File: EventLoopFuture.swift

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (1576 lines) | stat: -rw-r--r-- 71,716 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
//===----------------------------------------------------------------------===//
//
// This source file is part of the SwiftNIO open source project
//
// Copyright (c) 2017-2020 Apple Inc. and the SwiftNIO project authors
// Licensed under Apache License v2.0
//
// See LICENSE.txt for license information
// See CONTRIBUTORS.txt for the list of SwiftNIO project authors
//
// SPDX-License-Identifier: Apache-2.0
//
//===----------------------------------------------------------------------===//

import NIOConcurrencyHelpers
import Dispatch

/// Internal list of callbacks.
///
/// Most of these are closures that pull a value from one future, call a user callback, push the
/// result into another, then return a list of callbacks from the target future that are now ready to be invoked.
///
/// In particular, note that _run() here continues to obtain and execute lists of callbacks until it completes.
/// This eliminates recursion when processing `flatMap()` chains.
@usableFromInline
internal struct CallbackList {
    @usableFromInline
    internal typealias Element = () -> CallbackList
    @usableFromInline
    internal var firstCallback: Optional<Element>
    @usableFromInline
    internal var furtherCallbacks: Optional<[Element]>

    @inlinable
    internal init() {
        self.firstCallback = nil
        self.furtherCallbacks = nil
    }

    @inlinable
    internal mutating func append(_ callback: @escaping () -> CallbackList) {
        if self.firstCallback == nil {
            self.firstCallback = callback
        } else {
            if self.furtherCallbacks != nil {
                self.furtherCallbacks!.append(callback)
            } else {
                self.furtherCallbacks = [callback]
            }
        }
    }

    @inlinable
    internal func _allCallbacks() -> CircularBuffer<Element> {
        switch (self.firstCallback, self.furtherCallbacks) {
        case (.none, _):
            return []
        case (.some(let onlyCallback), .none):
            return [onlyCallback]
        default:
            var array: CircularBuffer<Element> = []
            self.appendAllCallbacks(&array)
            return array
        }
    }

    @inlinable
    internal func appendAllCallbacks(_ array: inout CircularBuffer<Element>) {
        switch (self.firstCallback, self.furtherCallbacks) {
        case (.none, _):
            return
        case (.some(let onlyCallback), .none):
            array.append(onlyCallback)
        case (.some(let first), .some(let others)):
            array.reserveCapacity(array.count + 1 + others.count)
            array.append(first)
            array.append(contentsOf: others)
        }
    }

    @inlinable
    internal func _run() {
        switch (self.firstCallback, self.furtherCallbacks) {
        case (.none, _):
            return
        case (.some(let onlyCallback), .none):
            var onlyCallback = onlyCallback
            loop: while true {
                let cbl = onlyCallback()
                switch (cbl.firstCallback, cbl.furtherCallbacks) {
                case (.none, _):
                    break loop
                case (.some(let ocb), .none):
                    onlyCallback = ocb
                    continue loop
                case (.some(_), .some(_)):
                    var pending = cbl._allCallbacks()
                    while let f = pending.popFirst() {
                        let next = f()
                        next.appendAllCallbacks(&pending)
                    }
                    break loop
                }
            }
        default:
            var pending = self._allCallbacks()
            while let f = pending.popFirst() {
                let next = f()
                next.appendAllCallbacks(&pending)
            }
        }
    }
}

/// Internal error for operations that return results that were not replaced
@usableFromInline
internal struct OperationPlaceholderError: Error {
    @usableFromInline
    internal init() {}
}

/// A promise to provide a result later.
///
/// This is the provider API for `EventLoopFuture<Value>`. If you want to return an
/// unfulfilled `EventLoopFuture<Value>` -- presumably because you are interfacing to
/// some asynchronous service that will return a real result later, follow this
/// pattern:
///
/// ```
/// func someAsyncOperation(args) -> EventLoopFuture<ResultType> {
///     let promise = eventLoop.makePromise(of: ResultType.self)
///     someAsyncOperationWithACallback(args) { result -> Void in
///         // when finished...
///         promise.succeed(result)
///         // if error...
///         promise.fail(error)
///     }
///     return promise.futureResult
/// }
/// ```
///
/// Note that the future result is returned before the async process has provided a value.
///
/// It's actually not very common to use this directly. Usually, you really want one
/// of the following:
///
/// * If you have an `EventLoopFuture` and want to do something else after it completes,
///     use `.flatMap()`
/// * If you already have a value and need an `EventLoopFuture<>` object to plug into
///     some other API, create an already-resolved object with `eventLoop.makeSucceededFuture(result)`
///     or `eventLoop.newFailedFuture(error:)`.
///
/// - note: `EventLoopPromise` has reference semantics.
public struct EventLoopPromise<Value> {
    /// The `EventLoopFuture` which is used by the `EventLoopPromise`. You can use it to add callbacks which are notified once the
    /// `EventLoopPromise` is completed.
    public let futureResult: EventLoopFuture<Value>

    /// General initializer
    ///
    /// - parameters:
    ///     - eventLoop: The event loop this promise is tied to.
    ///     - file: The file this promise was allocated in, for debugging purposes.
    ///     - line: The line this promise was allocated on, for debugging purposes.
    @inlinable
    internal init(eventLoop: EventLoop, file: StaticString, line: UInt) {
        self.futureResult = EventLoopFuture<Value>(_eventLoop: eventLoop, file: file, line: line)
    }

    /// Deliver a successful result to the associated `EventLoopFuture<Value>` object.
    ///
    /// - parameters:
    ///     - value: The successful result of the operation.
    @inlinable
    public func succeed(_ value: Value) {
        self._resolve(value: .success(value))
    }

    /// Deliver an error to the associated `EventLoopFuture<Value>` object.
    ///
    /// - parameters:
    ///      - error: The error from the operation.
    @inlinable
    public func fail(_ error: Error) {
        self._resolve(value: .failure(error))
    }
    
    /// Complete the promise with the passed in `EventLoopFuture<Value>`.
    ///
    /// This method is equivalent to invoking `future.cascade(to: promise)`,
    /// but sometimes may read better than its cascade counterpart.
    /// 
    /// - parameters:
    ///     - future: The future whose value will be used to succeed or fail this promise.
    /// - seealso: `EventLoopFuture.cascade(to:)`
    @inlinable
    public func completeWith(_ future: EventLoopFuture<Value>) {
        future.cascade(to: self)
    }

    /// Complete the promise with the passed in `Result<Value, Error>`.
    ///
    /// This method is equivalent to invoking:
    /// ```
    /// switch result {
    /// case .success(let value):
    ///     promise.succeed(value)
    /// case .failure(let error):
    ///     promise.fail(error)
    /// }
    /// ```
    ///
    /// - parameters:
    ///     - result: The result which will be used to succeed or fail this promise.
    @inlinable
    public func completeWith(_ result: Result<Value, Error>) {
        self._resolve(value: result)
    }

    /// Fire the associated `EventLoopFuture` on the appropriate event loop.
    ///
    /// This method provides the primary difference between the `EventLoopPromise` and most
    /// other `Promise` implementations: specifically, all callbacks fire on the `EventLoop`
    /// that was used to create the promise.
    ///
    /// - parameters:
    ///     - value: The value to fire the future with.
    @inlinable
    internal func _resolve(value: Result<Value, Error>) {
        if self.futureResult.eventLoop.inEventLoop {
            self._setValue(value: value)._run()
        } else {
            self.futureResult.eventLoop.execute {
                self._setValue(value: value)._run()
            }
        }
    }

    /// Set the future result and get the associated callbacks.
    ///
    /// - parameters:
    ///     - value: The result of the promise.
    /// - returns: The callback list to run.
    @inlinable
    internal func _setValue(value: Result<Value, Error>) -> CallbackList {
        return self.futureResult._setValue(value: value)
    }
}


/// Holder for a result that will be provided later.
///
/// Functions that promise to do work asynchronously can return an `EventLoopFuture<Value>`.
/// The recipient of such an object can then observe it to be notified when the operation completes.
///
/// The provider of a `EventLoopFuture<Value>` can create and return a placeholder object
/// before the actual result is available. For example:
///
/// ```
/// func getNetworkData(args) -> EventLoopFuture<NetworkResponse> {
///     let promise = eventLoop.makePromise(of: NetworkResponse.self)
///     queue.async {
///         . . . do some work . . .
///         promise.succeed(response)
///         . . . if it fails, instead . . .
///         promise.fail(error)
///     }
///     return promise.futureResult
/// }
/// ```
///
/// Note that this function returns immediately; the promise object will be given a value
/// later on. This behaviour is common to Future/Promise implementations in many programming
/// languages. If you are unfamiliar with this kind of object, the following resources may be
/// helpful:
///
/// - [Javascript](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_promises)
/// - [Scala](http://docs.scala-lang.org/overviews/core/futures.html)
/// - [Python](https://docs.google.com/document/d/10WOZgLQaYNpOrag-eTbUm-JUCCfdyfravZ4qSOQPg1M/edit)
///
/// If you receive a `EventLoopFuture<Value>` from another function, you have a number of options:
/// The most common operation is to use `flatMap()` or `map()` to add a function that will be called
/// with the eventual result.  Both methods returns a new `EventLoopFuture<Value>` immediately
/// that will receive the return value from your function, but they behave differently. If you have
/// a function that can return synchronously, the `map` function will transform the result of type
/// `Value` to a the new result of type `NewValue` and return an `EventLoopFuture<NewValue>`.
///
/// ```
/// let networkData = getNetworkData(args)
///
/// // When network data is received, convert it.
/// let processedResult: EventLoopFuture<Processed> = networkData.map { (n: NetworkResponse) -> Processed in
///     ... parse network data ....
///     return processedResult
/// }
/// ```
///
/// If however you need to do more asynchronous processing, you can call `flatMap()`. The return value of the
/// function passed to `flatMap` must be a new `EventLoopFuture<NewValue>` object: the return value of `flatMap()` is
/// a new `EventLoopFuture<NewValue>` that will contain the eventual result of both the original operation and
/// the subsequent one.
///
/// ```
/// // When converted network data is available, begin the database operation.
/// let databaseResult: EventLoopFuture<DBResult> = processedResult.flatMap { (p: Processed) -> EventLoopFuture<DBResult> in
///     return someDatabaseOperation(p)
/// }
/// ```
///
/// In essence, future chains created via `flatMap()` provide a form of data-driven asynchronous programming
/// that allows you to dynamically declare data dependencies for your various operations.
///
/// `EventLoopFuture` chains created via `flatMap()` are sufficient for most purposes. All of the registered
/// functions will eventually run in order. If one of those functions throws an error, that error will
/// bypass the remaining functions. You can use `flatMapError()` to handle and optionally recover from
/// errors in the middle of a chain.
///
/// At the end of an `EventLoopFuture` chain, you can use `whenSuccess()` or `whenFailure()` to add an
/// observer callback that will be invoked with the result or error at that point. (Note: If you ever
/// find yourself invoking `promise.succeed()` from inside a `whenSuccess()` callback, you probably should
/// use `flatMap()` or `cascade(to:)` instead.)
///
/// `EventLoopFuture` objects are typically obtained by:
/// * Using `.flatMap()` on an existing future to create a new future for the next step in a series of operations.
/// * Initializing an `EventLoopFuture` that already has a value or an error
///
/// ### Threading and Futures
///
/// One of the major performance advantages of NIO over something like Node.js or Python’s asyncio is that NIO will
/// by default run multiple event loops at once, on different threads. As most network protocols do not require
/// blocking operation, at least in their low level implementations, this provides enormous speedups on machines
/// with many cores such as most modern servers.
///
/// However, it can present a challenge at higher levels of abstraction when coordination between those threads
/// becomes necessary. This is usually the case whenever the events on one connection (that is, one `Channel`) depend
/// on events on another one. As these `Channel`s may be scheduled on different event loops (and so different threads)
/// care needs to be taken to ensure that communication between the two loops is done in a thread-safe manner that
/// avoids concurrent mutation of shared state from multiple loops at once.
///
/// The main primitives NIO provides for this use are the `EventLoopPromise` and `EventLoopFuture`. As their names
/// suggest, these two objects are aware of event loops, and so can help manage the safety and correctness of your
/// programs. However, understanding the exact semantics of these objects is critical to ensuring the safety of your code.
///
/// ####  Callbacks
///
/// The most important principle of the `EventLoopPromise` and `EventLoopFuture` is this: all callbacks registered on
/// an `EventLoopFuture` will execute on the thread corresponding to the event loop that created the `Future`,
/// *regardless* of what thread succeeds or fails the corresponding `EventLoopPromise`.
///
/// This means that if *your code* created the `EventLoopPromise`, you can be extremely confident of what thread the
/// callback will execute on: after all, you held the event loop in hand when you created the `EventLoopPromise`.
/// However, if your code is handed an `EventLoopFuture` or `EventLoopPromise`, and you want to register callbacks
/// on those objects, you cannot be confident that those callbacks will execute on the same `EventLoop` that your
/// code does.
///
/// This presents a problem: how do you ensure thread-safety when registering callbacks on an arbitrary
/// `EventLoopFuture`? The short answer is that when you are holding an `EventLoopFuture`, you can always obtain a
/// new `EventLoopFuture` whose callbacks will execute on your event loop. You do this by calling
/// `EventLoopFuture.hop(to:)`. This function returns a new `EventLoopFuture` whose callbacks are guaranteed
/// to fire on the provided event loop. As an added bonus, `hopTo` will check whether the provided `EventLoopFuture`
/// was already scheduled to dispatch on the event loop in question, and avoid doing any work if that was the case.
///
/// This means that for any `EventLoopFuture` that your code did not create itself (via
/// `EventLoopPromise.futureResult`), use of `hopTo` is **strongly encouraged** to help guarantee thread-safety. It
/// should only be elided when thread-safety is provably not needed.
///
/// The "thread affinity" of `EventLoopFuture`s is critical to writing safe, performant concurrent code without
/// boilerplate. It allows you to avoid needing to write or use locks in your own code, instead using the natural
/// synchronization of the `EventLoop` to manage your thread-safety. In general, if any of your `ChannelHandler`s
/// or `EventLoopFuture` callbacks need to invoke a lock (either directly or in the form of `DispatchQueue`) this
/// should be considered a code smell worth investigating: the `EventLoop`-based synchronization guarantees of
/// `EventLoopFuture` should be sufficient to guarantee thread-safety.
public final class EventLoopFuture<Value> {
    // TODO: Provide a tracing facility.  It would be nice to be able to set '.debugTrace = true' on any EventLoopFuture or EventLoopPromise and have every subsequent chained EventLoopFuture report the success result or failure error.  That would simplify some debugging scenarios.
    @usableFromInline
    internal var _value: Optional<Result<Value, Error>>

    /// The `EventLoop` which is tied to the `EventLoopFuture` and is used to notify all registered callbacks.
    public let eventLoop: EventLoop

    /// Callbacks that should be run when this `EventLoopFuture<Value>` gets a value.
    /// These callbacks may give values to other `EventLoopFuture`s; if that happens,
    /// they return any callbacks from those `EventLoopFuture`s so that we can run
    /// the entire chain from the top without recursing.
    @usableFromInline
    internal var _callbacks: CallbackList

    @inlinable
    internal init(_eventLoop eventLoop: EventLoop, value: Result<Value, Error>?, file: StaticString, line: UInt) {
        self.eventLoop = eventLoop
        self._value = value
        self._callbacks = .init()

        debugOnly {
            if let me = eventLoop as? SelectableEventLoop {
                me.promiseCreationStoreAdd(future: self, file: file, line: line)
            }
        }
    }

    @inlinable
    internal convenience init(_eventLoop eventLoop: EventLoop, file: StaticString, line: UInt) {
        self.init(_eventLoop: eventLoop, value: nil, file: file, line: line)
    }

    /// A EventLoopFuture<Value> that has already succeeded
    @inlinable
    internal convenience init(eventLoop: EventLoop, value: Value, file: StaticString, line: UInt) {
        self.init(_eventLoop: eventLoop, value: .success(value), file: file, line: line)
    }

    /// A EventLoopFuture<Value> that has already failed
    @inlinable
    internal convenience init(eventLoop: EventLoop, error: Error, file: StaticString, line: UInt) {
        self.init(_eventLoop: eventLoop, value: .failure(error), file: file, line: line)
    }

    deinit {
        debugOnly {
            if let eventLoop = self.eventLoop as? SelectableEventLoop {
                let creation = eventLoop.promiseCreationStoreRemove(future: self)
                if self._value == nil {
                    fatalError("leaking promise created at \(creation)", file: creation.file, line: creation.line)
                }
            } else {
                precondition(self._value != nil, "leaking an unfulfilled Promise")
            }
        }
    }
}

extension EventLoopFuture: Equatable {
    public static func ==(lhs: EventLoopFuture, rhs: EventLoopFuture) -> Bool {
        return lhs === rhs
    }
}

// MARK: flatMap and map

// 'flatMap' and 'map' implementations. This is really the key of the entire system.
extension EventLoopFuture {
    /// When the current `EventLoopFuture<Value>` is fulfilled, run the provided callback,
    /// which will provide a new `EventLoopFuture`.
    ///
    /// This allows you to dynamically dispatch new asynchronous tasks as phases in a
    /// longer series of processing steps. Note that you can use the results of the
    /// current `EventLoopFuture<Value>` when determining how to dispatch the next operation.
    ///
    /// This works well when you have APIs that already know how to return `EventLoopFuture`s.
    /// You can do something with the result of one and just return the next future:
    ///
    /// ```
    /// let d1 = networkRequest(args).future()
    /// let d2 = d1.flatMap { t -> EventLoopFuture<NewValue> in
    ///     . . . something with t . . .
    ///     return netWorkRequest(args)
    /// }
    /// d2.whenSuccess { u in
    ///     NSLog("Result of second request: \(u)")
    /// }
    /// ```
    ///
    /// Note: In a sense, the `EventLoopFuture<NewValue>` is returned before it's created.
    ///
    /// - parameters:
    ///     - callback: Function that will receive the value of this `EventLoopFuture` and return
    ///         a new `EventLoopFuture`.
    /// - returns: A future that will receive the eventual value.
    @inlinable
    public func flatMap<NewValue>(file: StaticString = #file, line: UInt = #line, _ callback: @escaping (Value) -> EventLoopFuture<NewValue>) -> EventLoopFuture<NewValue> {
        let next = EventLoopPromise<NewValue>(eventLoop: eventLoop, file: file, line: line)
        self._whenComplete {
            switch self._value! {
            case .success(let t):
                let futureU = callback(t)
                if futureU.eventLoop.inEventLoop {
                    return futureU._addCallback {
                        next._setValue(value: futureU._value!)
                    }
                } else {
                    futureU.cascade(to: next)
                    return CallbackList()
                }
            case .failure(let error):
                return next._setValue(value: .failure(error))
            }
        }
        return next.futureResult
    }

    /// When the current `EventLoopFuture<Value>` is fulfilled, run the provided callback, which
    /// performs a synchronous computation and returns a new value of type `NewValue`. The provided
    /// callback may optionally `throw`.
    ///
    /// Operations performed in `flatMapThrowing` should not block, or they will block the entire
    /// event loop. `flatMapThrowing` is intended for use when you have a data-driven function that
    /// performs a simple data transformation that can potentially error.
    ///
    /// If your callback function throws, the returned `EventLoopFuture` will error.
    ///
    /// - parameters:
    ///     - callback: Function that will receive the value of this `EventLoopFuture` and return
    ///         a new value lifted into a new `EventLoopFuture`.
    /// - returns: A future that will receive the eventual value.
    @inlinable
    public func flatMapThrowing<NewValue>(file: StaticString = #file,
                                line: UInt = #line,
                                _ callback: @escaping (Value) throws -> NewValue) -> EventLoopFuture<NewValue> {
        let next = EventLoopPromise<NewValue>(eventLoop: eventLoop, file: file, line: line)
        self._whenComplete {
            switch self._value! {
            case .success(let t):
                do {
                    let r = try callback(t)
                    return next._setValue(value: .success(r))
                } catch {
                    return next._setValue(value: .failure(error))
                }
            case .failure(let e):
                return next._setValue(value: .failure(e))
            }
        }
        return next.futureResult
    }

    /// When the current `EventLoopFuture<Value>` is in an error state, run the provided callback, which
    /// may recover from the error and returns a new value of type `Value`. The provided callback may optionally `throw`,
    /// in which case the `EventLoopFuture` will be in a failed state with the new thrown error.
    ///
    /// Operations performed in `flatMapErrorThrowing` should not block, or they will block the entire
    /// event loop. `flatMapErrorThrowing` is intended for use when you have the ability to synchronously
    /// recover from errors.
    ///
    /// If your callback function throws, the returned `EventLoopFuture` will error.
    ///
    /// - parameters:
    ///     - callback: Function that will receive the error value of this `EventLoopFuture` and return
    ///         a new value lifted into a new `EventLoopFuture`.
    /// - returns: A future that will receive the eventual value or a rethrown error.
    @inlinable
    public func flatMapErrorThrowing(file: StaticString = #file, line: UInt = #line, _ callback: @escaping (Error) throws -> Value) -> EventLoopFuture<Value> {
        let next = EventLoopPromise<Value>(eventLoop: eventLoop, file: file, line: line)
        self._whenComplete {
            switch self._value! {
            case .success(let t):
                return next._setValue(value: .success(t))
            case .failure(let e):
                do {
                    let r = try callback(e)
                    return next._setValue(value: .success(r))
                } catch {
                    return next._setValue(value: .failure(error))
                }
            }
        }
        return next.futureResult
    }

    /// When the current `EventLoopFuture<Value>` is fulfilled, run the provided callback, which
    /// performs a synchronous computation and returns a new value of type `NewValue`.
    ///
    /// Operations performed in `map` should not block, or they will block the entire event
    /// loop. `map` is intended for use when you have a data-driven function that performs
    /// a simple data transformation that cannot error.
    ///
    /// If you have a data-driven function that can throw, you should use `flatMapThrowing`
    /// instead.
    ///
    /// ```
    /// let future1 = eventually()
    /// let future2 = future1.map { T -> U in
    ///     ... stuff ...
    ///     return u
    /// }
    /// let future3 = future2.map { U -> V in
    ///     ... stuff ...
    ///     return v
    /// }
    /// ```
    ///
    /// - parameters:
    ///     - callback: Function that will receive the value of this `EventLoopFuture` and return
    ///         a new value lifted into a new `EventLoopFuture`.
    /// - returns: A future that will receive the eventual value.
    @inlinable
    public func map<NewValue>(file: StaticString = #file, line: UInt = #line, _ callback: @escaping (Value) -> (NewValue)) -> EventLoopFuture<NewValue> {
        if NewValue.self == Value.self && NewValue.self == Void.self {
            self.whenSuccess(callback as! (Value) -> Void)
            return self as! EventLoopFuture<NewValue>
        } else {
            let next = EventLoopPromise<NewValue>(eventLoop: eventLoop, file: file, line: line)
            self._whenComplete {
                return next._setValue(value: self._value!.map(callback))
            }
            return next.futureResult
        }
    }

    /// When the current `EventLoopFuture<Value>` is in an error state, run the provided callback, which
    /// may recover from the error by returning an `EventLoopFuture<NewValue>`. The callback is intended to potentially
    /// recover from the error by returning a new `EventLoopFuture` that will eventually contain the recovered
    /// result.
    ///
    /// If the callback cannot recover it should return a failed `EventLoopFuture`.
    ///
    /// - parameters:
    ///     - callback: Function that will receive the error value of this `EventLoopFuture` and return
    ///         a new value lifted into a new `EventLoopFuture`.
    /// - returns: A future that will receive the recovered value.
    @inlinable
    public func flatMapError(file: StaticString = #file, line: UInt = #line, _ callback: @escaping (Error) -> EventLoopFuture<Value>) -> EventLoopFuture<Value> {
        let next = EventLoopPromise<Value>(eventLoop: eventLoop, file: file, line: line)
        self._whenComplete {
            switch self._value! {
            case .success(let t):
                return next._setValue(value: .success(t))
            case .failure(let e):
                let t = callback(e)
                if t.eventLoop.inEventLoop {
                    return t._addCallback {
                        next._setValue(value: t._value!)
                    }
                } else {
                    t.cascade(to: next)
                    return CallbackList()
                }
            }
        }
        return next.futureResult
    }

    /// When the current `EventLoopFuture<Value>` is fulfilled, run the provided callback, which
    /// performs a synchronous computation and returns either a new value (of type `NewValue`) or
    /// an error depending on the `Result` returned by the closure.
    ///
    /// Operations performed in `flatMapResult` should not block, or they will block the entire
    /// event loop. `flatMapResult` is intended for use when you have a data-driven function that
    /// performs a simple data transformation that can potentially error.
    ///
    ///
    /// - parameters:
    ///     - body: Function that will receive the value of this `EventLoopFuture` and return
    ///         a new value or error lifted into a new `EventLoopFuture`.
    /// - returns: A future that will receive the eventual value.
    @inlinable
    public func flatMapResult<NewValue, SomeError: Error>(file: StaticString = #file,
                                                          line: UInt = #line,
                                                          _ body: @escaping (Value) -> Result<NewValue, SomeError>) -> EventLoopFuture<NewValue> {
        let next = EventLoopPromise<NewValue>(eventLoop: eventLoop, file: file, line: line)
        self._whenComplete {
            switch self._value! {
            case .success(let value):
                switch body(value) {
                case .success(let newValue):
                    return next._setValue(value: .success(newValue))
                case .failure(let error):
                    return next._setValue(value: .failure(error))
                }
            case .failure(let e):
                return next._setValue(value: .failure(e))
            }
        }
        return next.futureResult
    }

    /// When the current `EventLoopFuture<Value>` is in an error state, run the provided callback, which
    /// can recover from the error and return a new value of type `Value`. The provided callback may not `throw`,
    /// so this function should be used when the error is always recoverable.
    ///
    /// Operations performed in `recover` should not block, or they will block the entire
    /// event loop. `recover` is intended for use when you have the ability to synchronously
    /// recover from errors.
    ///
    /// - parameters:
    ///     - callback: Function that will receive the error value of this `EventLoopFuture` and return
    ///         a new value lifted into a new `EventLoopFuture`.
    /// - returns: A future that will receive the recovered value.
    @inlinable
    public func recover(file: StaticString = #file, line: UInt = #line, _ callback: @escaping (Error) -> Value) -> EventLoopFuture<Value> {
        let next = EventLoopPromise<Value>(eventLoop: eventLoop, file: file, line: line)
        self._whenComplete {
            switch self._value! {
            case .success(let t):
                return next._setValue(value: .success(t))
            case .failure(let e):
                return next._setValue(value: .success(callback(e)))
            }
        }
        return next.futureResult
    }


    /// Add a callback.  If there's already a value, invoke it and return the resulting list of new callback functions.
    @inlinable
    internal func _addCallback(_ callback: @escaping () -> CallbackList) -> CallbackList {
        self.eventLoop.assertInEventLoop()
        if self._value == nil {
            self._callbacks.append(callback)
            return CallbackList()
        }
        return callback()
    }

    /// Add a callback.  If there's already a value, run as much of the chain as we can.
    @inlinable
    internal func _whenComplete(_ callback: @escaping () -> CallbackList) {
        if self.eventLoop.inEventLoop {
            self._addCallback(callback)._run()
        } else {
            self.eventLoop.execute {
                self._addCallback(callback)._run()
            }
        }
    }

    /// Adds an observer callback to this `EventLoopFuture` that is called when the
    /// `EventLoopFuture` has a success result.
    ///
    /// An observer callback cannot return a value, meaning that this function cannot be chained
    /// from. If you are attempting to create a computation pipeline, consider `map` or `flatMap`.
    /// If you find yourself passing the results from this `EventLoopFuture` to a new `EventLoopPromise`
    /// in the body of this function, consider using `cascade` instead.
    ///
    /// - parameters:
    ///     - callback: The callback that is called with the successful result of the `EventLoopFuture`.
    @inlinable
    public func whenSuccess(_ callback: @escaping (Value) -> Void) {
        self._whenComplete {
            if case .success(let t) = self._value! {
                callback(t)
            }
            return CallbackList()
        }
    }

    /// Adds an observer callback to this `EventLoopFuture` that is called when the
    /// `EventLoopFuture` has a failure result.
    ///
    /// An observer callback cannot return a value, meaning that this function cannot be chained
    /// from. If you are attempting to create a computation pipeline, consider `recover` or `flatMapError`.
    /// If you find yourself passing the results from this `EventLoopFuture` to a new `EventLoopPromise`
    /// in the body of this function, consider using `cascade` instead.
    ///
    /// - parameters:
    ///     - callback: The callback that is called with the failed result of the `EventLoopFuture`.
    @inlinable
    public func whenFailure(_ callback: @escaping (Error) -> Void) {
        self._whenComplete {
            if case .failure(let e) = self._value! {
                callback(e)
            }
            return CallbackList()
        }
    }

    /// Adds an observer callback to this `EventLoopFuture` that is called when the
    /// `EventLoopFuture` has any result.
    ///
    /// - parameters:
    ///     - callback: The callback that is called when the `EventLoopFuture` is fulfilled.
    @inlinable
    public func whenComplete(_ callback: @escaping (Result<Value, Error>) -> Void) {
        self._whenComplete {
            callback(self._value!)
            return CallbackList()
        }
    }


    /// Internal: Set the value and return a list of callbacks that should be invoked as a result.
    @inlinable
    internal func _setValue(value: Result<Value, Error>) -> CallbackList {
        self.eventLoop.assertInEventLoop()
        if self._value == nil {
            self._value = value
            let callbacks = self._callbacks
            self._callbacks = CallbackList()
            return callbacks
        }
        return CallbackList()
    }
}

// MARK: and

extension EventLoopFuture {
    /// Return a new `EventLoopFuture` that succeeds when this "and" another
    /// provided `EventLoopFuture` both succeed. It then provides the pair
    /// of results. If either one fails, the combined `EventLoopFuture` will fail with
    /// the first error encountered.
    @inlinable
    public func and<OtherValue>(_ other: EventLoopFuture<OtherValue>,
                                file: StaticString = #file,
                                line: UInt = #line) -> EventLoopFuture<(Value, OtherValue)> {
        let promise = EventLoopPromise<(Value, OtherValue)>(eventLoop: eventLoop, file: file, line: line)
        var tvalue: Value?
        var uvalue: OtherValue?

        assert(self.eventLoop === promise.futureResult.eventLoop)
        self._whenComplete { () -> CallbackList in
            switch self._value! {
            case .failure(let error):
                return promise._setValue(value: .failure(error))
            case .success(let t):
                if let u = uvalue {
                    return promise._setValue(value: .success((t, u)))
                } else {
                    tvalue = t
                }
            }
            return CallbackList()
        }

        let hopOver = other.hop(to: self.eventLoop)
        hopOver._whenComplete { () -> CallbackList in
            self.eventLoop.assertInEventLoop()
            switch other._value! {
            case .failure(let error):
                return promise._setValue(value: .failure(error))
            case .success(let u):
                if let t = tvalue {
                    return promise._setValue(value: .success((t, u)))
                } else {
                    uvalue = u
                }
            }
            return CallbackList()
        }

        return promise.futureResult
    }

    /// Return a new EventLoopFuture that contains this "and" another value.
    /// This is just syntactic sugar for `future.and(loop.makeSucceedFuture(value))`.
    @inlinable
    public func and<OtherValue>(value: OtherValue,
                                file: StaticString = #file,
                                line: UInt = #line) -> EventLoopFuture<(Value, OtherValue)> {
        return and(EventLoopFuture<OtherValue>(eventLoop: self.eventLoop, value: value, file: file, line: line))
    }
}

// MARK: cascade

extension EventLoopFuture {
    /// Fulfills the given `EventLoopPromise` with the results from this `EventLoopFuture`.
    ///
    /// This is useful when allowing users to provide promises for you to fulfill, but
    /// when you are calling functions that return their own promises. They allow you to
    /// tidy up your computational pipelines.
    ///
    /// For example:
    /// ```
    /// doWork().flatMap {
    ///     doMoreWork($0)
    /// }.flatMap {
    ///     doYetMoreWork($0)
    /// }.flatMapError {
    ///     maybeRecoverFromError($0)
    /// }.map {
    ///     transformData($0)
    /// }.cascade(to: userPromise)
    /// ```
    ///
    /// - Parameter to: The `EventLoopPromise` to fulfill with the results of this future.
    /// - SeeAlso: `EventLoopPromise.completeWith(_:)`
    @inlinable
    public func cascade(to promise: EventLoopPromise<Value>?) {
        guard let promise = promise else { return }
        self.whenComplete { result in
            switch result {
            case let .success(value): promise.succeed(value)
            case let .failure(error): promise.fail(error)
            }
        }
    }

    /// Fulfills the given `EventLoopPromise` only when this `EventLoopFuture` succeeds.
    ///
    /// If you are doing work that fulfills a type that doesn't match the expected `EventLoopPromise` value, add an
    /// intermediate `map`.
    ///
    /// For example:
    /// ```
    /// let boolPromise = eventLoop.makePromise(of: Bool.self)
    /// doWorkReturningInt().map({ $0 >= 0 }).cascade(to: boolPromise)
    /// ```
    ///
    /// - Parameter to: The `EventLoopPromise` to fulfill when a successful result is available.
    @inlinable
    public func cascadeSuccess(to promise: EventLoopPromise<Value>?) {
        guard let promise = promise else { return }
        self.whenSuccess { promise.succeed($0) }
    }

    /// Fails the given `EventLoopPromise` with the error from this `EventLoopFuture` if encountered.
    ///
    /// This is an alternative variant of `cascade` that allows you to potentially return early failures in
    /// error cases, while passing the user `EventLoopPromise` onwards.
    ///
    /// - Parameter to: The `EventLoopPromise` that should fail with the error of this `EventLoopFuture`.
    @inlinable
    public func cascadeFailure<NewValue>(to promise: EventLoopPromise<NewValue>?) {
        guard let promise = promise else { return }
        self.whenFailure { promise.fail($0) }
    }
}

// MARK: wait

extension EventLoopFuture {
    /// Wait for the resolution of this `EventLoopFuture` by blocking the current thread until it
    /// resolves.
    ///
    /// If the `EventLoopFuture` resolves with a value, that value is returned from `wait()`. If
    /// the `EventLoopFuture` resolves with an error, that error will be thrown instead.
    /// `wait()` will block whatever thread it is called on, so it must not be called on event loop
    /// threads: it is primarily useful for testing, or for building interfaces between blocking
    /// and non-blocking code.
    ///
    /// - returns: The value of the `EventLoopFuture` when it completes.
    /// - throws: The error value of the `EventLoopFuture` if it errors.
    @inlinable
    public func wait(file: StaticString = #file, line: UInt = #line) throws -> Value {
        if !(self.eventLoop is EmbeddedEventLoop) {
            let explainer: () -> String = { """
BUG DETECTED: wait() must not be called when on an EventLoop.
Calling wait() on any EventLoop can lead to
- deadlocks
- stalling processing of other connections (Channels) that are handled on the EventLoop that wait was called on

Further information:
- current eventLoop: \(MultiThreadedEventLoopGroup.currentEventLoop.debugDescription)
- event loop associated to future: \(self.eventLoop)
"""
            }
            precondition(!eventLoop.inEventLoop, explainer(), file: file, line: line)
            precondition(MultiThreadedEventLoopGroup.currentEventLoop == nil, explainer(), file: file, line: line)
        }

        var v: Result<Value, Error>? = nil
        let lock = ConditionLock(value: 0)
        self._whenComplete { () -> CallbackList in
            lock.lock()
            v = self._value
            lock.unlock(withValue: 1)
            return CallbackList()
        }
        lock.lock(whenValue: 1)
        lock.unlock()

        switch(v!) {
        case .success(let result):
            return result
        case .failure(let error):
            throw error
        }
    }
}

// MARK: fold

extension EventLoopFuture {
    /// Returns a new `EventLoopFuture` that fires only when this `EventLoopFuture` and
    /// all the provided `futures` complete. It then provides the result of folding the value of this
    /// `EventLoopFuture` with the values of all the provided `futures`.
    ///
    /// This function is suited when you have APIs that already know how to return `EventLoopFuture`s.
    ///
    /// The returned `EventLoopFuture` will fail as soon as the a failure is encountered in any of the
    /// `futures` (or in this one). However, the failure will not occur until all preceding
    /// `EventLoopFutures` have completed. At the point the failure is encountered, all subsequent
    /// `EventLoopFuture` objects will no longer be waited for. This function therefore fails fast: once
    /// a failure is encountered, it will immediately fail the overall EventLoopFuture.
    ///
    /// - parameters:
    ///     - futures: An array of `EventLoopFuture<NewValue>` to wait for.
    ///     - with: A function that will be used to fold the values of two `EventLoopFuture`s and return a new value wrapped in an `EventLoopFuture`.
    /// - returns: A new `EventLoopFuture` with the folded value whose callbacks run on `self.eventLoop`.
    @inlinable
    public func fold<OtherValue>(_ futures: [EventLoopFuture<OtherValue>],
                                 with combiningFunction: @escaping (Value, OtherValue) -> EventLoopFuture<Value>) -> EventLoopFuture<Value> {
        func fold0() -> EventLoopFuture<Value> {
            let body = futures.reduce(self) { (f1: EventLoopFuture<Value>, f2: EventLoopFuture<OtherValue>) -> EventLoopFuture<Value> in
                let newFuture = f1.and(f2).flatMap { (args: (Value, OtherValue)) -> EventLoopFuture<Value> in
                    let (f1Value, f2Value) = args
                    self.eventLoop.assertInEventLoop()
                    return combiningFunction(f1Value, f2Value)
                }
                assert(newFuture.eventLoop === self.eventLoop)
                return newFuture
            }
            return body
        }

        if self.eventLoop.inEventLoop {
            return fold0()
        } else {
            let promise = self.eventLoop.makePromise(of: Value.self)
            self.eventLoop.execute {
                fold0().cascade(to: promise)
            }
            return promise.futureResult
        }
    }
}

// MARK: reduce

extension EventLoopFuture {
    /// Returns a new `EventLoopFuture` that fires only when all the provided futures complete.
    /// The new `EventLoopFuture` contains the result of reducing the `initialResult` with the
    /// values of the `[EventLoopFuture<NewValue>]`.
    ///
    /// This function makes copies of the result for each EventLoopFuture, for a version which avoids
    /// making copies, check out `reduce<NewValue>(into:)`.
    ///
    /// The returned `EventLoopFuture` will fail as soon as a failure is encountered in any of the
    /// `futures`. However, the failure will not occur until all preceding
    /// `EventLoopFutures` have completed. At the point the failure is encountered, all subsequent
    /// `EventLoopFuture` objects will no longer be waited for. This function therefore fails fast: once
    /// a failure is encountered, it will immediately fail the overall `EventLoopFuture`.
    ///
    /// - parameters:
    ///     - initialResult: An initial result to begin the reduction.
    ///     - futures: An array of `EventLoopFuture` to wait for.
    ///     - eventLoop: The `EventLoop` on which the new `EventLoopFuture` callbacks will fire.
    ///     - nextPartialResult: The bifunction used to produce partial results.
    /// - returns: A new `EventLoopFuture` with the reduced value.
    public static func reduce<InputValue>(_ initialResult: Value,
                                          _ futures: [EventLoopFuture<InputValue>],
                                          on eventLoop: EventLoop,
                                          _ nextPartialResult: @escaping (Value, InputValue) -> Value) -> EventLoopFuture<Value> {
        let f0 = eventLoop.makeSucceededFuture(initialResult)

        let body = f0.fold(futures) { (t: Value, u: InputValue) -> EventLoopFuture<Value> in
            eventLoop.makeSucceededFuture(nextPartialResult(t, u))
        }

        return body
    }

    /// Returns a new `EventLoopFuture` that fires only when all the provided futures complete.
    /// The new `EventLoopFuture` contains the result of combining the `initialResult` with the
    /// values of the `[EventLoopFuture<NewValue>]`. This function is analogous to the standard library's
    /// `reduce(into:)`, which does not make copies of the result type for each `EventLoopFuture`.
    ///
    /// The returned `EventLoopFuture` will fail as soon as a failure is encountered in any of the
    /// `futures`. However, the failure will not occur until all preceding
    /// `EventLoopFutures` have completed. At the point the failure is encountered, all subsequent
    /// `EventLoopFuture` objects will no longer be waited for. This function therefore fails fast: once
    /// a failure is encountered, it will immediately fail the overall `EventLoopFuture`.
    ///
    /// - parameters:
    ///     - initialResult: An initial result to begin the reduction.
    ///     - futures: An array of `EventLoopFuture` to wait for.
    ///     - eventLoop: The `EventLoop` on which the new `EventLoopFuture` callbacks will fire.
    ///     - updateAccumulatingResult: The bifunction used to combine partialResults with new elements.
    /// - returns: A new `EventLoopFuture` with the combined value.
    public static func reduce<InputValue>(into initialResult: Value,
                                          _ futures: [EventLoopFuture<InputValue>],
                                          on eventLoop: EventLoop,
                                          _ updateAccumulatingResult: @escaping (inout Value, InputValue) -> Void) -> EventLoopFuture<Value> {
        let p0 = eventLoop.makePromise(of: Value.self)
        var value: Value = initialResult

        let f0 = eventLoop.makeSucceededFuture(())
        let future = f0.fold(futures) { (_: (), newValue: InputValue) -> EventLoopFuture<Void> in
            eventLoop.assertInEventLoop()
            updateAccumulatingResult(&value, newValue)
            return eventLoop.makeSucceededFuture(())
        }

        future.whenSuccess {
            eventLoop.assertInEventLoop()
            p0.succeed(value)
        }
        future.whenFailure { (error) in
            eventLoop.assertInEventLoop()
            p0.fail(error)
        }
        return p0.futureResult
    }
}

// MARK: "fail fast" reduce

extension EventLoopFuture {
    /// Returns a new `EventLoopFuture` that succeeds only if all of the provided futures succeed.
    ///
    /// This method acts as a successful completion notifier - values fulfilled by each future are discarded.
    ///
    /// The returned `EventLoopFuture` fails as soon as any of the provided futures fail.
    ///
    /// If it is desired to always succeed, regardless of failures, use `andAllComplete` instead.
    /// - Parameters:
    ///     - futures: An array of homogenous `EventLoopFutures`s to wait for.
    ///     - on: The `EventLoop` on which the new `EventLoopFuture` callbacks will execute on.
    /// - Returns: A new `EventLoopFuture` that waits for the other futures to succeed.
    @inlinable
    public static func andAllSucceed(_ futures: [EventLoopFuture<Value>], on eventLoop: EventLoop) -> EventLoopFuture<Void> {
        let promise = eventLoop.makePromise(of: Void.self)
        EventLoopFuture.andAllSucceed(futures, promise: promise)
        return promise.futureResult
    }

    /// Succeeds the promise if all of the provided futures succeed. If any of the provided
    /// futures fail then the `promise` will be failed -- even if some futures are yet to complete.
    ///
    /// If the results of all futures should be collected use `andAllComplete` instead.
    ///
    /// - Parameters:
    ///     - futures: An array of homogenous `EventLoopFutures`s to wait for.
    ///     - promise: The `EventLoopPromise` to complete with the result of this call.
    @inlinable
    public static func andAllSucceed(_ futures: [EventLoopFuture<Value>], promise: EventLoopPromise<Void>) {
        let eventLoop = promise.futureResult.eventLoop

        if eventLoop.inEventLoop {
            self._reduceSuccesses0(promise, futures, eventLoop, onValue: { _, _ in })
        } else {
            eventLoop.execute {
                self._reduceSuccesses0(promise, futures, eventLoop, onValue: { _, _ in })
            }
        }
    }

    /// Returns a new `EventLoopFuture` that succeeds only if all of the provided futures succeed.
    /// The new `EventLoopFuture` will contain all of the values fulfilled by the futures.
    ///
    /// The returned `EventLoopFuture` will fail as soon as any of the futures fails.
    /// - Parameters:
    ///     - futures: An array of homogenous `EventLoopFuture`s to wait on for fulfilled values.
    ///     - on: The `EventLoop` on which the new `EventLoopFuture` callbacks will fire.
    /// - Returns: A new `EventLoopFuture` with all of the values fulfilled by the provided futures.
    public static func whenAllSucceed(_ futures: [EventLoopFuture<Value>], on eventLoop: EventLoop) -> EventLoopFuture<[Value]> {
        let promise = eventLoop.makePromise(of: [Value].self)
        EventLoopFuture.whenAllSucceed(futures, promise: promise)
        return promise.futureResult
    }

    /// Completes the `promise` with the values of all `futures` if all provided futures succeed. If
    /// any of the provided futures fail then `promise` will be failed.
    ///
    /// If the _results of all futures should be collected use `andAllComplete` instead.
    ///
    /// - Parameters:
    ///     - futures: An array of homogenous `EventLoopFutures`s to wait for.
    ///     - promise: The `EventLoopPromise` to complete with the result of this call.
    public static func whenAllSucceed(_ futures: [EventLoopFuture<Value>], promise: EventLoopPromise<[Value]>) {
        let eventLoop = promise.futureResult.eventLoop
        let reduced = eventLoop.makePromise(of: Void.self)

        var results: [Value?] = .init(repeating: nil, count: futures.count)
        let callback = { (index: Int, result: Value) in
            results[index] = result
        }

        if eventLoop.inEventLoop {
            self._reduceSuccesses0(reduced, futures, eventLoop, onValue: callback)
        } else {
            eventLoop.execute {
                self._reduceSuccesses0(reduced, futures, eventLoop, onValue: callback)
            }
        }

        reduced.futureResult.whenComplete { result in
            switch result {
            case .success:
              // verify that all operations have been completed
              assert(!results.contains(where: { $0 == nil }))
                promise.succeed(results.map { $0! })
            case .failure(let error):
                promise.fail(error)
            }
        }
    }

    /// Loops through the futures array and attaches callbacks to execute `onValue` on the provided `EventLoop` when
    /// they succeed. The `onValue` will receive the index of the future that fulfilled the provided `Result`.
    ///
    /// Once all the futures have succeed, the provided promise will succeed.
    /// Once any future fails, the provided promise will fail.
    @inlinable
    internal static func _reduceSuccesses0<InputValue>(_ promise: EventLoopPromise<Void>,
                                                       _ futures: [EventLoopFuture<InputValue>],
                                                       _ eventLoop: EventLoop,
                                                       onValue: @escaping (Int, InputValue) -> Void) {
        eventLoop.assertInEventLoop()

        var remainingCount = futures.count

        if remainingCount == 0 {
            promise.succeed(())
            return
        }

        // Sends the result to `onValue` in case of success and succeeds/fails the input promise, if appropriate.
        func processResult(_ index: Int, _ result: Result<InputValue, Error>) {
            switch result {
            case .success(let result):
                onValue(index, result)
                remainingCount -= 1

                if remainingCount == 0 {
                    promise.succeed(())
                }
            case .failure(let error):
                promise.fail(error)
            }
        }
        // loop through the futures to chain callbacks to execute on the initiating event loop and grab their index
        // in the "futures" to pass their result to the caller
        for (index, future) in futures.enumerated() {
            if future.eventLoop.inEventLoop,
                let result = future._value {
                // Fast-track already-fulfilled results without the overhead of calling `whenComplete`. This can yield a
                // ~20% performance improvement in the case of large arrays where all elements are already fulfilled.
                processResult(index, result)
                if case .failure = result {
                    return  // Once the promise is failed, future results do not need to be processed.
                }
            } else {
                future.hop(to: eventLoop)
                    .whenComplete { result in processResult(index, result) }
            }
        }
    }
}

// MARK: "fail slow" reduce

extension EventLoopFuture {
    /// Returns a new `EventLoopFuture` that succeeds when all of the provided `EventLoopFuture`s complete.
    ///
    /// The returned `EventLoopFuture` always succeeds, acting as a completion notification.
    /// Values fulfilled by each future are discarded.
    ///
    /// If the results are needed, use `whenAllComplete` instead.
    /// - Parameters:
    ///     - futures: An array of homogenous `EventLoopFuture`s to wait for.
    ///     - on: The `EventLoop` on which the new `EventLoopFuture` callbacks will execute on.
    /// - Returns: A new `EventLoopFuture` that succeeds after all futures complete.
    @inlinable
    public static func andAllComplete(_ futures: [EventLoopFuture<Value>], on eventLoop: EventLoop) -> EventLoopFuture<Void> {
        let promise = eventLoop.makePromise(of: Void.self)
        EventLoopFuture.andAllComplete(futures, promise: promise)
        return promise.futureResult
    }

    /// Completes a `promise` when all of the provided `EventLoopFuture`s have completed.
    ///
    /// The promise will always be succeeded, regardless of the outcome of the individual futures.
    ///
    /// If the results are required, use `whenAllComplete` instead.
    ///
    /// - Parameters:
    ///     - futures: An array of homogenous `EventLoopFuture`s to wait for.
    ///     - promise: The `EventLoopPromise` to succeed when all futures have completed.
    @inlinable
    public static func andAllComplete(_ futures: [EventLoopFuture<Value>], promise: EventLoopPromise<Void>) {
        let eventLoop = promise.futureResult.eventLoop

        if eventLoop.inEventLoop {
            self._reduceCompletions0(promise, futures, eventLoop, onResult: { _, _ in })
        } else {
            eventLoop.execute {
                self._reduceCompletions0(promise, futures, eventLoop, onResult: { _, _ in })
            }
        }
    }

    /// Returns a new `EventLoopFuture` that succeeds when all of the provided `EventLoopFuture`s complete.
    /// The new `EventLoopFuture` will contain an array of results, maintaining ordering for each of the `EventLoopFuture`s.
    ///
    /// The returned `EventLoopFuture` always succeeds, regardless of any failures from the waiting futures.
    ///
    /// If it is desired to flatten them into a single `EventLoopFuture` that fails on the first `EventLoopFuture` failure,
    /// use one of the `reduce` methods instead.
    /// - Parameters:
    ///     - futures: An array of homogenous `EventLoopFuture`s to gather results from.
    ///     - on: The `EventLoop` on which the new `EventLoopFuture` callbacks will fire.
    /// - Returns: A new `EventLoopFuture` with all the results of the provided futures.
    @inlinable
    public static func whenAllComplete(_ futures: [EventLoopFuture<Value>],
                                       on eventLoop: EventLoop) -> EventLoopFuture<[Result<Value, Error>]> {
        let promise = eventLoop.makePromise(of: [Result<Value, Error>].self)
        EventLoopFuture.whenAllComplete(futures, promise: promise)
        return promise.futureResult
    }

    /// Completes a `promise` with the results of all provided `EventLoopFuture`s.
    ///
    /// The promise will always be succeeded, regardless of the outcome of the futures.
    ///
    /// - Parameters:
    ///     - futures: An array of homogenous `EventLoopFuture`s to gather results from.
    ///     - promise: The `EventLoopPromise` to complete with the result of the futures.
    @inlinable
    public static func whenAllComplete(_ futures: [EventLoopFuture<Value>],
                                       promise: EventLoopPromise<[Result<Value, Error>]>) {
        let eventLoop = promise.futureResult.eventLoop
        let reduced = eventLoop.makePromise(of: Void.self)

        var results: [Result<Value, Error>] = .init(repeating: .failure(OperationPlaceholderError()), count: futures.count)
        let callback = { (index: Int, result: Result<Value, Error>) in
            results[index] = result
        }

        if eventLoop.inEventLoop {
            self._reduceCompletions0(reduced, futures, eventLoop, onResult: callback)
        } else {
            eventLoop.execute {
                self._reduceCompletions0(reduced, futures, eventLoop, onResult: callback)
            }
        }

        reduced.futureResult.whenComplete { result in
            switch result {
            case .success:
                // verify that all operations have been completed
                assert(!results.contains(where: {
                    guard case let .failure(error) = $0 else { return false }
                    return error is OperationPlaceholderError
                }))
                promise.succeed(results)

            case .failure(let error):
                promise.fail(error)
            }
        }
    }

    /// Loops through the futures array and attaches callbacks to execute `onResult` on the provided `EventLoop` when
    /// they complete. The `onResult` will receive the index of the future that fulfilled the provided `Result`.
    ///
    /// Once all the futures have completed, the provided promise will succeed.
    @inlinable
    internal static func _reduceCompletions0<InputValue>(_ promise: EventLoopPromise<Void>,
                                                         _ futures: [EventLoopFuture<InputValue>],
                                                         _ eventLoop: EventLoop,
                                                         onResult: @escaping (Int, Result<InputValue, Error>) -> Void) {
        eventLoop.assertInEventLoop()

        var remainingCount = futures.count

        if remainingCount == 0 {
            promise.succeed(())
            return
        }

        // Sends the result to `onResult` in case of success and succeeds the input promise, if appropriate.
        func processResult(_ index: Int, _ result: Result<InputValue, Error>) {
            onResult(index, result)
            remainingCount -= 1

            if remainingCount == 0 {
                promise.succeed(())
            }
        }
        // loop through the futures to chain callbacks to execute on the initiating event loop and grab their index
        // in the "futures" to pass their result to the caller
        for (index, future) in futures.enumerated() {
            if future.eventLoop.inEventLoop,
                let result = future._value {
                // Fast-track already-fulfilled results without the overhead of calling `whenComplete`. This can yield a
                // ~30% performance improvement in the case of large arrays where all elements are already fulfilled.
                processResult(index, result)
            } else {
                future.hop(to: eventLoop)
                    .whenComplete { result in processResult(index, result) }
            }
        }
    }
}

// MARK: hop

extension EventLoopFuture {
    /// Returns an `EventLoopFuture` that fires when this future completes, but executes its callbacks on the
    /// target event loop instead of the original one.
    ///
    /// It is common to want to "hop" event loops when you arrange some work: for example, you're closing one channel
    /// from another, and want to hop back when the close completes. This method lets you spell that requirement
    /// succinctly. It also contains an optimisation for the case when the loop you're hopping *from* is the same as
    /// the one you're hopping *to*, allowing you to avoid doing allocations in that case.
    ///
    /// - parameters:
    ///     - to: The `EventLoop` that the returned `EventLoopFuture` will run on.
    /// - returns: An `EventLoopFuture` whose callbacks run on `target` instead of the original loop.
    @inlinable
    public func hop(to target: EventLoop) -> EventLoopFuture<Value> {
        if target === self.eventLoop {
            // We're already on that event loop, nothing to do here. Save an allocation.
            return self
        }
        let hoppingPromise = target.makePromise(of: Value.self)
        self.cascade(to: hoppingPromise)
        return hoppingPromise.futureResult
    }
}

/// Execute the given function and synchronously complete the given `EventLoopPromise` (if not `nil`).
func executeAndComplete<Value>(_ promise: EventLoopPromise<Value>?, _ body: () throws -> Value) {
    do {
        let result = try body()
        promise?.succeed(result)
    } catch let e {
        promise?.fail(e)
    }
}


// MARK: always

extension EventLoopFuture {
    /// Adds an observer callback to this `EventLoopFuture` that is called when the
    /// `EventLoopFuture` has any result.
    ///
    /// - parameters:
    ///     - callback: the callback that is called when the `EventLoopFuture` is fulfilled.   
    /// - returns: the current `EventLoopFuture`
    @inlinable
    public func always(_ callback: @escaping (Result<Value, Error>) -> Void) -> EventLoopFuture<Value> {
        self.whenComplete { result in callback(result) }
        return self
    }
}

// MARK: unwrap

extension EventLoopFuture {
    /// Unwrap an `EventLoopFuture` where its type parameter is an `Optional`.
    ///
    /// Unwrap a future returning a new `EventLoopFuture`. When the resolved future's value is `Optional.some(...)`
    /// the new future is created with the identical value. Otherwise the `Error` passed in the `orError` parameter
    /// is thrown. For example:
    /// ```
    /// do {
    ///     try promise.futureResult.unwrap(orError: ErrorToThrow).wait()
    /// } catch ErrorToThrow {
    ///     ...
    /// }
    /// ```
    ///
    /// - parameters:
    ///     - orError: the `Error` that is thrown when then resolved future's value is `Optional.none`.
    /// - returns: an new `EventLoopFuture` with new type parameter `NewValue` and the same value as the resolved
    ///     future.
    /// - throws: the `Error` passed in the `orError` parameter when the resolved future's value is `Optional.none`.
    @inlinable
    public func unwrap<NewValue>(orError error: Error) -> EventLoopFuture<NewValue> where Value == Optional<NewValue> {
        return self.flatMapThrowing { (value) throws -> NewValue in
            guard let value = value else {
                throw error
            }
            return value
        }
    }

    /// Unwrap an `EventLoopFuture` where its type parameter is an `Optional`.
    ///
    /// Unwraps a future returning a new `EventLoopFuture` with either: the value passed in the `orReplace`
    /// parameter when the future resolved with value Optional.none, or the same value otherwise. For example:
    /// ```
    /// promise.futureResult.unwrap(orReplace: 42).wait()
    /// ```
    ///
    /// - parameters:
    ///     - orReplace: the value of the returned `EventLoopFuture` when then resolved future's value is `Optional.some()`.
    /// - returns: an new `EventLoopFuture` with new type parameter `NewValue` and the value passed in the `orReplace` parameter.
    @inlinable
    public func unwrap<NewValue>(orReplace replacement: NewValue) -> EventLoopFuture<NewValue> where Value == Optional<NewValue> {
        return self.map { (value) -> NewValue in
            guard let value = value else {
                return replacement
            }
            return value 
        }
    }

    /// Unwrap an `EventLoopFuture` where its type parameter is an `Optional`.
    ///
    /// Unwraps a future returning a new `EventLoopFuture` with either: the value returned by the closure passed in
    /// the `orElse` parameter when the future resolved with value Optional.none, or the same value otherwise. For example:
    /// ```
    /// var x = 2
    /// promise.futureResult.unwrap(orElse: { x * 2 }).wait()
    /// ```
    ///
    /// - parameters:
    ///     - orElse: a closure that returns the value of the returned `EventLoopFuture` when then resolved future's value
    ///         is `Optional.some()`.
    /// - returns: an new `EventLoopFuture` with new type parameter `NewValue` and with the value returned by the closure
    ///     passed in the `orElse` parameter.
    @inlinable
    public func unwrap<NewValue>(orElse callback: @escaping () -> NewValue) -> EventLoopFuture<NewValue> where Value == Optional<NewValue> {
        return self.map { (value) -> NewValue  in
            guard let value = value else {
                return callback()
            }
            return value 
        }
    }
}

// MARK: may block 

extension EventLoopFuture {
    /// Chain an `EventLoopFuture<NewValue>` providing the result of a IO / task that may block. For example:
    ///
    ///     promise.futureResult.flatMapBlocking(onto: DispatchQueue.global()) { value in Int
    ///         blockingTask(value)
    ///     }
    ///
    /// - parameters:
    ///     - onto: the `DispatchQueue` on which the blocking IO / task specified by `callbackMayBlock` is scheduled.
    ///     - callbackMayBlock: Function that will receive the value of this `EventLoopFuture` and return
    ///         a new `EventLoopFuture`.
    @inlinable
    public func flatMapBlocking<NewValue>(onto queue: DispatchQueue, _ callbackMayBlock: @escaping (Value) throws -> NewValue)
        -> EventLoopFuture<NewValue> {
        return self.flatMap { result in
            queue.asyncWithFuture(eventLoop: self.eventLoop) { try callbackMayBlock(result) }
        }
    }

    /// Adds an observer callback to this `EventLoopFuture` that is called when the
    /// `EventLoopFuture` has a success result. The observer callback is permitted to block.
    ///
    /// An observer callback cannot return a value, meaning that this function cannot be chained
    /// from. If you are attempting to create a computation pipeline, consider `map` or `flatMap`.
    /// If you find yourself passing the results from this `EventLoopFuture` to a new `EventLoopPromise`
    /// in the body of this function, consider using `cascade` instead.
    ///
    /// - parameters:
    ///     - onto: the `DispatchQueue` on which the blocking IO / task specified by `callbackMayBlock` is scheduled.
    ///     - callbackMayBlock: The callback that is called with the successful result of the `EventLoopFuture`.
    @inlinable
    public func whenSuccessBlocking(onto queue: DispatchQueue, _ callbackMayBlock: @escaping (Value) -> Void) {
        self.whenSuccess { value in
            queue.async { callbackMayBlock(value) }
        }
    }

    /// Adds an observer callback to this `EventLoopFuture` that is called when the
    /// `EventLoopFuture` has a failure result. The observer callback is permitted to block.
    ///
    /// An observer callback cannot return a value, meaning that this function cannot be chained
    /// from. If you are attempting to create a computation pipeline, consider `recover` or `flatMapError`.
    /// If you find yourself passing the results from this `EventLoopFuture` to a new `EventLoopPromise`
    /// in the body of this function, consider using `cascade` instead.
    ///
    /// - parameters:
    ///     - onto: the `DispatchQueue` on which the blocking IO / task specified by `callbackMayBlock` is scheduled.
    ///     - callbackMayBlock: The callback that is called with the failed result of the `EventLoopFuture`.
    @inlinable
    public func whenFailureBlocking(onto queue: DispatchQueue, _ callbackMayBlock: @escaping (Error) -> Void) {
        self.whenFailure { err in
            queue.async { callbackMayBlock(err) }
        }
    }

    /// Adds an observer callback to this `EventLoopFuture` that is called when the
    /// `EventLoopFuture` has any result. The observer callback is permitted to block.
    ///
    /// - parameters:
    ///     - onto: the `DispatchQueue` on which the blocking IO / task specified by `callbackMayBlock` is schedulded.
    ///     - callbackMayBlock: The callback that is called when the `EventLoopFuture` is fulfilled.
    @inlinable
    public func whenCompleteBlocking(onto queue: DispatchQueue, _ callbackMayBlock: @escaping (Result<Value, Error>) -> Void) {
        self.whenComplete { value in
            queue.async { callbackMayBlock(value) }
        }
    }
}