1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
|
//===----------------------------------------------------------------------===//
//
// This source file is part of the SwiftNIO open source project
//
// Copyright (c) 2017-2018 Apple Inc. and the SwiftNIO project authors
// Licensed under Apache License v2.0
//
// See LICENSE.txt for license information
// See CONTRIBUTORS.txt for the list of SwiftNIO project authors
//
// SPDX-License-Identifier: Apache-2.0
//
//===----------------------------------------------------------------------===//
import NIOConcurrencyHelpers
@testable import NIO
import XCTest
private extension Channel {
func waitForDatagrams(count: Int) throws -> [AddressedEnvelope<ByteBuffer>] {
return try self.pipeline.context(name: "ByteReadRecorder").flatMap { context in
if let future = (context.handler as? DatagramReadRecorder<ByteBuffer>)?.notifyForDatagrams(count) {
return future
}
XCTFail("Could not wait for reads")
return self.eventLoop.makeSucceededFuture([] as [AddressedEnvelope<ByteBuffer>])
}.wait()
}
func readCompleteCount() throws -> Int {
return try self.pipeline.context(name: "ByteReadRecorder").map { context in
return (context.handler as! DatagramReadRecorder<ByteBuffer>).readCompleteCount
}.wait()
}
func configureForRecvMmsg(messageCount: Int) throws {
let totalBufferSize = messageCount * 2048
try self.setOption(ChannelOptions.recvAllocator, value: FixedSizeRecvByteBufferAllocator(capacity: totalBufferSize)).flatMap {
self.setOption(ChannelOptions.datagramVectorReadMessageCount, value: messageCount)
}.wait()
}
}
/// A class that records datagrams received and forwards them on.
///
/// Used extensively in tests to validate messaging expectations.
private class DatagramReadRecorder<DataType>: ChannelInboundHandler {
typealias InboundIn = AddressedEnvelope<DataType>
typealias InboundOut = AddressedEnvelope<DataType>
enum State {
case fresh
case registered
case active
}
var reads: [AddressedEnvelope<DataType>] = []
var loop: EventLoop? = nil
var state: State = .fresh
var readWaiters: [Int: EventLoopPromise<[AddressedEnvelope<DataType>]>] = [:]
var readCompleteCount = 0
func channelRegistered(context: ChannelHandlerContext) {
XCTAssertEqual(.fresh, self.state)
self.state = .registered
self.loop = context.eventLoop
}
func channelActive(context: ChannelHandlerContext) {
XCTAssertEqual(.registered, self.state)
self.state = .active
}
func channelRead(context: ChannelHandlerContext, data: NIOAny) {
XCTAssertEqual(.active, self.state)
let data = self.unwrapInboundIn(data)
reads.append(data)
if let promise = readWaiters.removeValue(forKey: reads.count) {
promise.succeed(reads)
}
context.fireChannelRead(self.wrapInboundOut(data))
}
func channelReadComplete(context: ChannelHandlerContext) {
self.readCompleteCount += 1
context.fireChannelReadComplete()
}
func notifyForDatagrams(_ count: Int) -> EventLoopFuture<[AddressedEnvelope<DataType>]> {
guard reads.count < count else {
return loop!.makeSucceededFuture(.init(reads.prefix(count)))
}
readWaiters[count] = loop!.makePromise()
return readWaiters[count]!.futureResult
}
}
final class DatagramChannelTests: XCTestCase {
private var group: MultiThreadedEventLoopGroup! = nil
private var firstChannel: Channel! = nil
private var secondChannel: Channel! = nil
private func buildChannel(group: EventLoopGroup, host: String = "127.0.0.1") throws -> Channel {
return try DatagramBootstrap(group: group)
.channelOption(ChannelOptions.socketOption(.so_reuseaddr), value: 1)
.channelInitializer { channel in
channel.pipeline.addHandler(DatagramReadRecorder<ByteBuffer>(), name: "ByteReadRecorder")
}
.bind(host: host, port: 0)
.wait()
}
private var supportsIPv6: Bool {
do {
let ipv6Loopback = try SocketAddress(ipAddress: "::1", port: 0)
return try System.enumerateDevices().contains(where: { $0.address == ipv6Loopback })
} catch {
return false
}
}
override func setUp() {
super.setUp()
self.group = MultiThreadedEventLoopGroup(numberOfThreads: 1)
self.firstChannel = try! buildChannel(group: group)
self.secondChannel = try! buildChannel(group: group)
}
override func tearDown() {
XCTAssertNoThrow(try self.group.syncShutdownGracefully())
super.tearDown()
}
func testBasicChannelCommunication() throws {
var buffer = self.firstChannel.allocator.buffer(capacity: 256)
buffer.writeStaticString("hello, world!")
let writeData = AddressedEnvelope(remoteAddress: self.secondChannel.localAddress!, data: buffer)
XCTAssertNoThrow(try self.firstChannel.writeAndFlush(NIOAny(writeData)).wait())
let reads = try self.secondChannel.waitForDatagrams(count: 1)
XCTAssertEqual(reads.count, 1)
let read = reads.first!
XCTAssertEqual(read.data, buffer)
XCTAssertEqual(read.remoteAddress, self.firstChannel.localAddress!)
}
func testManyWrites() throws {
var buffer = firstChannel.allocator.buffer(capacity: 256)
buffer.writeStaticString("hello, world!")
let writeData = AddressedEnvelope(remoteAddress: self.secondChannel.localAddress!, data: buffer)
var writeFutures: [EventLoopFuture<Void>] = []
for _ in 0..<5 {
writeFutures.append(self.firstChannel.write(NIOAny(writeData)))
}
self.firstChannel.flush()
XCTAssertNoThrow(try EventLoopFuture.andAllSucceed(writeFutures, on: self.firstChannel.eventLoop).wait())
let reads = try self.secondChannel.waitForDatagrams(count: 5)
// These short datagrams should not have been dropped by the kernel.
XCTAssertEqual(reads.count, 5)
for read in reads {
XCTAssertEqual(read.data, buffer)
XCTAssertEqual(read.remoteAddress, self.firstChannel.localAddress!)
}
}
func testConnectionFails() throws {
XCTAssertThrowsError(try self.firstChannel.connect(to: self.secondChannel.localAddress!).wait()) { error in
XCTAssertEqual(.operationUnsupported, error as? ChannelError)
}
}
func testDatagramChannelHasWatermark() throws {
_ = try self.firstChannel.setOption(ChannelOptions.writeBufferWaterMark, value: ChannelOptions.Types.WriteBufferWaterMark(low: 1, high: 1024)).wait()
var buffer = self.firstChannel.allocator.buffer(capacity: 256)
buffer.writeBytes([UInt8](repeating: 5, count: 256))
let writeData = AddressedEnvelope(remoteAddress: self.secondChannel.localAddress!, data: buffer)
XCTAssertTrue(self.firstChannel.isWritable)
for _ in 0..<4 {
// We submit to the loop here to make sure that we synchronously process the writes and checks
// on writability.
let writable: Bool = try self.firstChannel.eventLoop.submit {
self.firstChannel.write(NIOAny(writeData), promise: nil)
return self.firstChannel.isWritable
}.wait()
XCTAssertTrue(writable)
}
let lastWritePromise = self.firstChannel.eventLoop.makePromise(of: Void.self)
// The last write will push us over the edge.
var writable: Bool = try self.firstChannel.eventLoop.submit {
self.firstChannel.write(NIOAny(writeData), promise: lastWritePromise)
return self.firstChannel.isWritable
}.wait()
XCTAssertFalse(writable)
// Now we're going to flush, and check the writability immediately after.
self.firstChannel.flush()
writable = try lastWritePromise.futureResult.map { _ in self.firstChannel.isWritable }.wait()
XCTAssertTrue(writable)
}
func testWriteFuturesFailWhenChannelClosed() throws {
var buffer = self.firstChannel.allocator.buffer(capacity: 256)
buffer.writeStaticString("hello, world!")
let writeData = AddressedEnvelope(remoteAddress: self.secondChannel.localAddress!, data: buffer)
let promises = (0..<5).map { _ in self.firstChannel.write(NIOAny(writeData)) }
// Now close the channel. When that completes, all the futures should be complete too.
let fulfilled = try self.firstChannel.close().map {
promises.map { $0.isFulfilled }.allSatisfy { $0 }
}.wait()
XCTAssertTrue(fulfilled)
XCTAssertNoThrow(try promises.forEach {
XCTAssertThrowsError(try $0.wait()) { error in
XCTAssertEqual(.ioOnClosedChannel, error as? ChannelError)
}
})
}
func testManyManyDatagramWrites() throws {
// We're going to try to write loads, and loads, and loads of data. In this case, one more
// write than the iovecs max.
var overall: EventLoopFuture<Void> = self.firstChannel.eventLoop.makeSucceededFuture(())
for _ in 0...Socket.writevLimitIOVectors {
let myPromise = self.firstChannel.eventLoop.makePromise(of: Void.self)
var buffer = self.firstChannel.allocator.buffer(capacity: 1)
buffer.writeString("a")
let envelope = AddressedEnvelope(remoteAddress: self.secondChannel.localAddress!, data: buffer)
self.firstChannel.write(NIOAny(envelope), promise: myPromise)
overall = EventLoopFuture.andAllSucceed([overall, myPromise.futureResult], on: self.firstChannel.eventLoop)
}
self.firstChannel.flush()
XCTAssertNoThrow(try overall.wait())
// We're not going to check that the datagrams arrive, because some kernels *will* drop them here.
}
func testSendmmsgLotsOfData() throws {
var datagrams = 0
var overall = self.firstChannel.eventLoop.makeSucceededFuture(())
// We defer this work to the background thread because otherwise it incurs an enormous number of context
// switches.
try self.firstChannel.eventLoop.submit {
let myPromise = self.firstChannel.eventLoop.makePromise(of: Void.self)
// For datagrams this buffer cannot be very large, because if it's larger than the path MTU it
// will cause EMSGSIZE.
let bufferSize = 1024 * 5
var buffer = self.firstChannel.allocator.buffer(capacity: bufferSize)
buffer.writeRepeatingByte(4, count: bufferSize)
let envelope = AddressedEnvelope(remoteAddress: self.secondChannel.localAddress!, data: buffer)
let lotsOfData = Int(Int32.max)
var written: Int64 = 0
while written <= lotsOfData {
self.firstChannel.write(NIOAny(envelope), promise: myPromise)
overall = EventLoopFuture.andAllSucceed([overall, myPromise.futureResult], on: self.firstChannel.eventLoop)
written += Int64(bufferSize)
datagrams += 1
}
}.wait()
self.firstChannel.flush()
XCTAssertNoThrow(try overall.wait())
}
func testLargeWritesFail() throws {
// We want to try to trigger EMSGSIZE. To be safe, we're going to allocate a 10MB buffer here and fill it.
let bufferSize = 1024 * 1024 * 10
var buffer = self.firstChannel.allocator.buffer(capacity: bufferSize)
buffer.writeRepeatingByte(4, count: bufferSize)
let envelope = AddressedEnvelope(remoteAddress: self.secondChannel.localAddress!, data: buffer)
let writeFut = self.firstChannel.write(NIOAny(envelope))
self.firstChannel.flush()
XCTAssertThrowsError(try writeFut.wait()) { error in
XCTAssertEqual(.writeMessageTooLarge, error as? ChannelError)
}
}
func testOneLargeWriteDoesntPreventOthersWriting() throws {
// We want to try to trigger EMSGSIZE. To be safe, we're going to allocate a 10MB buffer here and fill it.
let bufferSize = 1024 * 1024 * 10
var buffer = self.firstChannel.allocator.buffer(capacity: bufferSize)
buffer.writeRepeatingByte(4, count: bufferSize)
// Now we want two envelopes. The first is small, the second is large.
let firstEnvelope = AddressedEnvelope(remoteAddress: self.secondChannel.localAddress!, data: buffer.getSlice(at: buffer.readerIndex, length: 100)!)
let secondEnvelope = AddressedEnvelope(remoteAddress: self.secondChannel.localAddress!, data: buffer)
// Now, three writes. We're sandwiching the big write between two small ones.
let firstWrite = self.firstChannel.write(NIOAny(firstEnvelope))
let secondWrite = self.firstChannel.write(NIOAny(secondEnvelope))
let thirdWrite = self.firstChannel.writeAndFlush(NIOAny(firstEnvelope))
// The first and third writes should be fine.
XCTAssertNoThrow(try firstWrite.wait())
XCTAssertNoThrow(try thirdWrite.wait())
// The second should have failed.
XCTAssertThrowsError(try secondWrite.wait()) { error in
XCTAssertEqual(.writeMessageTooLarge, error as? ChannelError)
}
}
func testClosingBeforeFlushFailsAllWrites() throws {
// We want to try to trigger EMSGSIZE. To be safe, we're going to allocate a 10MB buffer here and fill it.
let bufferSize = 1024 * 1024 * 10
var buffer = self.firstChannel.allocator.buffer(capacity: bufferSize)
buffer.writeRepeatingByte(4, count: bufferSize)
// Now we want two envelopes. The first is small, the second is large.
let firstEnvelope = AddressedEnvelope(remoteAddress: self.secondChannel.localAddress!, data: buffer.getSlice(at: buffer.readerIndex, length: 100)!)
let secondEnvelope = AddressedEnvelope(remoteAddress: self.secondChannel.localAddress!, data: buffer)
// Now, three writes. We're sandwiching the big write between two small ones.
let firstWrite = self.firstChannel.write(NIOAny(firstEnvelope))
let secondWrite = self.firstChannel.write(NIOAny(secondEnvelope))
let thirdWrite = self.firstChannel.writeAndFlush(NIOAny(firstEnvelope))
// The first and third writes should be fine.
XCTAssertNoThrow(try firstWrite.wait())
XCTAssertNoThrow(try thirdWrite.wait())
// The second should have failed.
XCTAssertThrowsError(try secondWrite.wait()) { error in
XCTAssertEqual(.writeMessageTooLarge, error as? ChannelError)
}
}
public func testRecvMsgFailsWithECONNREFUSED() throws {
try assertRecvMsgFails(error: ECONNREFUSED, active: true)
}
public func testRecvMsgFailsWithENOMEM() throws {
try assertRecvMsgFails(error: ENOMEM, active: true)
}
public func testRecvMsgFailsWithEFAULT() throws {
try assertRecvMsgFails(error: EFAULT, active: false)
}
private func assertRecvMsgFails(error: Int32, active: Bool) throws {
final class RecvFromHandler: ChannelInboundHandler {
typealias InboundIn = AddressedEnvelope<ByteBuffer>
typealias InboundOut = AddressedEnvelope<ByteBuffer>
private let promise: EventLoopPromise<IOError>
init(_ promise: EventLoopPromise<IOError>) {
self.promise = promise
}
func channelRead(context: ChannelHandlerContext, data: NIOAny) {
XCTFail("Should not receive data but got \(self.unwrapInboundIn(data))")
}
func errorCaught(context: ChannelHandlerContext, error: Error) {
if let ioError = error as? IOError {
self.promise.succeed(ioError)
}
}
}
let group = MultiThreadedEventLoopGroup(numberOfThreads: 1)
defer {
XCTAssertNoThrow(try group.syncShutdownGracefully())
}
class NonRecvFromSocket : Socket {
private var error: Int32?
init(error: Int32) throws {
self.error = error
try super.init(protocolFamily: .inet, type: .datagram)
}
override func recvmsg(pointer: UnsafeMutableRawBufferPointer,
storage: inout sockaddr_storage,
storageLen: inout socklen_t,
controlBytes: inout UnsafeReceivedControlBytes)
throws -> IOResult<(Int)> {
if let err = self.error {
self.error = nil
throw IOError(errnoCode: err, reason: "recvfrom")
}
return IOResult.wouldBlock(0)
}
}
let socket = try NonRecvFromSocket(error: error)
let channel = try DatagramChannel(socket: socket, eventLoop: group.next() as! SelectableEventLoop)
let promise = channel.eventLoop.makePromise(of: IOError.self)
XCTAssertNoThrow(try channel.register().wait())
XCTAssertNoThrow(try channel.pipeline.addHandler(RecvFromHandler(promise)).wait())
XCTAssertNoThrow(try channel.bind(to: SocketAddress.init(ipAddress: "127.0.0.1", port: 0)).wait())
XCTAssertEqual(active, try channel.eventLoop.submit {
channel.readable()
return channel.isActive
}.wait())
if active {
XCTAssertNoThrow(try channel.close().wait())
}
let ioError = try promise.futureResult.wait()
XCTAssertEqual(error, ioError.errnoCode)
}
public func testRecvMmsgFailsWithECONNREFUSED() throws {
try assertRecvMmsgFails(error: ECONNREFUSED, active: true)
}
public func testRecvMmsgFailsWithENOMEM() throws {
try assertRecvMmsgFails(error: ENOMEM, active: true)
}
public func testRecvMmsgFailsWithEFAULT() throws {
try assertRecvMmsgFails(error: EFAULT, active: false)
}
private func assertRecvMmsgFails(error: Int32, active: Bool) throws {
// Only run this test on platforms that support recvmmsg: the others won't even
// try.
#if os(Linux) || os(FreeBSD) || os(Android)
final class RecvMmsgHandler: ChannelInboundHandler {
typealias InboundIn = AddressedEnvelope<ByteBuffer>
typealias InboundOut = AddressedEnvelope<ByteBuffer>
private let promise: EventLoopPromise<IOError>
init(_ promise: EventLoopPromise<IOError>) {
self.promise = promise
}
func channelRead(context: ChannelHandlerContext, data: NIOAny) {
XCTFail("Should not receive data but got \(self.unwrapInboundIn(data))")
}
func errorCaught(context: ChannelHandlerContext, error: Error) {
if let ioError = error as? IOError {
self.promise.succeed(ioError)
}
}
}
let group = MultiThreadedEventLoopGroup(numberOfThreads: 1)
defer {
XCTAssertNoThrow(try group.syncShutdownGracefully())
}
class NonRecvMmsgSocket : Socket {
private var error: Int32?
init(error: Int32) throws {
self.error = error
try super.init(protocolFamily: .inet, type: .datagram)
}
override func recvmmsg(msgs: UnsafeMutableBufferPointer<MMsgHdr>) throws -> IOResult<Int> {
if let err = self.error {
self.error = nil
throw IOError(errnoCode: err, reason: "recvfrom")
}
return IOResult.wouldBlock(0)
}
}
let socket = try NonRecvMmsgSocket(error: error)
let channel = try DatagramChannel(socket: socket, eventLoop: group.next() as! SelectableEventLoop)
let promise = channel.eventLoop.makePromise(of: IOError.self)
XCTAssertNoThrow(try channel.register().wait())
XCTAssertNoThrow(try channel.pipeline.addHandler(RecvMmsgHandler(promise)).wait())
XCTAssertNoThrow(try channel.configureForRecvMmsg(messageCount: 10))
XCTAssertNoThrow(try channel.bind(to: SocketAddress.init(ipAddress: "127.0.0.1", port: 0)).wait())
XCTAssertEqual(active, try channel.eventLoop.submit {
channel.readable()
return channel.isActive
}.wait())
if active {
XCTAssertNoThrow(try channel.close().wait())
}
let ioError = try promise.futureResult.wait()
XCTAssertEqual(error, ioError.errnoCode)
#endif
}
public func testSetGetOptionClosedDatagramChannel() throws {
try assertSetGetOptionOnOpenAndClosed(channel: firstChannel, option: ChannelOptions.maxMessagesPerRead, value: 1)
}
func testWritesAreAccountedCorrectly() throws {
var buffer = firstChannel.allocator.buffer(capacity: 256)
buffer.writeStaticString("hello, world!")
let firstWrite = AddressedEnvelope(remoteAddress: self.secondChannel.localAddress!, data: buffer.getSlice(at: buffer.readerIndex, length: 5)!)
let secondWrite = AddressedEnvelope(remoteAddress: self.secondChannel.localAddress!, data: buffer)
self.firstChannel.write(NIOAny(firstWrite), promise: nil)
self.firstChannel.write(NIOAny(secondWrite), promise: nil)
self.firstChannel.flush()
let reads = try self.secondChannel.waitForDatagrams(count: 2)
// These datagrams should not have been dropped by the kernel.
XCTAssertEqual(reads.count, 2)
XCTAssertEqual(reads[0].data, buffer.getSlice(at: buffer.readerIndex, length: 5)!)
XCTAssertEqual(reads[0].remoteAddress, self.firstChannel.localAddress!)
XCTAssertEqual(reads[1].data, buffer)
XCTAssertEqual(reads[1].remoteAddress, self.firstChannel.localAddress!)
}
func testSettingTwoDistinctChannelOptionsWorksForDatagramChannel() throws {
let channel = try assertNoThrowWithValue(DatagramBootstrap(group: group)
.channelOption(ChannelOptions.socketOption(.so_reuseaddr), value: 1)
.channelOption(ChannelOptions.socketOption(.so_timestamp), value: 1)
.bind(host: "127.0.0.1", port: 0)
.wait())
defer {
XCTAssertNoThrow(try channel.close().wait())
}
XCTAssertTrue(try getBoolSocketOption(channel: channel, level: .socket, name: .so_reuseaddr))
XCTAssertTrue(try getBoolSocketOption(channel: channel, level: .socket, name: .so_timestamp))
XCTAssertFalse(try getBoolSocketOption(channel: channel, level: .socket, name: .so_keepalive))
}
func testUnprocessedOutboundUserEventFailsOnDatagramChannel() throws {
let group = MultiThreadedEventLoopGroup(numberOfThreads: 1)
defer {
XCTAssertNoThrow(try group.syncShutdownGracefully())
}
let channel = try DatagramChannel(eventLoop: group.next() as! SelectableEventLoop,
protocolFamily: .inet)
XCTAssertThrowsError(try channel.triggerUserOutboundEvent("event").wait()) { (error: Error) in
if let error = error as? ChannelError {
XCTAssertEqual(ChannelError.operationUnsupported, error)
} else {
XCTFail("unexpected error: \(error)")
}
}
}
func testBasicMultipleReads() throws {
XCTAssertNoThrow(try self.secondChannel.configureForRecvMmsg(messageCount: 10))
// This test should exercise recvmmsg.
var buffer = self.firstChannel.allocator.buffer(capacity: 256)
buffer.writeStaticString("hello, world!")
let writeData = AddressedEnvelope(remoteAddress: self.secondChannel.localAddress!, data: buffer)
// We write this in three times.
self.firstChannel.write(NIOAny(writeData), promise: nil)
self.firstChannel.write(NIOAny(writeData), promise: nil)
self.firstChannel.write(NIOAny(writeData), promise: nil)
self.firstChannel.flush()
let reads = try self.secondChannel.waitForDatagrams(count: 3)
XCTAssertEqual(reads.count, 3)
for (idx, read) in reads.enumerated() {
XCTAssertEqual(read.data, buffer, "index: \(idx)")
XCTAssertEqual(read.remoteAddress, self.firstChannel.localAddress!, "index: \(idx)")
}
}
func testMmsgWillTruncateWithoutChangeToAllocator() throws {
// This test validates that setting a small allocator will lead to datagram truncation.
// Right now we don't error on truncation, so this test looks for short receives.
// Setting the recv allocator to 30 bytes forces 3 bytes per message.
// Sadly, this test only truncates for the platforms with recvmmsg support: the rest don't truncate as 30 bytes is sufficient.
XCTAssertNoThrow(try self.secondChannel.configureForRecvMmsg(messageCount: 10))
XCTAssertNoThrow(try self.secondChannel.setOption(ChannelOptions.recvAllocator, value: FixedSizeRecvByteBufferAllocator(capacity: 30)).wait())
var buffer = self.firstChannel.allocator.buffer(capacity: 256)
buffer.writeStaticString("hello, world!")
let writeData = AddressedEnvelope(remoteAddress: self.secondChannel.localAddress!, data: buffer)
// We write this in three times.
self.firstChannel.write(NIOAny(writeData), promise: nil)
self.firstChannel.write(NIOAny(writeData), promise: nil)
self.firstChannel.write(NIOAny(writeData), promise: nil)
self.firstChannel.flush()
let reads = try self.secondChannel.waitForDatagrams(count: 3)
XCTAssertEqual(reads.count, 3)
for (idx, read) in reads.enumerated() {
#if os(Linux) || os(FreeBSD) || os(Android)
XCTAssertEqual(read.data.readableBytes, 3, "index: \(idx)")
#else
XCTAssertEqual(read.data.readableBytes, 13, "index: \(idx)")
#endif
XCTAssertEqual(read.remoteAddress, self.firstChannel.localAddress!, "index: \(idx)")
}
}
func testRecvMmsgForMultipleCycles() throws {
// The goal of this test is to provide more datagrams than can be received in a single invocation of
// recvmmsg, and to confirm that they all make it through.
// This test is allowed to run on systems without recvmmsg: it just exercises the serial read path.
XCTAssertNoThrow(try self.secondChannel.configureForRecvMmsg(messageCount: 10))
// We now turn off autoread.
XCTAssertNoThrow(try self.secondChannel.setOption(ChannelOptions.autoRead, value: false).wait())
XCTAssertNoThrow(try self.secondChannel.setOption(ChannelOptions.maxMessagesPerRead, value: 3).wait())
var buffer = self.firstChannel.allocator.buffer(capacity: 256)
buffer.writeStaticString("data")
let writeData = AddressedEnvelope(remoteAddress: self.secondChannel.localAddress!, data: buffer)
// Ok, now we're good. Let's queue up a bunch of datagrams. We've configured to receive 10 at a time, so we'll send 30.
for _ in 0..<29 {
self.firstChannel.write(NIOAny(writeData), promise: nil)
}
XCTAssertNoThrow(try self.firstChannel.writeAndFlush(NIOAny(writeData)).wait())
// Now we read. Rather than issue many read() calls, we'll turn autoread back on.
XCTAssertNoThrow(try self.secondChannel.setOption(ChannelOptions.autoRead, value: true).wait())
// Wait for all 30 datagrams to come through. There should be no loss here, as this is small datagrams on loopback.
let reads = try self.secondChannel.waitForDatagrams(count: 30)
XCTAssertEqual(reads.count, 30)
// Now we want to count the number of readCompletes. On any platform without recvmmsg, we should have seen 10 or more
// (as max messages per read is 3). On platforms with recvmmsg, we would expect to see
// substantially fewer than 10, and potentially as low as 1.
#if os(Linux) || os(FreeBSD) || os(Android)
XCTAssertLessThan(try assertNoThrowWithValue(self.secondChannel.readCompleteCount()), 10)
XCTAssertGreaterThanOrEqual(try assertNoThrowWithValue(self.secondChannel.readCompleteCount()), 1)
#else
XCTAssertGreaterThanOrEqual(try assertNoThrowWithValue(self.secondChannel.readCompleteCount()), 10)
#endif
}
// Mostly to check the types don't go pop as internally converts between bool and int and back.
func testSetGetEcnNotificationOption() {
XCTAssertNoThrow(try {
// IPv4
try self.firstChannel.setOption(ChannelOptions.explicitCongestionNotification, value: true).wait()
XCTAssertTrue(try self.firstChannel.getOption(ChannelOptions.explicitCongestionNotification).wait())
try self.secondChannel.setOption(ChannelOptions.explicitCongestionNotification, value: false).wait()
XCTAssertFalse(try self.secondChannel.getOption(ChannelOptions.explicitCongestionNotification).wait())
// IPv6
guard self.supportsIPv6 else {
// Skip on non-IPv6 systems
return
}
let channel1 = try buildChannel(group: self.group, host: "::1")
try channel1.setOption(ChannelOptions.explicitCongestionNotification, value: true).wait()
XCTAssertTrue(try channel1.getOption(ChannelOptions.explicitCongestionNotification).wait())
let channel2 = try buildChannel(group: self.group, host: "::1")
try channel2.setOption(ChannelOptions.explicitCongestionNotification, value: false).wait()
XCTAssertFalse(try channel2.getOption(ChannelOptions.explicitCongestionNotification).wait())
} ())
}
private func testEcnAndPacketInfoReceive(address: String, vectorRead: Bool, vectorSend: Bool, receivePacketInfo: Bool = false) {
XCTAssertNoThrow(try {
// Fake sending packet to self on the loopback interface if requested
let expectedPacketInfo = receivePacketInfo ? try constructNIOPacketInfo(address: address) : nil
let receiveBootstrap: DatagramBootstrap
if vectorRead {
receiveBootstrap = DatagramBootstrap(group: group)
.channelOption(ChannelOptions.datagramVectorReadMessageCount, value: 4)
} else {
receiveBootstrap = DatagramBootstrap(group: group)
}
let receiveChannel = try receiveBootstrap
.channelOption(ChannelOptions.explicitCongestionNotification, value: true)
.channelOption(ChannelOptions.receivePacketInfo, value: receivePacketInfo)
.channelInitializer { channel in
channel.pipeline.addHandler(DatagramReadRecorder<ByteBuffer>(), name: "ByteReadRecorder")
}
.bind(host: address, port: 0)
.wait()
defer {
XCTAssertNoThrow(try receiveChannel.close().wait())
}
let sendChannel = try DatagramBootstrap(group: group)
.bind(host: address, port: 0)
.wait()
defer {
XCTAssertNoThrow(try sendChannel.close().wait())
}
var buffer = sendChannel.allocator.buffer(capacity: 1)
buffer.writeRepeatingByte(0, count: 1)
let ecnStates: [NIOExplicitCongestionNotificationState] = [.transportNotCapable,
.congestionExperienced,
.transportCapableFlag0,
.transportCapableFlag1]
for ecnState in ecnStates {
let writeData = AddressedEnvelope(remoteAddress: receiveChannel.localAddress!,
data: buffer,
metadata: .init(ecnState: ecnState, packetInfo: expectedPacketInfo))
// Sending extra data without flushing should trigger a vector send.
if (vectorSend) {
sendChannel.write(writeData, promise: nil)
}
try sendChannel.writeAndFlush(writeData).wait()
}
let expectedReads = ecnStates.count * (vectorSend ? 2 : 1)
let reads = try receiveChannel.waitForDatagrams(count: expectedReads)
XCTAssertEqual(reads.count, expectedReads)
for readNumber in 0..<reads.count {
let read = reads[readNumber]
XCTAssertEqual(read.metadata?.ecnState, ecnStates[readNumber / (vectorSend ? 2 : 1)])
XCTAssertEqual(read.metadata?.packetInfo, expectedPacketInfo)
}
} ())
}
private func constructNIOPacketInfo(address: String) throws -> NIOPacketInfo {
struct InterfaceIndexNotFound: Error {}
let destinationAddress = try SocketAddress(ipAddress: address, port: 0)
guard let ingressIfaceIndex = try System.enumerateDevices()
.first(where: {$0.address == destinationAddress })?.interfaceIndex else {
throw InterfaceIndexNotFound()
}
return NIOPacketInfo(destinationAddress: destinationAddress, interfaceIndex: ingressIfaceIndex)
}
func testEcnSendReceiveIPV4() {
testEcnAndPacketInfoReceive(address: "127.0.0.1", vectorRead: false, vectorSend: false)
}
func testEcnSendReceiveIPV6() {
guard System.supportsIPv6 else {
return // need to skip IPv6 tests if we don't support it.
}
testEcnAndPacketInfoReceive(address: "::1", vectorRead: false, vectorSend: false)
}
func testEcnSendReceiveIPV4VectorRead() {
testEcnAndPacketInfoReceive(address: "127.0.0.1", vectorRead: true, vectorSend: false)
}
func testEcnSendReceiveIPV6VectorRead() {
guard System.supportsIPv6 else {
return // need to skip IPv6 tests if we don't support it.
}
testEcnAndPacketInfoReceive(address: "::1", vectorRead: true, vectorSend: false)
}
func testEcnSendReceiveIPV4VectorReadVectorWrite() {
testEcnAndPacketInfoReceive(address: "127.0.0.1", vectorRead: true, vectorSend: true)
}
func testEcnSendReceiveIPV6VectorReadVectorWrite() {
guard System.supportsIPv6 else {
return // need to skip IPv6 tests if we don't support it.
}
testEcnAndPacketInfoReceive(address: "::1", vectorRead: true, vectorSend: true)
}
func testWritabilityChangeDuringReentrantFlushNow() throws {
class EnvelopingHandler: ChannelOutboundHandler {
typealias OutboundIn = ByteBuffer
typealias OutboundOut = AddressedEnvelope<ByteBuffer>
func write(context: ChannelHandlerContext, data: NIOAny, promise: EventLoopPromise<Void>?) {
let buffer = self.unwrapOutboundIn(data)
context.write(self.wrapOutboundOut(AddressedEnvelope(remoteAddress: context.channel.localAddress!, data: buffer)), promise: promise)
}
}
let loop = self.group.next()
let handler = ReentrantWritabilityChangingHandler(becameUnwritable: loop.makePromise(),
becameWritable: loop.makePromise())
let channel1Future = DatagramBootstrap(group: self.group)
.bind(host: "localhost", port: 0)
let channel1 = try assertNoThrowWithValue(try channel1Future.wait())
defer {
XCTAssertNoThrow(try channel1.close().wait())
}
let channel2Future = DatagramBootstrap(group: self.group)
.channelOption(ChannelOptions.writeBufferWaterMark, value: handler.watermark)
.channelInitializer { channel in
channel.pipeline.addHandlers([EnvelopingHandler(), handler])
}
.bind(host: "localhost", port: 0)
let channel2 = try assertNoThrowWithValue(try channel2Future.wait())
defer {
XCTAssertNoThrow(try channel2.close().wait())
}
// Now wait.
XCTAssertNoThrow(try handler.becameUnwritable.futureResult.wait())
XCTAssertNoThrow(try handler.becameWritable.futureResult.wait())
}
func testSetGetPktInfoOption() {
XCTAssertNoThrow(try {
// IPv4
try self.firstChannel.setOption(ChannelOptions.receivePacketInfo, value: true).wait()
XCTAssertTrue(try self.firstChannel.getOption(ChannelOptions.receivePacketInfo).wait())
try self.secondChannel.setOption(ChannelOptions.receivePacketInfo, value: false).wait()
XCTAssertFalse(try self.secondChannel.getOption(ChannelOptions.receivePacketInfo).wait())
// IPv6
guard self.supportsIPv6 else {
// Skip on non-IPv6 systems
return
}
let channel1 = try buildChannel(group: self.group, host: "::1")
try channel1.setOption(ChannelOptions.receivePacketInfo, value: true).wait()
XCTAssertTrue(try channel1.getOption(ChannelOptions.receivePacketInfo).wait())
let channel2 = try buildChannel(group: self.group, host: "::1")
try channel2.setOption(ChannelOptions.receivePacketInfo, value: false).wait()
XCTAssertFalse(try channel2.getOption(ChannelOptions.receivePacketInfo).wait())
} ())
}
private func testSimpleReceivePacketInfo(address: String) throws {
// Fake sending packet to self on the loopback interface
let expectedPacketInfo = try constructNIOPacketInfo(address: address)
let receiveChannel = try DatagramBootstrap(group: group)
.channelOption(ChannelOptions.receivePacketInfo, value: true)
.channelInitializer { channel in
channel.pipeline.addHandler(DatagramReadRecorder<ByteBuffer>(), name: "ByteReadRecorder")
}
.bind(host: address, port: 0)
.wait()
defer {
XCTAssertNoThrow(try receiveChannel.close().wait())
}
let sendChannel = try DatagramBootstrap(group: group)
.bind(host: address, port: 0)
.wait()
defer {
XCTAssertNoThrow(try sendChannel.close().wait())
}
var buffer = sendChannel.allocator.buffer(capacity: 1)
buffer.writeRepeatingByte(0, count: 1)
let writeData = AddressedEnvelope(remoteAddress: receiveChannel.localAddress!,
data: buffer,
metadata: .init(ecnState: .transportNotCapable,
packetInfo: expectedPacketInfo))
try sendChannel.writeAndFlush(writeData).wait()
let expectedReads = 1
let reads = try receiveChannel.waitForDatagrams(count: 1)
XCTAssertEqual(reads.count, expectedReads)
XCTAssertEqual(reads[0].metadata?.packetInfo, expectedPacketInfo)
}
func testSimpleReceivePacketInfoIPV4() throws {
try testSimpleReceivePacketInfo(address: "127.0.0.1")
}
func testSimpleReceivePacketInfoIPV6() throws {
guard System.supportsIPv6 else {
return // need to skip IPv6 tests if we don't support it.
}
try testSimpleReceivePacketInfo(address: "::1")
}
func testReceiveEcnAndPacketInfoIPV4() {
testEcnAndPacketInfoReceive(address: "127.0.0.1", vectorRead: false, vectorSend: false, receivePacketInfo: true)
}
func testReceiveEcnAndPacketInfoIPV6() {
guard System.supportsIPv6 else {
return // need to skip IPv6 tests if we don't support it.
}
testEcnAndPacketInfoReceive(address: "::1", vectorRead: false, vectorSend: false, receivePacketInfo: true)
}
func testReceiveEcnAndPacketInfoIPV4VectorRead() {
testEcnAndPacketInfoReceive(address: "127.0.0.1", vectorRead: true, vectorSend: false, receivePacketInfo: true)
}
func testReceiveEcnAndPacketInfoIPV6VectorRead() {
guard System.supportsIPv6 else {
return // need to skip IPv6 tests if we don't support it.
}
testEcnAndPacketInfoReceive(address: "::1", vectorRead: true, vectorSend: false, receivePacketInfo: true)
}
func testReceiveEcnAndPacketInfoIPV4VectorReadVectorWrite() {
testEcnAndPacketInfoReceive(address: "127.0.0.1", vectorRead: true, vectorSend: true, receivePacketInfo: true)
}
func testReceiveEcnAndPacketInfoIPV6VectorReadVectorWrite() {
guard System.supportsIPv6 else {
return // need to skip IPv6 tests if we don't support it.
}
testEcnAndPacketInfoReceive(address: "::1", vectorRead: true, vectorSend: true, receivePacketInfo: true)
}
}
|