)-#* }"
}
}
@usableFromInline
internal final class ScheduledTask {
let task: () -> Void
private let failFn: (Error) ->()
@usableFromInline
internal let _readyTime: NIODeadline
@usableFromInline
init(_ task: @escaping () -> Void, _ failFn: @escaping (Error) -> Void, _ time: NIODeadline) {
self.task = task
self.failFn = failFn
self._readyTime = time
}
func readyIn(_ t: NIODeadline) -> TimeAmount {
if _readyTime < t {
return .nanoseconds(0)
}
return _readyTime - t
}
func fail(_ error: Error) {
failFn(error)
}
}
extension ScheduledTask: CustomStringConvertible {
@usableFromInline
var description: String {
return "ScheduledTask(readyTime: \(self._readyTime))"
}
}
extension ScheduledTask: Comparable {
@usableFromInline
static func < (lhs: ScheduledTask, rhs: ScheduledTask) -> Bool {
return lhs._readyTime < rhs._readyTime
}
@usableFromInline
static func == (lhs: ScheduledTask, rhs: ScheduledTask) -> Bool {
return lhs === rhs
}
}
/// Different `Error`s that are specific to `EventLoop` operations / implementations.
public enum EventLoopError: Error {
/// An operation was executed that is not supported by the `EventLoop`
case unsupportedOperation
/// An scheduled task was cancelled.
case cancelled
/// The `EventLoop` was shutdown already.
case shutdown
/// Shutting down the `EventLoop` failed.
case shutdownFailed
}
extension EventLoopError: CustomStringConvertible {
public var description: String {
switch self {
case .unsupportedOperation:
return "EventLoopError: the executed operation is not supported by the event loop"
case .cancelled:
return "EventLoopError: the scheduled task was cancelled"
case .shutdown:
return "EventLoopError: the event loop is shutdown"
case .shutdownFailed:
return "EventLoopError: failed to shutdown the event loop"
}
}
}
|