1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
|
//===----------------------------------------------------------------------===//
//
// This source file is part of the SwiftNIO open source project
//
// Copyright (c) 2017-2018 Apple Inc. and the SwiftNIO project authors
// Licensed under Apache License v2.0
//
// See LICENSE.txt for license information
// See CONTRIBUTORS.txt for the list of SwiftNIO project authors
//
// SPDX-License-Identifier: Apache-2.0
//
//===----------------------------------------------------------------------===//
import NIO
/// The length of the TLS record header in bytes.
private let tlsRecordHeaderLength = 5
/// The content type identifier for a TLS handshake record.
private let tlsContentTypeHandshake: UInt8 = 22
/// The handshake type identifier for ClientHello records.
private let handshakeTypeClientHello: UInt8 = 1
/// The extension type for the SNI extension.
private let sniExtensionType: UInt16 = 0
/// The ServerName type for DNS host names.
private let sniHostNameType: UInt8 = 0
/// The result of the SNI parsing. If `hostname`, then the enum also
/// contains the hostname received in the SNI extension. If `fallback`,
/// then either we could not parse the SNI extension or it was not there
/// at all.
public enum SNIResult: Equatable {
case fallback
case hostname(String)
}
private enum InternalSNIErrors: Error {
case invalidLengthInRecord
case invalidRecord
case recordIncomplete
}
private extension ByteBuffer {
mutating func moveReaderIndexIfPossible(forwardBy distance: Int) throws {
guard self.readableBytes >= distance else {
throw InternalSNIErrors.invalidLengthInRecord
}
self.moveReaderIndex(forwardBy: distance)
}
mutating func readIntegerIfPossible<T: FixedWidthInteger>() throws -> T {
guard let integer: T = self.readInteger() else {
throw InternalSNIErrors.invalidLengthInRecord
}
return integer
}
}
private extension Sequence where Element == UInt8 {
func decodeStringValidatingASCII() -> String? {
var bytesIterator = self.makeIterator()
var scalars: [Unicode.Scalar] = []
scalars.reserveCapacity(self.underestimatedCount)
var decoder = Unicode.ASCII.Parser()
decode: while true {
switch decoder.parseScalar(from: &bytesIterator) {
case .valid(let v):
scalars.append(Unicode.Scalar(v[0]))
case .emptyInput:
break decode
case .error:
return nil
}
}
return String(scalars.map(Character.init))
}
}
/// A channel handler that can be used to arbitrarily edit a channel
/// pipeline based on the hostname requested in the Server Name Indication
/// portion of the TLS Client Hello.
///
/// This handler is most commonly used when configuring TLS, to control
/// which certificates are going to be shown to the client. It can also be used
/// to ensure that only the resources required to serve a given virtual host are
/// actually present in the channel pipeline.
///
/// This handler does not depend on any specific TLS implementation. Instead, it parses
/// the Client Hello itself, directly. This allows it to be generic across all possible
/// TLS backends that can be used with NIO. It also allows for the pipeline change to
/// be done asynchronously, providing more flexibility about how the user configures the
/// pipeline.
public final class SNIHandler: ByteToMessageDecoder {
public var cumulationBuffer: Optional<ByteBuffer>
public typealias InboundIn = ByteBuffer
public typealias InboundOut = ByteBuffer
private let completionHandler: (SNIResult) -> EventLoopFuture<Void>
private var waitingForUser: Bool
public init(sniCompleteHandler: @escaping (SNIResult) -> EventLoopFuture<Void>) {
self.cumulationBuffer = nil
self.completionHandler = sniCompleteHandler
self.waitingForUser = false
}
public func decodeLast(context: ChannelHandlerContext, buffer: inout ByteBuffer, seenEOF: Bool) throws -> DecodingState {
context.fireChannelRead(NIOAny(buffer))
return .needMoreData
}
// A note to maintainers: this method *never* returns `.continue`.
public func decode(context: ChannelHandlerContext, buffer: inout ByteBuffer) -> DecodingState {
// If we've asked the user to mutate the pipeline already, we're not interested in
// this data. Keep waiting.
if waitingForUser {
return .needMoreData
}
let serverName: String?
do {
serverName = try parseTLSDataForServerName(buffer: buffer)
} catch InternalSNIErrors.recordIncomplete {
// Nothing bad here, we just don't have enough data.
return .needMoreData
} catch {
// Some error occurred. Fall back and let the TLS stack
// handle it.
sniComplete(result: .fallback, context: context)
return .needMoreData
}
if let serverName = serverName {
sniComplete(result: .hostname(serverName), context: context)
} else {
sniComplete(result: .fallback, context: context)
}
return .needMoreData
}
/// Given a buffer of data that may contain a TLS Client Hello, parses the buffer looking for
/// a server name extension. If it can be found, returns the host name in that extension. If
/// no host name or extension is present, returns nil. If an error is encountered, throws. If
/// there is not enough data in the buffer yet, throws recordIncomplete.
private func parseTLSDataForServerName(buffer: ByteBuffer) throws -> String? {
// We're taking advantage of value semantics here: this copy of the buffer will reference
// the same underlying storage as the one we were passed, but any changes to it will not
// be reflected in the outer buffer. That saves us from needing to maintain offsets
// manually in this code. Thanks, Swift!
var tempBuffer = buffer
// First, parse the header.
let contentLength = try parseRecordHeader(buffer: &tempBuffer)
guard tempBuffer.readableBytes >= contentLength else {
throw InternalSNIErrors.recordIncomplete
}
// At this point we know we have enough, at least according to the outer layer. We now want to
// take a slice of our temp buffer so that we can make confident assertions about
// all of the length. This also prevents us messing stuff up.
//
// From this point onwards if we don't have enough data to satisfy a read, this is an error and
// we will fall back to let the upper layers handle it.
tempBuffer = tempBuffer.getSlice(at: tempBuffer.readerIndex, length: Int(contentLength))! // length check above
// Now parse the handshake header. If the length of the handshake message is not exactly the
// length of this record, something has gone wrong and we should give up.
let handshakeLength = try parseHandshakeHeader(buffer: &tempBuffer)
guard tempBuffer.readableBytes == handshakeLength else {
throw InternalSNIErrors.invalidRecord
}
// Now parse the client hello header. If the remaining length, which should be entirely extensions,
// is not exactly the length of this record, something has gone wrong and we should give up.
let extensionsLength = try parseClientHelloHeader(buffer: &tempBuffer)
guard tempBuffer.readableBytes == extensionsLength else {
throw InternalSNIErrors.invalidLengthInRecord
}
return try parseExtensionsForServerName(buffer: &tempBuffer)
}
/// Parses the TLS Record Header, ensuring that this is a handshake record and that
/// the basics of the data appear to be correct.
///
/// Returns the content-length of the record.
private func parseRecordHeader(buffer: inout ByteBuffer) throws -> Int {
// First, the obvious check: are there enough bytes for us to parse a complete
// header? Because of this check we can use unsafe integer reads in the rest of
// this function, as we'll only ever read tlsRecordHeaderLength number of bytes
// here.
guard buffer.readableBytes >= tlsRecordHeaderLength else {
throw InternalSNIErrors.recordIncomplete
}
// Check the content type.
let contentType: UInt8 = buffer.readInteger()! // length check above
guard contentType == tlsContentTypeHandshake else {
// Whatever this is, it's not a handshake message, so something has gone
// wrong. We're going to fall back to the default handler here and let
// that handler try to clean up this mess.
throw InternalSNIErrors.invalidRecord
}
// Now, check the major version.
let majorVersion: UInt8 = buffer.readInteger()! // length check above
guard majorVersion == 3 else {
// A major version of 3 is the major version used for SSLv3 and all subsequent versions
// of the protocol. If that's not what this is, we don't know what's happening here.
// Again, let the default handler make sense of this.
throw InternalSNIErrors.invalidRecord
}
// Skip the minor version byte, then grab the content length.
buffer.moveReaderIndex(forwardBy: 1)
let contentLength: UInt16 = buffer.readInteger()! // length check above
return Int(contentLength)
}
/// Parses the header of a TLS Handshake Record. Returns the expected number
/// of bytes in the handshake body, or throws if this is not a ClientHello or
/// has some other problem.
private func parseHandshakeHeader(buffer: inout ByteBuffer) throws -> Int {
// Ok, we're looking at a handshake message. That looks like this:
// (see https://tools.ietf.org/html/rfc5246#section-7.4).
//
// struct {
// HandshakeType msg_type; /* handshake type */
// uint24 length; /* bytes in message */
// select (HandshakeType) {
// case hello_request: HelloRequest;
// case client_hello: ClientHello;
// case server_hello: ServerHello;
// case certificate: Certificate;
// case server_key_exchange: ServerKeyExchange;
// case certificate_request: CertificateRequest;
// case server_hello_done: ServerHelloDone;
// case certificate_verify: CertificateVerify;
// case client_key_exchange: ClientKeyExchange;
// case finished: Finished;
// } body;
// } Handshake;
//
// For the sake of our own happiness, we should check the handshake type and
// validate its length. uint24 is a stupid type, so we have to play some
// games here to get this to work. If we check that we have 4 bytes up-front
// we can use unsafe reads: fewer than 4 bytes makes this message bogus.
guard buffer.readableBytes >= 4 else {
throw InternalSNIErrors.invalidRecord
}
let handshakeTypeAndLength: UInt32 = buffer.readInteger()!
let handshakeType: UInt8 = UInt8((handshakeTypeAndLength & 0xFF000000) >> 24)
let handshakeLength: UInt32 = handshakeTypeAndLength & 0x00FFFFFF
guard handshakeType == handshakeTypeClientHello else {
throw InternalSNIErrors.invalidRecord
}
return Int(handshakeLength)
}
/// Parses the header of the Client Hello record, and returns the total number of bytes
/// used for extensions, or throws if the header is invalid or corrupted in some way.
private func parseClientHelloHeader(buffer: inout ByteBuffer) throws -> Int {
// Ok dear reader, you've made it this far, now you get to see the true face of the
// ClientHello record. For context, this comes from
// https://tools.ietf.org/html/rfc5246#section-7.4.1.2
//
// struct {
// ProtocolVersion client_version;
// Random random;
// SessionID session_id;
// CipherSuite cipher_suites<2..2^16-2>;
// CompressionMethod compression_methods<1..2^8-1>;
// select (extensions_present) {
// case false:
// struct {};
// case true:
// Extension extensions<0..2^16-1>;
// };
// } ClientHello;
//
// We want to go straight down to the extensions, but we can't do that because
// the SessionID, CipherSuite and CompressionMethod fields are variable length.
// So we skip to them, and then parse. The ProtocolVersion field is two bytes:
// the Random field is a 32-bit integer timestamp followed by a 28-byte array,
// totalling 32 bytes. All-in-all we want to skip forward 34 bytes.
// Unlike in other parsing methods we don't do an explicit length check here
// because we don't know how long these fields are supposed to be: all we do know
// is that the size of the ByteBuffer provides an upper bound on the size of this
// header, so we use safe reads which will throw if the buffer is too short.
try buffer.moveReaderIndexIfPossible(forwardBy: 34)
let sessionIDLength: UInt8 = try buffer.readIntegerIfPossible()
try buffer.moveReaderIndexIfPossible(forwardBy: Int(sessionIDLength))
let cipherSuitesLength: UInt16 = try buffer.readIntegerIfPossible()
try buffer.moveReaderIndexIfPossible(forwardBy: Int(cipherSuitesLength))
let compressionMethodLength: UInt8 = try buffer.readIntegerIfPossible()
try buffer.moveReaderIndexIfPossible(forwardBy: Int(compressionMethodLength))
// Ok, we're at the extensions! Return the length.
let extensionsLength: UInt16 = try buffer.readIntegerIfPossible()
return Int(extensionsLength)
}
/// Parses the extensions portion of a Client Hello looking for a ServerName extension.
/// Returns the host name in the ServerName extension, if any. If there is invalid data,
/// throws. If no host name can be found, either due to the ServerName extension not containing
/// one or due to no such extension being present, returns nil.
private func parseExtensionsForServerName(buffer: inout ByteBuffer) throws -> String? {
// The minimum number of bytes in an extension is 4: if we have fewer than that
// we're done.
while buffer.readableBytes >= 4 {
let extensionType: UInt16 = try buffer.readIntegerIfPossible()
let extensionLength: UInt16 = try buffer.readIntegerIfPossible()
guard buffer.readableBytes >= extensionLength else {
throw InternalSNIErrors.invalidLengthInRecord
}
guard extensionType == sniExtensionType else {
// Move forward by the length of this extension.
try buffer.moveReaderIndexIfPossible(forwardBy: Int(extensionLength))
continue
}
// We've found the server name extension. It's possible a malicious client could attempt a confused
// deputy attack by giving us contradictory lengths, so we again want to trim the bytebuffer down
// so that we never read past the advertised length of this extension.
buffer = buffer.getSlice(at: buffer.readerIndex, length: Int(extensionLength))!
return try parseServerNameExtension(buffer: &buffer)
}
return nil
}
/// Parses a ServerName extension and returns the host name contained within, if any. If the extension
/// is invalid for any reason, this will throw. If the extension does not contain a hostname, returns
/// nil.
private func parseServerNameExtension(buffer: inout ByteBuffer) throws -> String? {
// The format of the SNI extension is here: https://tools.ietf.org/html/rfc6066#page-6
//
// struct {
// NameType name_type;
// select (name_type) {
// case host_name: HostName;
// } name;
// } ServerName;
//
// enum {
// host_name(0), (255)
// } NameType;
//
// opaque HostName<1..2^16-1>;
//
// struct {
// ServerName server_name_list<1..2^16-1>
// } ServerNameList;
//
// Note, however, that this is pretty academic. The SNI extension forbids multiple entries
// in the ServerNameList that have the same NameType. As only one NameType is defined, we
// could safely assume this list is one entry long.
//
// HOWEVER! It is a bad idea to write code that assumes that an extension point will
// never be used, so let's try to parse this properly. We're going to parse only until we
// find a host_name entry.
//
// This also uses unsafe reads: at this point, if the buffer is short then we're screwed.
let nameBufferLength: UInt16 = try buffer.readIntegerIfPossible()
guard buffer.readableBytes >= nameBufferLength else {
throw InternalSNIErrors.invalidLengthInRecord
}
// We are never looking for another extension, so this is now all that we care about in the
// world. Slice our way down to just that.
buffer = buffer.getSlice(at: buffer.readerIndex, length: Int(nameBufferLength))!
while buffer.readableBytes > 0 {
let nameType: UInt8 = try buffer.readIntegerIfPossible()
// From the RFC:
// "For backward compatibility, all future data structures associated with new NameTypes
// MUST begin with a 16-bit length field."
let nameLength: UInt16 = try buffer.readIntegerIfPossible()
guard nameType == sniHostNameType else {
try buffer.moveReaderIndexIfPossible(forwardBy: Int(nameLength))
continue
}
let hostname = buffer.withUnsafeReadableBytes { ptr -> String? in
let nameLength = Int(nameLength)
guard nameLength <= ptr.count else {
return nil
}
return UnsafeRawBufferPointer(rebasing: ptr.prefix(nameLength)).decodeStringValidatingASCII()
}
if let hostname = hostname {
return hostname
} else {
throw InternalSNIErrors.invalidRecord
}
}
return nil
}
/// Called when we either know the hostname being queried, or we know we can't
/// work it out. Either way, we're done now.
///
/// The processing here is as follows:
///
/// 1. Call the user back with the result of the SNI lookup. At this point we're going to
/// allow them to tweak the channel pipeline as they see fit.
/// 2. Wait for them to complete. In this time, we will continue to buffer all inbound
/// data.
/// 3. When the user completes, remove ourselves from the pipeline. This will trigger the
/// ByteToMessageDecoder to automatically deliver the buffered bytes to the next handler
/// in the pipeline, which is now responsible for the work.
private func sniComplete(result: SNIResult, context: ChannelHandlerContext) {
waitingForUser = true
completionHandler(result).whenSuccess {
context.pipeline.removeHandler(context: context, promise: nil)
}
}
}
|