1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
|
//===----------------------------------------------------------------------===//
//
// This source file is part of the SwiftNIO open source project
//
// Copyright (c) 2017-2018 Apple Inc. and the SwiftNIO project authors
// Licensed under Apache License v2.0
//
// See LICENSE.txt for license information
// See CONTRIBUTORS.txt for the list of SwiftNIO project authors
//
// SPDX-License-Identifier: Apache-2.0
//
//===----------------------------------------------------------------------===//
import NIOConcurrencyHelpers
private struct PendingDatagramWrite {
var data: ByteBuffer
var promise: Optional<EventLoopPromise<Void>>
let address: SocketAddress
var metadata: AddressedEnvelope<ByteBuffer>.Metadata?
/// A helper function that copies the underlying sockaddr structure into temporary storage,
/// and then returns the length.
///
/// This copying is an annoyance, but one way or another this copy will have to happen as
/// we do not want to expose the backing socket address to libc in case it mutates it. Because
/// we are using a box to store the underlying sockaddr, if libc ever did mess with that data
/// it will screw any other values pointing to that box. That would be a pretty bad scene. And
/// in most cases we're not copying large values here: only for UDS does this become a problem.
func copySocketAddress(_ target: UnsafeMutablePointer<sockaddr_storage>) -> socklen_t {
switch address {
case .v4(let innerAddress):
return target.withMemoryRebound(to: sockaddr_in.self, capacity: 1) {
$0.pointee = innerAddress.address
return socklen_t(MemoryLayout.size(ofValue: innerAddress.address))
}
case .v6(let innerAddress):
return target.withMemoryRebound(to: sockaddr_in6.self, capacity: 1) {
$0.pointee = innerAddress.address
return socklen_t(MemoryLayout.size(ofValue: innerAddress.address))
}
case .unixDomainSocket:
fatalError("UDS with datagrams is currently not supported")
}
}
}
fileprivate extension Error {
/// Returns whether the error is "recoverable" from the perspective of datagram sending.
///
/// - returns: `true` if the error is recoverable, `false` otherwise.
var isRecoverable: Bool {
switch self {
case let e as IOError where e.errnoCode == EMSGSIZE,
let e as IOError where e.errnoCode == EHOSTUNREACH:
return true
default:
return false
}
}
}
/// Does the setup required to trigger a `sendmmsg`.
private func doPendingDatagramWriteVectorOperation(pending: PendingDatagramWritesState,
iovecs: UnsafeMutableBufferPointer<IOVector>,
msgs: UnsafeMutableBufferPointer<MMsgHdr>,
addresses: UnsafeMutableBufferPointer<sockaddr_storage>,
storageRefs: UnsafeMutableBufferPointer<Unmanaged<AnyObject>>,
controlMessageStorage: UnsafeControlMessageStorage,
_ body: (UnsafeMutableBufferPointer<MMsgHdr>) throws -> IOResult<Int>) throws -> IOResult<Int> {
assert(msgs.count >= Socket.writevLimitIOVectors, "Insufficiently sized buffer for a maximal sendmmsg")
assert(controlMessageStorage.count >= Socket.writevLimitIOVectors,
"Insufficiently sized control message storage for a maximal sendmmsg")
// the numbers of storage refs that we need to decrease later.
var c = 0
var toWrite: Int = 0
for p in pending.flushedWrites {
// Must not write more than Int32.max in one go.
// TODO(cory): I can't see this limit documented in a man page anywhere, but it seems
// plausible given that a similar limit exists for TCP. For now we assume it's present
// in UDP until I can do some research to validate the existence of this limit.
guard (Socket.writevLimitBytes - toWrite >= p.data.readableBytes) else {
if c == 0 {
// The first buffer is larger than the writev limit. Let's throw, and fall back to linear processing.
throw IOError(errnoCode: EMSGSIZE, reason: "synthetic error for overlarge write")
} else {
break
}
}
// Must not write more than writevLimitIOVectors in one go
guard c < Socket.writevLimitIOVectors else {
break
}
let toWriteForThisBuffer = p.data.readableBytes
toWrite += numericCast(toWriteForThisBuffer)
p.data.withUnsafeReadableBytesWithStorageManagement { ptr, storageRef in
storageRefs[c] = storageRef.retain()
let addressLen = p.copySocketAddress(addresses.baseAddress! + c)
iovecs[c] = iovec(iov_base: UnsafeMutableRawPointer(mutating: ptr.baseAddress!), iov_len: numericCast(toWriteForThisBuffer))
var controlBytes = UnsafeOutboundControlBytes(controlBytes: controlMessageStorage[c])
controlBytes.appendExplicitCongestionState(metadata: p.metadata, protocolFamily: p.address.protocol)
let controlMessageBytePointer = controlBytes.validControlBytes
let msg = msghdr(msg_name: addresses.baseAddress! + c,
msg_namelen: addressLen,
msg_iov: iovecs.baseAddress! + c,
msg_iovlen: 1,
msg_control: controlMessageBytePointer.baseAddress,
msg_controllen: .init(controlMessageBytePointer.count),
msg_flags: 0)
msgs[c] = MMsgHdr(msg_hdr: msg, msg_len: CUnsignedInt(toWriteForThisBuffer))
}
c += 1
}
defer {
for i in 0..<c {
storageRefs[i].release()
}
}
return try body(UnsafeMutableBufferPointer(start: msgs.baseAddress!, count: c))
}
/// This holds the states of the currently pending datagram writes. The core is a `MarkedCircularBuffer` which holds all the
/// writes and a mark up until the point the data is flushed. This struct has several behavioural differences from the
/// `PendingStreamWritesState`, most notably that it handles partial writes differently.
///
/// The most important operations on this object are:
/// - `append` to add a `ByteBuffer` to the list of pending writes.
/// - `markFlushCheckpoint` which sets a flush mark on the current position of the `MarkedCircularBuffer`. All the items before the checkpoint will be written eventually.
/// - `didWrite` when a number of bytes have been written.
/// - `failAll` if for some reason all outstanding writes need to be discarded and the corresponding `EventLoopPromise` needs to be failed.
private struct PendingDatagramWritesState {
fileprivate typealias DatagramWritePromiseFiller = (EventLoopPromise<Void>, Error?)
private var pendingWrites = MarkedCircularBuffer<PendingDatagramWrite>(initialCapacity: 16)
private var chunks: Int = 0
public private(set) var bytes: Int64 = 0
public var nextWrite: PendingDatagramWrite? {
return self.pendingWrites.first
}
/// Subtract `bytes` from the number of outstanding bytes to write.
private mutating func subtractOutstanding(bytes: Int) {
assert(self.bytes >= bytes, "allegedly written more bytes (\(bytes)) than outstanding (\(self.bytes))")
self.bytes -= numericCast(bytes)
}
/// Indicates that the first outstanding write was written.
///
/// - returns: The promise that the caller must fire, along with an error to fire it with if it needs one.
private mutating func wroteFirst(error: Error? = nil) -> DatagramWritePromiseFiller? {
let first = self.pendingWrites.removeFirst()
self.chunks -= 1
self.subtractOutstanding(bytes: first.data.readableBytes)
if let promise = first.promise {
return (promise, error)
}
return nil
}
/// Initialise a new, empty `PendingWritesState`.
public init() { }
/// Check if there are no outstanding writes.
public var isEmpty: Bool {
if self.pendingWrites.isEmpty {
assert(self.chunks == 0)
assert(self.bytes == 0)
assert(!self.pendingWrites.hasMark)
return true
} else {
assert(self.chunks > 0 && self.bytes >= 0)
return false
}
}
/// Add a new write and optionally the corresponding promise to the list of outstanding writes.
public mutating func append(_ chunk: PendingDatagramWrite) {
self.pendingWrites.append(chunk)
self.chunks += 1
self.bytes += numericCast(chunk.data.readableBytes)
}
/// Mark the flush checkpoint.
///
/// All writes before this checkpoint will eventually be written to the socket.
public mutating func markFlushCheckpoint() {
self.pendingWrites.mark()
}
/// Indicate that a write has happened, this may be a write of multiple outstanding writes (using for example `sendmmsg`).
///
/// - warning: The closure will simply fulfill all the promises in order. If one of those promises does for example close the `Channel` we might see subsequent writes fail out of order. Example: Imagine the user issues three writes: `A`, `B` and `C`. Imagine that `A` and `B` both get successfully written in one write operation but the user closes the `Channel` in `A`'s callback. Then overall the promises will be fulfilled in this order: 1) `A`: success 2) `C`: error 3) `B`: success. Note how `B` and `C` get fulfilled out of order.
///
/// - parameters:
/// - data: The result of the write operation: namely, for each datagram we attempted to write, the number of bytes we wrote.
/// - messages: The vector messages written, if any.
/// - returns: A promise and the error that should be sent to it, if any, and a `WriteResult` which indicates if we could write everything or not.
public mutating func didWrite(_ data: IOResult<Int>, messages: UnsafeMutableBufferPointer<MMsgHdr>?) -> (DatagramWritePromiseFiller?, OneWriteOperationResult) {
switch data {
case .processed(let written):
if let messages = messages {
return didVectorWrite(written: written, messages: messages)
} else {
return didScalarWrite(written: written)
}
case .wouldBlock:
return (nil, .wouldBlock)
}
}
public mutating func recoverableError(_ error: Error) -> (DatagramWritePromiseFiller?, OneWriteOperationResult) {
// When we've hit an error we treat it like fully writing the first datagram. We aren't going to try to
// send it again.
let promiseFiller = self.wroteFirst(error: error)
let result: OneWriteOperationResult = self.pendingWrites.hasMark ? .writtenPartially : .writtenCompletely
return (promiseFiller, result)
}
/// Indicates that a vector write succeeded.
///
/// - parameters:
/// - written: The number of messages successfully written.
/// - messages: The list of message objects.
/// - returns: A closure that the caller _needs_ to run which will fulfill the promises of the writes, and a `WriteResult` that indicates if we could write
/// everything or not.
private mutating func didVectorWrite(written: Int, messages: UnsafeMutableBufferPointer<MMsgHdr>) -> (DatagramWritePromiseFiller?, OneWriteOperationResult) {
var fillers: [DatagramWritePromiseFiller] = []
fillers.reserveCapacity(written)
// This was a vector write. We wrote `written` number of messages.
let writes = messages[messages.startIndex...messages.index(messages.startIndex, offsetBy: written - 1)]
var promiseFiller: DatagramWritePromiseFiller?
for write in writes {
let written = write.msg_len
let thisWriteFiller = didScalarWrite(written: Int(written)).0
assert(thisWriteFiller?.1 == nil, "didVectorWrite called with errors on single writes!")
switch (promiseFiller, thisWriteFiller) {
case (.some(let all), .some(let this)):
all.0.futureResult.cascade(to: this.0)
case (.none, .some(let this)):
promiseFiller = this
case (.some, .none),
(.none, .none):
break
}
}
// If we no longer have a mark, we wrote everything.
let result: OneWriteOperationResult = self.pendingWrites.hasMark ? .writtenPartially : .writtenCompletely
return (promiseFiller, result)
}
/// Indicates that a scalar write succeeded.
///
/// - parameters:
/// - written: The number of bytes successfully written.
/// - returns: All the promises that must be fired, and a `WriteResult` that indicates if we could write
/// everything or not.
private mutating func didScalarWrite(written: Int) -> (DatagramWritePromiseFiller?, OneWriteOperationResult) {
precondition(written <= self.pendingWrites.first!.data.readableBytes,
"Appeared to write more bytes (\(written)) than the datagram contained (\(self.pendingWrites.first!.data.readableBytes))")
let writeFiller = self.wroteFirst()
// If we no longer have a mark, we wrote everything.
let result: OneWriteOperationResult = self.pendingWrites.hasMark ? .writtenPartially : .writtenCompletely
return (writeFiller, result)
}
/// Is there a pending flush?
public var isFlushPending: Bool {
return self.pendingWrites.hasMark
}
/// Fail all the outstanding writes.
///
/// - warning: See the warning for `didWrite`.
///
/// - returns: Nothing
public mutating func failAll(error: Error) {
var promises: [EventLoopPromise<Void>] = []
promises.reserveCapacity(self.pendingWrites.count)
while !self.pendingWrites.isEmpty {
let w = self.pendingWrites.removeFirst()
self.chunks -= 1
self.bytes -= numericCast(w.data.readableBytes)
w.promise.map { promises.append($0) }
}
promises.forEach { $0.fail(error) }
}
/// Returns the best mechanism to write pending data at the current point in time.
var currentBestWriteMechanism: WriteMechanism {
switch self.pendingWrites.markedElementIndex {
case .some(let e) where self.pendingWrites.distance(from: self.pendingWrites.startIndex, to: e) > 0:
return .vectorBufferWrite
case .some(let e):
// The compiler can't prove this, but it must be so.
assert(self.pendingWrites.distance(from: e, to: self.pendingWrites.startIndex) == 0)
return .scalarBufferWrite
default:
return .nothingToBeWritten
}
}
}
// This extension contains a lazy sequence that makes other parts of the code work better.
extension PendingDatagramWritesState {
struct FlushedDatagramWriteSequence: Sequence, IteratorProtocol {
private let pendingWrites: PendingDatagramWritesState
private var index: CircularBuffer<PendingDatagramWrite>.Index
private let markedIndex: CircularBuffer<PendingDatagramWrite>.Index?
init(_ pendingWrites: PendingDatagramWritesState) {
self.pendingWrites = pendingWrites
self.index = pendingWrites.pendingWrites.startIndex
self.markedIndex = pendingWrites.pendingWrites.markedElementIndex
}
mutating func next() -> PendingDatagramWrite? {
while let markedIndex = self.markedIndex, self.pendingWrites.pendingWrites.distance(from: self.index,
to: markedIndex) >= 0 {
let element = self.pendingWrites.pendingWrites[index]
index = self.pendingWrites.pendingWrites.index(after: index)
return element
}
return nil
}
}
var flushedWrites: FlushedDatagramWriteSequence {
return FlushedDatagramWriteSequence(self)
}
}
/// This class manages the writing of pending writes to datagram sockets. The state is held in a `PendingWritesState`
/// value. The most important purpose of this object is to call `sendto` or `sendmmsg` depending on the writes held and
/// the availability of the functions.
final class PendingDatagramWritesManager: PendingWritesManager {
/// Storage for mmsghdr structures. Only present on Linux because Darwin does not support
/// gathering datagram writes.
private var msgs: UnsafeMutableBufferPointer<MMsgHdr>
/// Storage for the references to the buffers used when we perform gathering writes. Only present
/// on Linux because Darwin does not support gathering datagram writes.
private var storageRefs: UnsafeMutableBufferPointer<Unmanaged<AnyObject>>
/// Storage for iovec structures. Only present on Linux because this is only needed when we call
/// sendmmsg: sendto doesn't require any iovecs.
private var iovecs: UnsafeMutableBufferPointer<IOVector>
/// Storage for sockaddr structures. Only present on Linux because Darwin does not support gathering
/// writes.
private var addresses: UnsafeMutableBufferPointer<sockaddr_storage>
private var controlMessageStorage: UnsafeControlMessageStorage
private var state = PendingDatagramWritesState()
internal var waterMark: ChannelOptions.Types.WriteBufferWaterMark = ChannelOptions.Types.WriteBufferWaterMark(low: 32 * 1024, high: 64 * 1024)
internal let channelWritabilityFlag: NIOAtomic<Bool> = .makeAtomic(value: true)
internal var publishedWritability = true
internal var writeSpinCount: UInt = 16
private(set) var isOpen = true
/// Initialize with a pre-allocated array of message headers and storage references. We pass in these pre-allocated
/// objects to save allocations. They can be safely be re-used for all `Channel`s on a given `EventLoop` as an
/// `EventLoop` always runs on one and the same thread. That means that there can't be any writes of more than
/// one `Channel` on the same `EventLoop` at the same time.
///
/// - parameters:
/// - msgs: A pre-allocated array of `MMsgHdr` elements
/// - iovecs: A pre-allocated array of `IOVector` elements
/// - addresses: A pre-allocated array of `sockaddr_storage` elements
/// - storageRefs: A pre-allocated array of storage management tokens used to keep storage elements alive during a vector write operation
/// - controlMessageStorage: Pre-allocated memory for storing cmsghdr data during a vector write operation.
init(msgs: UnsafeMutableBufferPointer<MMsgHdr>,
iovecs: UnsafeMutableBufferPointer<IOVector>,
addresses: UnsafeMutableBufferPointer<sockaddr_storage>,
storageRefs: UnsafeMutableBufferPointer<Unmanaged<AnyObject>>,
controlMessageStorage: UnsafeControlMessageStorage) {
self.msgs = msgs
self.iovecs = iovecs
self.addresses = addresses
self.storageRefs = storageRefs
self.controlMessageStorage = controlMessageStorage
}
/// Mark the flush checkpoint.
func markFlushCheckpoint() {
self.state.markFlushCheckpoint()
}
/// Is there a flush pending?
var isFlushPending: Bool {
return self.state.isFlushPending
}
/// Are there any outstanding writes currently?
var isEmpty: Bool {
return self.state.isEmpty
}
/// Add a pending write.
///
/// - parameters:
/// - envelope: The `AddressedEnvelope<IOData>` to write.
/// - promise: Optionally an `EventLoopPromise` that will get the write operation's result
/// - result: If the `Channel` is still writable after adding the write of `data`.
func add(envelope: AddressedEnvelope<ByteBuffer>, promise: EventLoopPromise<Void>?) -> Bool {
assert(self.isOpen)
self.state.append(.init(data: envelope.data,
promise: promise,
address: envelope.remoteAddress,
metadata: envelope.metadata))
if self.state.bytes > waterMark.high && channelWritabilityFlag.compareAndExchange(expected: true, desired: false) {
// Returns false to signal the Channel became non-writable and we need to notify the user.
self.publishedWritability = false
return false
}
return true
}
/// Returns the best mechanism to write pending data at the current point in time.
var currentBestWriteMechanism: WriteMechanism {
return self.state.currentBestWriteMechanism
}
/// Triggers the appropriate write operation. This is a fancy way of saying trigger either `sendto` or `sendmmsg`.
/// On platforms that do not support a gathering write operation,
///
/// - parameters:
/// - scalarWriteOperation: An operation that writes a single, contiguous array of bytes (usually `sendto`).
/// - vectorWriteOperation: An operation that writes multiple contiguous arrays of bytes (usually `sendmmsg`).
/// - returns: The `WriteResult` and whether the `Channel` is now writable.
func triggerAppropriateWriteOperations(scalarWriteOperation: (UnsafeRawBufferPointer, UnsafePointer<sockaddr>, socklen_t, AddressedEnvelope<ByteBuffer>.Metadata?) throws -> IOResult<Int>,
vectorWriteOperation: (UnsafeMutableBufferPointer<MMsgHdr>) throws -> IOResult<Int>) throws -> OverallWriteResult {
return try self.triggerWriteOperations { writeMechanism in
switch writeMechanism {
case .scalarBufferWrite:
return try triggerScalarBufferWrite(scalarWriteOperation: { try scalarWriteOperation($0, $1, $2, $3) })
case .vectorBufferWrite:
do {
return try triggerVectorBufferWrite(vectorWriteOperation: { try vectorWriteOperation($0) })
} catch {
// If the error we just hit is recoverable, we fall back to single write mode to
// isolate exactly which write triggered the problem.
guard error.isRecoverable else {
throw error
}
return try triggerScalarBufferWrite(scalarWriteOperation: { try scalarWriteOperation($0, $1, $2, $3) })
}
case .scalarFileWrite:
preconditionFailure("PendingDatagramWritesManager was handed a file write")
case .nothingToBeWritten:
assertionFailure("called \(#function) with nothing available to be written")
return OneWriteOperationResult.writtenCompletely
}
}
}
/// To be called after a write operation (usually selected and run by `triggerAppropriateWriteOperation`) has
/// completed.
///
/// - parameters:
/// - data: The result of the write operation.
private func didWrite(_ data: IOResult<Int>, messages: UnsafeMutableBufferPointer<MMsgHdr>?) -> OneWriteOperationResult {
let (promise, result) = self.state.didWrite(data, messages: messages)
if self.state.bytes < waterMark.low {
channelWritabilityFlag.store(true)
}
self.fulfillPromise(promise)
return result
}
/// Called after a scalar write operation has hit an error. Attempts to map some tolerable datagram errors to
/// useful errors and fail the individual write, rather than fail the entire connection. If the error cannot
/// be tolerated by a datagram application, will rethrow the error.
///
/// - parameters:
/// - error: The error we hit.
/// - returns: A `WriteResult` indicating whether the writes should continue.
/// - throws: Any error that cannot be ignored by a datagram write.
private func handleError(_ error: Error) throws -> OneWriteOperationResult {
switch error {
case let e as IOError where e.errnoCode == EMSGSIZE:
let (promise, result) = self.state.recoverableError(ChannelError.writeMessageTooLarge)
self.fulfillPromise(promise)
return result
case let e as IOError where e.errnoCode == EHOSTUNREACH:
let (promise, result) = self.state.recoverableError(ChannelError.writeHostUnreachable)
self.fulfillPromise(promise)
return result
default:
throw error
}
}
/// Trigger a write of a single object where an object can either be a contiguous array of bytes or a region of a file.
///
/// - parameters:
/// - scalarWriteOperation: An operation that writes a single, contiguous array of bytes (usually `sendto`).
private func triggerScalarBufferWrite(scalarWriteOperation: (UnsafeRawBufferPointer, UnsafePointer<sockaddr>, socklen_t, AddressedEnvelope<ByteBuffer>.Metadata?) throws -> IOResult<Int>) rethrows -> OneWriteOperationResult {
assert(self.state.isFlushPending && self.isOpen && !self.state.isEmpty,
"illegal state for scalar datagram write operation: flushPending: \(self.state.isFlushPending), isOpen: \(self.isOpen), empty: \(self.state.isEmpty)")
let pending = self.state.nextWrite!
do {
let writeResult = try pending.address.withSockAddr { (addrPtr, addrSize) in
try pending.data.withUnsafeReadableBytes {
try scalarWriteOperation($0, addrPtr, socklen_t(addrSize), pending.metadata)
}
}
return self.didWrite(writeResult, messages: nil)
} catch {
return try self.handleError(error)
}
}
/// Trigger a vector write operation. In other words: Write multiple contiguous arrays of bytes.
///
/// - parameters:
/// - vectorWriteOperation: The vector write operation to use. Usually `sendmmsg`.
private func triggerVectorBufferWrite(vectorWriteOperation: (UnsafeMutableBufferPointer<MMsgHdr>) throws -> IOResult<Int>) throws -> OneWriteOperationResult {
assert(self.state.isFlushPending && self.isOpen && !self.state.isEmpty,
"illegal state for vector datagram write operation: flushPending: \(self.state.isFlushPending), isOpen: \(self.isOpen), empty: \(self.state.isEmpty)")
return self.didWrite(try doPendingDatagramWriteVectorOperation(pending: self.state,
iovecs: self.iovecs,
msgs: self.msgs,
addresses: self.addresses,
storageRefs: self.storageRefs,
controlMessageStorage: self.controlMessageStorage,
{ try vectorWriteOperation($0) }),
messages: self.msgs)
}
private func fulfillPromise(_ promise: PendingDatagramWritesState.DatagramWritePromiseFiller?) {
if let promise = promise, let error = promise.1 {
promise.0.fail(error)
} else if let promise = promise {
promise.0.succeed(())
}
}
/// Fail all the outstanding writes. This is useful if for example the `Channel` is closed.
func failAll(error: Error, close: Bool) {
if close {
assert(self.isOpen)
self.isOpen = false
}
self.state.failAll(error: error)
assert(self.state.isEmpty)
}
}
|