1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
|
//===----------------------------------------------------------------------===//
//
// This source file is part of the SwiftNIO open source project
//
// Copyright (c) 2017-2020 Apple Inc. and the SwiftNIO project authors
// Licensed under Apache License v2.0
//
// See LICENSE.txt for license information
// See CONTRIBUTORS.txt for the list of SwiftNIO project authors
//
// SPDX-License-Identifier: Apache-2.0
//
//===----------------------------------------------------------------------===//
import Dispatch
import NIOConcurrencyHelpers
/// Execute the given closure and ensure we release all auto pools if needed.
@inlinable
internal func withAutoReleasePool<T>(_ execute: () throws -> T) rethrows -> T {
#if os(iOS) || os(macOS) || os(tvOS) || os(watchOS)
return try autoreleasepool {
try execute()
}
#else
return try execute()
#endif
}
/// `EventLoop` implementation that uses a `Selector` to get notified once there is more I/O or tasks to process.
/// The whole processing of I/O and tasks is done by a `NIOThread` that is tied to the `SelectableEventLoop`. This `NIOThread`
/// is guaranteed to never change!
@usableFromInline
internal final class SelectableEventLoop: EventLoop {
/// The different state in the lifecycle of an `EventLoop` seen from _outside_ the `EventLoop`.
private enum ExternalState {
/// `EventLoop` is open and so can process more work.
case open
/// `EventLoop` is currently in the process of closing.
case closing
/// `EventLoop` is closed.
case closed
/// `EventLoop` is closed and is currently trying to reclaim resources (such as the EventLoop thread).
case reclaimingResources
/// `EventLoop` is closed and all the resources (such as the EventLoop thread) have been reclaimed.
case resourcesReclaimed
}
/// The different state in the lifecycle of an `EventLoop` seen from _inside_ the `EventLoop`.
private enum InternalState {
case runningAndAcceptingNewRegistrations
case runningButNotAcceptingNewRegistrations
case noLongerRunning
case exitingThread
}
/* private but tests */ internal let _selector: NIO.Selector<NIORegistration>
private let thread: NIOThread
@usableFromInline
// _pendingTaskPop is set to `true` if the event loop is about to pop tasks off the task queue.
// This may only be read/written while holding the _tasksLock.
internal var _pendingTaskPop = false
@usableFromInline
internal var _scheduledTasks = PriorityQueue<ScheduledTask>()
private var tasksCopy = ContiguousArray<() -> Void>()
@usableFromInline
internal var _succeededVoidFuture: Optional<EventLoopFuture<Void>> = nil {
didSet {
self.assertInEventLoop()
}
}
private let canBeShutdownIndividually: Bool
@usableFromInline
internal let _tasksLock = Lock()
private let _externalStateLock = Lock()
private var externalStateLock: Lock {
// The assert is here to check that we never try to read the external state on the EventLoop unless we're
// shutting down.
assert(!self.inEventLoop || self.internalState != .runningAndAcceptingNewRegistrations,
"lifecycle lock taken whilst up and running and in EventLoop")
return self._externalStateLock
}
private var internalState: InternalState = .runningAndAcceptingNewRegistrations // protected by the EventLoop thread
private var externalState: ExternalState = .open // protected by externalStateLock
private let _iovecs: UnsafeMutablePointer<IOVector>
private let _storageRefs: UnsafeMutablePointer<Unmanaged<AnyObject>>
let iovecs: UnsafeMutableBufferPointer<IOVector>
let storageRefs: UnsafeMutableBufferPointer<Unmanaged<AnyObject>>
// Used for gathering UDP writes.
private let _msgs: UnsafeMutablePointer<MMsgHdr>
private let _addresses: UnsafeMutablePointer<sockaddr_storage>
let msgs: UnsafeMutableBufferPointer<MMsgHdr>
let addresses: UnsafeMutableBufferPointer<sockaddr_storage>
// Used for UDP control messages.
private(set) var controlMessageStorage: UnsafeControlMessageStorage
/// Creates a new `SelectableEventLoop` instance that is tied to the given `pthread_t`.
private let promiseCreationStoreLock = Lock()
private var _promiseCreationStore: [UInt: (file: StaticString, line: UInt)] = [:]
@usableFromInline
internal func promiseCreationStoreAdd<T>(future: EventLoopFuture<T>, file: StaticString, line: UInt) {
precondition(_isDebugAssertConfiguration())
self.promiseCreationStoreLock.withLock {
self._promiseCreationStore[self.obfuscatePointerValue(future)] = (file: file, line: line)
}
}
internal func promiseCreationStoreRemove<T>(future: EventLoopFuture<T>) -> (file: StaticString, line: UInt) {
precondition(_isDebugAssertConfiguration())
return self.promiseCreationStoreLock.withLock {
self._promiseCreationStore.removeValue(forKey: self.obfuscatePointerValue(future))!
}
}
@usableFromInline
internal var _validInternalStateToScheduleTasks: Bool {
switch self.internalState {
case .exitingThread:
return false
case .runningAndAcceptingNewRegistrations, .runningButNotAcceptingNewRegistrations, .noLongerRunning:
return true
}
}
// access with `externalStateLock` held
private var validExternalStateToScheduleTasks: Bool {
switch self.externalState {
case .open, .closing:
return true
case .closed, .reclaimingResources, .resourcesReclaimed:
return false
}
}
internal var testsOnly_validExternalStateToScheduleTasks: Bool {
return self.externalStateLock.withLock {
return self.validExternalStateToScheduleTasks
}
}
internal init(thread: NIOThread, selector: NIO.Selector<NIORegistration>, canBeShutdownIndividually: Bool) {
self._selector = selector
self.thread = thread
self._iovecs = UnsafeMutablePointer.allocate(capacity: Socket.writevLimitIOVectors)
self._storageRefs = UnsafeMutablePointer.allocate(capacity: Socket.writevLimitIOVectors)
self.iovecs = UnsafeMutableBufferPointer(start: self._iovecs, count: Socket.writevLimitIOVectors)
self.storageRefs = UnsafeMutableBufferPointer(start: self._storageRefs, count: Socket.writevLimitIOVectors)
self._msgs = UnsafeMutablePointer.allocate(capacity: Socket.writevLimitIOVectors)
self._addresses = UnsafeMutablePointer.allocate(capacity: Socket.writevLimitIOVectors)
self.msgs = UnsafeMutableBufferPointer(start: _msgs, count: Socket.writevLimitIOVectors)
self.addresses = UnsafeMutableBufferPointer(start: _addresses, count: Socket.writevLimitIOVectors)
self.controlMessageStorage = UnsafeControlMessageStorage.allocate(msghdrCount: Socket.writevLimitIOVectors)
// We will process 4096 tasks per while loop.
self.tasksCopy.reserveCapacity(4096)
self.canBeShutdownIndividually = canBeShutdownIndividually
// note: We are creating a reference cycle here that we'll break when shutting the SelectableEventLoop down.
self._succeededVoidFuture = EventLoopFuture(eventLoop: self, value: (), file: "n/a", line: 0)
}
deinit {
assert(self.internalState == .exitingThread,
"illegal internal state on deinit: \(self.internalState)")
assert(self.externalState == .resourcesReclaimed,
"illegal external state on shutdown: \(self.externalState)")
_iovecs.deallocate()
_storageRefs.deallocate()
_msgs.deallocate()
_addresses.deallocate()
self.controlMessageStorage.deallocate()
}
/// Is this `SelectableEventLoop` still open (ie. not shutting down or shut down)
internal var isOpen: Bool {
self.assertInEventLoop()
switch self.internalState {
case .noLongerRunning, .runningButNotAcceptingNewRegistrations, .exitingThread:
return false
case .runningAndAcceptingNewRegistrations:
return true
}
}
/// Register the given `SelectableChannel` with this `SelectableEventLoop`. After this point all I/O for the `SelectableChannel` will be processed by this `SelectableEventLoop` until it
/// is deregistered by calling `deregister`.
internal func register<C: SelectableChannel>(channel: C) throws {
self.assertInEventLoop()
// Don't allow registration when we're closed.
guard self.isOpen else {
throw EventLoopError.shutdown
}
try channel.register(selector: self._selector, interested: channel.interestedEvent)
}
/// Deregister the given `SelectableChannel` from this `SelectableEventLoop`.
internal func deregister<C: SelectableChannel>(channel: C, mode: CloseMode = .all) throws {
self.assertInEventLoop()
guard self.isOpen else {
// It's possible the EventLoop was closed before we were able to call deregister, so just return in this case as there is no harm.
return
}
try channel.deregister(selector: self._selector, mode: mode)
}
/// Register the given `SelectableChannel` with this `SelectableEventLoop`. This should be done whenever `channel.interestedEvents` has changed and it should be taken into account when
/// waiting for new I/O for the given `SelectableChannel`.
internal func reregister<C: SelectableChannel>(channel: C) throws {
self.assertInEventLoop()
try channel.reregister(selector: self._selector, interested: channel.interestedEvent)
}
/// - see: `EventLoop.inEventLoop`
@usableFromInline
internal var inEventLoop: Bool {
return thread.isCurrent
}
/// - see: `EventLoop.scheduleTask(deadline:_:)`
@inlinable
internal func scheduleTask<T>(deadline: NIODeadline, _ task: @escaping () throws -> T) -> Scheduled<T> {
let promise: EventLoopPromise<T> = self.makePromise()
let task = ScheduledTask({
do {
promise.succeed(try task())
} catch let err {
promise.fail(err)
}
}, { error in
promise.fail(error)
}, deadline)
let scheduled = Scheduled(promise: promise, cancellationTask: {
self._tasksLock.withLockVoid {
self._scheduledTasks.remove(task)
}
// We don't need to wake up the selector here, the scheduled task will never be picked up. Waking up the
// selector would mean that we may be able to recalculate the shutdown to a later date. The cost of not
// doing the recalculation is one potentially unnecessary wakeup which is exactly what we're
// saving here. So in the worst case, we didn't do a performance optimisation, in the best case, we saved
// one wakeup.
})
do {
try self._schedule0(task)
} catch {
scheduled._promise.fail(error)
}
return scheduled
}
/// - see: `EventLoop.scheduleTask(in:_:)`
@inlinable
internal func scheduleTask<T>(in: TimeAmount, _ task: @escaping () throws -> T) -> Scheduled<T> {
return scheduleTask(deadline: .now() + `in`, task)
}
// - see: `EventLoop.execute`
@inlinable
internal func execute(_ task: @escaping () -> Void) {
// nothing we can do if we fail enqueuing here.
try? self._schedule0(ScheduledTask(task, { error in
// do nothing
}, .now()))
}
/// Add the `ScheduledTask` to be executed.
@usableFromInline
internal func _schedule0(_ task: ScheduledTask) throws {
if self.inEventLoop {
precondition(self._validInternalStateToScheduleTasks,
"BUG IN NIO (please report): EventLoop is shutdown, yet we're on the EventLoop.")
self._tasksLock.withLockVoid {
self._scheduledTasks.push(task)
}
} else {
let shouldWakeSelector: Bool = self.externalStateLock.withLock {
guard self.validExternalStateToScheduleTasks else {
print("ERROR: Cannot schedule tasks on an EventLoop that has already shut down. " +
"This will be upgraded to a forced crash in future SwiftNIO versions.")
return false
}
return self._tasksLock.withLock {
self._scheduledTasks.push(task)
if self._pendingTaskPop == false {
// Our job to wake the selector.
self._pendingTaskPop = true
return true
} else {
// There is already an event-loop-tick scheduled, we don't need to wake the selector.
return false
}
}
}
// We only need to wake up the selector if we're not in the EventLoop. If we're in the EventLoop already, we're
// either doing IO tasks (which happens before checking the scheduled tasks) or we're running a scheduled task
// already which means that we'll check at least once more if there are other scheduled tasks runnable. While we
// had the task lock we also checked whether the loop was _already_ going to be woken. This saves us a syscall on
// hot loops.
//
// In the future we'll use an MPSC queue here and that will complicate things, so we may get some spurious wakeups,
// but as long as we're using the big dumb lock we can make this optimization safely.
if shouldWakeSelector {
try self._wakeupSelector()
}
}
}
/// Wake the `Selector` which means `Selector.whenReady(...)` will unblock.
@usableFromInline
internal func _wakeupSelector() throws {
try _selector.wakeup()
}
/// Handle the given `SelectorEventSet` for the `SelectableChannel`.
internal final func handleEvent<C: SelectableChannel>(_ ev: SelectorEventSet, channel: C) {
guard channel.isOpen else {
return
}
// process resets first as they'll just cause the writes to fail anyway.
if ev.contains(.reset) {
channel.reset()
} else {
if ev.contains(.writeEOF) {
channel.writeEOF()
guard channel.isOpen else {
return
}
} else if ev.contains(.write) {
channel.writable()
guard channel.isOpen else {
return
}
}
if ev.contains(.readEOF) {
channel.readEOF()
} else if ev.contains(.read) {
channel.readable()
}
}
}
private func currentSelectorStrategy(nextReadyTask: ScheduledTask?) -> SelectorStrategy {
guard let sched = nextReadyTask else {
// No tasks to handle so just block. If any tasks were added in the meantime wakeup(...) was called and so this
// will directly unblock.
return .block
}
let nextReady = sched.readyIn(.now())
if nextReady <= .nanoseconds(0) {
// Something is ready to be processed just do a non-blocking select of events.
return .now
} else {
return .blockUntilTimeout(nextReady)
}
}
private func obfuscatePointerValue<T>(_ future: EventLoopFuture<T>) -> UInt {
// Note:
// 1. 0xbf15ca5d is randomly picked such that it fits into both 32 and 64 bit address spaces
// 2. XOR with 0xbf15ca5d so that Memory Graph Debugger and other memory debugging tools
// won't see it as a reference.
return UInt(bitPattern: ObjectIdentifier(future)) ^ 0xbf15ca5d
}
/// Start processing I/O and tasks for this `SelectableEventLoop`. This method will continue running (and so block) until the `SelectableEventLoop` is closed.
internal func run() throws {
self.preconditionInEventLoop()
defer {
var scheduledTasksCopy = ContiguousArray<ScheduledTask>()
var iterations = 0
repeat { // We may need to do multiple rounds of this because failing tasks may lead to more work.
scheduledTasksCopy.removeAll(keepingCapacity: true)
self._tasksLock.withLockVoid {
// In this state we never want the selector to be woken again, so we pretend we're permanently running.
self._pendingTaskPop = true
// reserve the correct capacity so we don't need to realloc later on.
scheduledTasksCopy.reserveCapacity(self._scheduledTasks.count)
while let sched = self._scheduledTasks.pop() {
scheduledTasksCopy.append(sched)
}
}
// Fail all the scheduled tasks.
for task in scheduledTasksCopy {
task.fail(EventLoopError.shutdown)
}
iterations += 1
} while scheduledTasksCopy.count > 0 && iterations < 1000
precondition(scheduledTasksCopy.count == 0, "EventLoop \(self) didn't quiesce after 1000 ticks.")
assert(self.internalState == .noLongerRunning, "illegal state: \(self.internalState)")
self.internalState = .exitingThread
}
var nextReadyTask: ScheduledTask? = nil
self._tasksLock.withLock {
if let firstTask = self._scheduledTasks.peek() {
// The reason this is necessary is a very interesting race:
// In theory (and with `makeEventLoopFromCallingThread` even in practise), we could publish an
// `EventLoop` reference _before_ the EL thread has entered the `run` function.
// If that is the case, we need to schedule the first wakeup at the ready time for this task that was
// enqueued really early on, so let's do that :).
nextReadyTask = firstTask
}
}
while self.internalState != .noLongerRunning && self.internalState != .exitingThread {
// Block until there are events to handle or the selector was woken up
/* for macOS: in case any calls we make to Foundation put objects into an autoreleasepool */
try withAutoReleasePool {
try self._selector.whenReady(
strategy: currentSelectorStrategy(nextReadyTask: nextReadyTask),
onLoopBegin: { self._tasksLock.withLockVoid { self._pendingTaskPop = true } }
) { ev in
switch ev.registration.channel {
case .serverSocketChannel(let chan):
self.handleEvent(ev.io, channel: chan)
case .socketChannel(let chan):
self.handleEvent(ev.io, channel: chan)
case .datagramChannel(let chan):
self.handleEvent(ev.io, channel: chan)
case .pipeChannel(let chan, let direction):
var ev = ev
if ev.io.contains(.reset) {
// .reset needs special treatment here because we're dealing with two separate pipes instead
// of one socket. So we turn .reset input .readEOF/.writeEOF.
ev.io.subtract([.reset])
ev.io.formUnion([direction == .input ? .readEOF : .writeEOF])
}
self.handleEvent(ev.io, channel: chan)
}
}
}
// We need to ensure we process all tasks, even if a task added another task again
while true {
// TODO: Better locking
self._tasksLock.withLockVoid {
if !self._scheduledTasks.isEmpty {
// We only fetch the time one time as this may be expensive and is generally good enough as if we miss anything we will just do a non-blocking select again anyway.
let now: NIODeadline = .now()
// Make a copy of the tasks so we can execute these while not holding the lock anymore
while tasksCopy.count < tasksCopy.capacity, let task = self._scheduledTasks.peek() {
if task.readyIn(now) <= .nanoseconds(0) {
self._scheduledTasks.pop()
self.tasksCopy.append(task.task)
} else {
nextReadyTask = task
break
}
}
} else {
// Reset nextReadyTask to nil which means we will do a blocking select.
nextReadyTask = nil
}
if self.tasksCopy.isEmpty {
// We will not continue to loop here. We need to be woken if a new task is enqueued.
self._pendingTaskPop = false
}
}
// all pending tasks are set to occur in the future, so we can stop looping.
if self.tasksCopy.isEmpty {
break
}
// Execute all the tasks that were submitted
for task in self.tasksCopy {
/* for macOS: in case any calls we make to Foundation put objects into an autoreleasepool */
withAutoReleasePool {
task()
}
}
// Drop everything (but keep the capacity) so we can fill it again on the next iteration.
self.tasksCopy.removeAll(keepingCapacity: true)
}
}
// This EventLoop was closed so also close the underlying selector.
try self._selector.close()
// This breaks the retain cycle created in `init`.
self._succeededVoidFuture = nil
}
internal func initiateClose(queue: DispatchQueue, completionHandler: @escaping (Result<Void, Error>) -> Void) {
func doClose() {
self.assertInEventLoop()
// There should only ever be one call into this function so we need to be up and running, ...
assert(self.internalState == .runningAndAcceptingNewRegistrations)
self.internalState = .runningButNotAcceptingNewRegistrations
self.externalStateLock.withLock {
// ... but before this call happened, the lifecycle state should have been changed on some other thread.
assert(self.externalState == .closing)
}
self._selector.closeGently(eventLoop: self).whenComplete { result in
self.assertInEventLoop()
assert(self.internalState == .runningButNotAcceptingNewRegistrations)
self.internalState = .noLongerRunning
self.execute {} // force a new event loop tick, so the event loop definitely stops looping very soon.
self.externalStateLock.withLock {
assert(self.externalState == .closing)
self.externalState = .closed
}
queue.async {
completionHandler(result)
}
}
}
if self.inEventLoop {
queue.async {
self.initiateClose(queue: queue, completionHandler: completionHandler)
}
} else {
let goAhead = self.externalStateLock.withLock { () -> Bool in
if self.externalState == .open {
self.externalState = .closing
return true
} else {
return false
}
}
guard goAhead else {
queue.async {
completionHandler(Result.failure(EventLoopError.shutdown))
}
return
}
self.execute {
doClose()
}
}
}
internal func syncFinaliseClose(joinThread: Bool) {
// This may not be true in the future but today we need to join all ELs that can't be shut down individually.
assert(joinThread != self.canBeShutdownIndividually)
let goAhead = self.externalStateLock.withLock { () -> Bool in
switch self.externalState {
case .closed:
self.externalState = .reclaimingResources
return true
case .resourcesReclaimed, .reclaimingResources:
return false
default:
preconditionFailure("illegal lifecycle state in syncFinaliseClose: \(self.externalState)")
}
}
guard goAhead else {
return
}
if joinThread {
self.thread.join()
}
self.externalStateLock.withLock {
precondition(self.externalState == .reclaimingResources)
self.externalState = .resourcesReclaimed
}
}
@usableFromInline
func shutdownGracefully(queue: DispatchQueue, _ callback: @escaping (Error?) -> Void) {
if self.canBeShutdownIndividually {
self.initiateClose(queue: queue) { result in
self.syncFinaliseClose(joinThread: false) // This thread was taken over by somebody else
switch result {
case .success:
callback(nil)
case .failure(let error):
callback(error)
}
}
} else {
// This function is never called legally because the only possibly owner of an `SelectableEventLoop` is
// `MultiThreadedEventLoopGroup` which calls `initiateClose` followed by `syncFinaliseClose`.
queue.async {
callback(EventLoopError.unsupportedOperation)
}
}
}
@inlinable
public func makeSucceededVoidFuture() -> EventLoopFuture<Void> {
guard self.inEventLoop, let voidFuture = self._succeededVoidFuture else {
return EventLoopFuture(eventLoop: self, value: (), file: "n/a", line: 0)
}
return voidFuture
}
}
extension SelectableEventLoop: CustomStringConvertible, CustomDebugStringConvertible {
@usableFromInline
var description: String {
return "SelectableEventLoop { selector = \(self._selector), thread = \(self.thread) }"
}
@usableFromInline
var debugDescription: String {
return self._tasksLock.withLock {
return "SelectableEventLoop { selector = \(self._selector), thread = \(self.thread), scheduledTasks = \(self._scheduledTasks.description) }"
}
}
}
|