1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
|
//===----------------------------------------------------------------------===//
//
// This source file is part of the SwiftNIO open source project
//
// Copyright (c) 2017-2018 Apple Inc. and the SwiftNIO project authors
// Licensed under Apache License v2.0
//
// See LICENSE.txt for license information
// See CONTRIBUTORS.txt for the list of SwiftNIO project authors
//
// SPDX-License-Identifier: Apache-2.0
//
//===----------------------------------------------------------------------===//
@testable import NIO
import NIOConcurrencyHelpers
import XCTest
class SelectorTest: XCTestCase {
func testDeregisterWhileProcessingEvents() throws {
try assertDeregisterWhileProcessingEvents(closeAfterDeregister: false)
}
func testDeregisterAndCloseWhileProcessingEvents() throws {
try assertDeregisterWhileProcessingEvents(closeAfterDeregister: true)
}
private func assertDeregisterWhileProcessingEvents(closeAfterDeregister: Bool) throws {
struct TestRegistration: Registration {
let socket: Socket
var interested: SelectorEventSet
var registrationID: SelectorRegistrationID
}
let selector = try NIO.Selector<TestRegistration>()
defer {
XCTAssertNoThrow(try selector.close())
}
let socket1 = try Socket(protocolFamily: .inet, type: .stream)
defer {
if socket1.isOpen {
XCTAssertNoThrow(try socket1.close())
}
}
try socket1.setNonBlocking()
let socket2 = try Socket(protocolFamily: .inet, type: .stream)
defer {
if socket2.isOpen {
XCTAssertNoThrow(try socket2.close())
}
}
try socket2.setNonBlocking()
let serverSocket = try assertNoThrowWithValue(ServerSocket.bootstrap(protocolFamily: .inet,
host: "127.0.0.1",
port: 0))
defer {
XCTAssertNoThrow(try serverSocket.close())
}
_ = try socket1.connect(to: serverSocket.localAddress())
_ = try socket2.connect(to: serverSocket.localAddress())
let accepted1 = try serverSocket.accept()!
defer {
XCTAssertNoThrow(try accepted1.close())
}
let accepted2 = try serverSocket.accept()!
defer {
XCTAssertNoThrow(try accepted2.close())
}
// Register both sockets with .write. This will ensure both are ready when calling selector.whenReady.
try selector.register(selectable: socket1 , interested: [.reset, .write], makeRegistration: { ev, regID in
return TestRegistration(socket: socket1, interested: ev, registrationID: regID)
})
try selector.register(selectable: socket2 , interested: [.reset, .write], makeRegistration: { ev, regID in
return TestRegistration(socket: socket2, interested: ev, registrationID: regID)
})
var readyCount = 0
try selector.whenReady(strategy: .block, onLoopBegin: { }) { ev in
readyCount += 1
if socket1 === ev.registration.socket {
try selector.deregister(selectable: socket2)
if closeAfterDeregister {
try socket2.close()
}
} else if socket2 === ev.registration.socket {
try selector.deregister(selectable: socket1)
if closeAfterDeregister {
try socket1.close()
}
} else {
XCTFail("ev.registration.socket was neither \(socket1) or \(socket2) but \(ev.registration.socket)")
}
}
XCTAssertEqual(1, readyCount)
}
private static let testWeDoNotDeliverEventsForPreviouslyClosedChannels_numberOfChannelsToUse = 10
func testWeDoNotDeliverEventsForPreviouslyClosedChannels() {
/// We use this class to box mutable values, generally in this test anything boxed should only be read/written
/// on the event loop `el`.
class Box<T> {
init(_ value: T) {
self._value = value
}
private var _value: T
var value: T {
get {
XCTAssertNotNil(MultiThreadedEventLoopGroup.currentEventLoop)
return self._value
}
set {
XCTAssertNotNil(MultiThreadedEventLoopGroup.currentEventLoop)
self._value = newValue
}
}
}
enum DidNotReadError: Error {
case didNotReadGotInactive
case didNotReadGotReadComplete
}
/// This handler is inserted in the `ChannelPipeline` that are re-connected. So we're closing a bunch of
/// channels and (in the same event loop tick) we then connect the same number for which I'm using the
/// terminology 're-connect' here.
/// These re-connected channels will re-use the fd numbers of the just closed channels. The interesting thing
/// is that the `Selector` will still have events buffered for the _closed fds_. Note: the re-connected ones
/// will end up using the _same_ fds and this test ensures that we're not getting the outdated events. In this
/// case the outdated events are all `.readEOF`s which manifest as `channelReadComplete`s. If we're delivering
/// outdated events, they will also happen in the _same event loop tick_ and therefore we do quite a few
/// assertions that we're either in or not in that interesting event loop tick.
class HappyWhenReadHandler: ChannelInboundHandler {
typealias InboundIn = ByteBuffer
private let didReadPromise: EventLoopPromise<Void>
private let hasReConnectEventLoopTickFinished: Box<Bool>
private var didRead: Bool = false
init(hasReConnectEventLoopTickFinished: Box<Bool>, didReadPromise: EventLoopPromise<Void>) {
self.didReadPromise = didReadPromise
self.hasReConnectEventLoopTickFinished = hasReConnectEventLoopTickFinished
}
func channelActive(context: ChannelHandlerContext) {
// we expect these channels to be connected within the re-connect event loop tick
XCTAssertFalse(self.hasReConnectEventLoopTickFinished.value)
}
func channelInactive(context: ChannelHandlerContext) {
// we expect these channels to be close a while after the re-connect event loop tick
XCTAssertTrue(self.hasReConnectEventLoopTickFinished.value)
XCTAssertTrue(self.didRead)
if !self.didRead {
self.didReadPromise.fail(DidNotReadError.didNotReadGotInactive)
context.close(promise: nil)
}
}
func channelRead(context: ChannelHandlerContext, data: NIOAny) {
// we expect these channels to get data only a while after the re-connect event loop tick as it's
// impossible to get a read notification in the very same event loop tick that you got registered
XCTAssertTrue(self.hasReConnectEventLoopTickFinished.value)
XCTAssertFalse(self.didRead)
var buf = self.unwrapInboundIn(data)
XCTAssertEqual(1, buf.readableBytes)
XCTAssertEqual("H", buf.readString(length: 1)!)
self.didRead = true
self.didReadPromise.succeed(())
}
func channelReadComplete(context: ChannelHandlerContext) {
// we expect these channels to get data only a while after the re-connect event loop tick as it's
// impossible to get a read notification in the very same event loop tick that you got registered
XCTAssertTrue(self.hasReConnectEventLoopTickFinished.value)
XCTAssertTrue(self.didRead)
if !self.didRead {
self.didReadPromise.fail(DidNotReadError.didNotReadGotReadComplete)
context.close(promise: nil)
}
}
}
/// This handler will wait for all client channels to have come up and for one of them to have received EOF.
/// (We will see the EOF as they're set to support half-closure). Then, it'll close half of those file
/// descriptors and open the same number of new ones. The new ones (called re-connected) will share the same
/// fd numbers as the recently closed ones. That brings us in an interesting situation: There will (very likely)
/// be `.readEOF` events enqueued for the just closed ones and because the re-connected channels share the same
/// fd numbers danger looms. The `HappyWhenReadHandler` above makes sure nothing bad happens.
class CloseEveryOtherAndOpenNewOnesHandler: ChannelInboundHandler {
typealias InboundIn = ByteBuffer
private let allChannels: Box<[Channel]>
private let serverAddress: SocketAddress
private let everythingWasReadPromise: EventLoopPromise<Void>
private let hasReConnectEventLoopTickFinished: Box<Bool>
init(allChannels: Box<[Channel]>,
hasReConnectEventLoopTickFinished: Box<Bool>,
serverAddress: SocketAddress,
everythingWasReadPromise: EventLoopPromise<Void>) {
self.allChannels = allChannels
self.serverAddress = serverAddress
self.everythingWasReadPromise = everythingWasReadPromise
self.hasReConnectEventLoopTickFinished = hasReConnectEventLoopTickFinished
}
func channelActive(context: ChannelHandlerContext) {
// collect all the channels
context.channel.getOption(ChannelOptions.allowRemoteHalfClosure).whenSuccess { halfClosureAllowed in
precondition(halfClosureAllowed,
"the test configuration is bogus: half-closure is dis-allowed which breaks the setup of this test")
}
self.allChannels.value.append(context.channel)
}
func userInboundEventTriggered(context: ChannelHandlerContext, event: Any) {
// this is the `.readEOF` that is triggered by the `ServerHandler`'s `close` calls because our channel
// supports half-closure
guard self.allChannels.value.count == SelectorTest.testWeDoNotDeliverEventsForPreviouslyClosedChannels_numberOfChannelsToUse else {
return
}
// all channels are up, so let's construct the situation we want to be in:
// 1. let's close half the channels
// 2. then re-connect (must be synchronous) the same number of channels and we'll get fd number re-use
context.channel.eventLoop.execute {
// this will be run immediately after we processed all `Selector` events so when
// `self.hasReConnectEventLoopTickFinished.value` becomes true, we're out of the event loop
// tick that is interesting.
XCTAssertFalse(self.hasReConnectEventLoopTickFinished.value)
self.hasReConnectEventLoopTickFinished.value = true
}
XCTAssertFalse(self.hasReConnectEventLoopTickFinished.value)
let everyOtherIndex = stride(from: 0, to: SelectorTest.testWeDoNotDeliverEventsForPreviouslyClosedChannels_numberOfChannelsToUse, by: 2)
for f in everyOtherIndex {
XCTAssertTrue(self.allChannels.value[f].isActive)
// close will succeed synchronously as we're on the right event loop.
self.allChannels.value[f].close(promise: nil)
XCTAssertFalse(self.allChannels.value[f].isActive)
}
// now we have completed stage 1: we freed up a bunch of file descriptor numbers, so let's open
// some new ones
var reconnectedChannelsHaveRead: [EventLoopFuture<Void>] = []
for _ in everyOtherIndex {
var hasBeenAdded: Bool = false
let p = context.channel.eventLoop.makePromise(of: Void.self)
reconnectedChannelsHaveRead.append(p.futureResult)
let newChannel = ClientBootstrap(group: context.eventLoop)
.channelInitializer { channel in
channel.pipeline.addHandler(HappyWhenReadHandler(hasReConnectEventLoopTickFinished: self.hasReConnectEventLoopTickFinished,
didReadPromise: p)).map {
hasBeenAdded = true
}
}
.connect(to: self.serverAddress)
.map { (channel: Channel) -> Void in
XCTAssertFalse(self.hasReConnectEventLoopTickFinished.value,
"""
This is bad: the connect of the channels to be re-connected has not
completed synchronously.
We assumed that on all platform a UNIX Domain Socket connect is
synchronous but we must be wrong :(.
The good news is: Not everything is lost, this test should also work
if you instead open a regular file (in O_RDWR) and just use this file's
fd with `ClientBootstrap(group: group).withConnectedSocket(fileFD)`.
Sure, a file is not a socket but it's always readable and writable and
that fulfills the requirements we have here.
I still hope this change will never have to be done.
Note: if you changed anything about the pipeline's handler adding/removal
you might also have a bug there.
""")
}
// just to make sure we got `newChannel` synchronously and we could add our handler to the
// pipeline synchronously too.
XCTAssertTrue(newChannel.isFulfilled)
XCTAssertTrue(hasBeenAdded)
}
// if all the new re-connected channels have read, then we're happy here.
EventLoopFuture.andAllSucceed(reconnectedChannelsHaveRead, on: context.eventLoop)
.cascade(to: self.everythingWasReadPromise)
// let's also remove all the channels so this code will not be triggered again.
self.allChannels.value.removeAll()
}
}
// all of the following are boxed as we need mutable references to them, they can only be read/written on the
// event loop `el`.
let allServerChannels: Box<[Channel]> = Box([])
let allChannels: Box<[Channel]> = Box([])
let hasReConnectEventLoopTickFinished: Box<Bool> = Box(false)
let numberOfConnectedChannels: Box<Int> = Box(0)
/// This spawns a server, always send a character immediately and after the first
/// `SelectorTest.numberOfChannelsToUse` have been established, we'll close them all. That will trigger
/// an `.readEOF` in the connected client channels which will then trigger other interesting things (see above).
class ServerHandler: ChannelInboundHandler {
typealias InboundIn = ByteBuffer
private var number: Int = 0
private let allServerChannels: Box<[Channel]>
private let numberOfConnectedChannels: Box<Int>
init(allServerChannels: Box<[Channel]>, numberOfConnectedChannels: Box<Int>) {
self.allServerChannels = allServerChannels
self.numberOfConnectedChannels = numberOfConnectedChannels
}
func channelActive(context: ChannelHandlerContext) {
var buf = context.channel.allocator.buffer(capacity: 1)
buf.writeString("H")
context.channel.writeAndFlush(buf, promise: nil)
self.number += 1
self.allServerChannels.value.append(context.channel)
if self.allServerChannels.value.count == SelectorTest.testWeDoNotDeliverEventsForPreviouslyClosedChannels_numberOfChannelsToUse {
// just to be sure all of the client channels have connected
XCTAssertEqual(SelectorTest.testWeDoNotDeliverEventsForPreviouslyClosedChannels_numberOfChannelsToUse, numberOfConnectedChannels.value)
self.allServerChannels.value.forEach { c in
c.close(promise: nil)
}
}
}
}
let elg = MultiThreadedEventLoopGroup(numberOfThreads: 1)
let el = elg.next()
defer {
XCTAssertNoThrow(try elg.syncShutdownGracefully())
}
XCTAssertNoThrow(try withTemporaryUnixDomainSocketPathName { udsPath in
let secondServerChannel = try! ServerBootstrap(group: el)
.childChannelInitializer { channel in
channel.pipeline.addHandler(ServerHandler(allServerChannels: allServerChannels,
numberOfConnectedChannels: numberOfConnectedChannels))
}
.bind(to: SocketAddress(unixDomainSocketPath: udsPath))
.wait()
let everythingWasReadPromise = el.makePromise(of: Void.self)
XCTAssertNoThrow(try el.submit { () -> [EventLoopFuture<Channel>] in
(0..<SelectorTest.testWeDoNotDeliverEventsForPreviouslyClosedChannels_numberOfChannelsToUse).map { (_: Int) in
ClientBootstrap(group: el)
.channelOption(ChannelOptions.allowRemoteHalfClosure, value: true)
.channelInitializer { channel in
channel.pipeline.addHandler(CloseEveryOtherAndOpenNewOnesHandler(allChannels: allChannels,
hasReConnectEventLoopTickFinished: hasReConnectEventLoopTickFinished,
serverAddress: secondServerChannel.localAddress!,
everythingWasReadPromise: everythingWasReadPromise))
}
.connect(to: secondServerChannel.localAddress!)
.map { channel in
numberOfConnectedChannels.value += 1
return channel
}
}
}.wait().forEach { XCTAssertNoThrow(try $0.wait()) } as Void)
XCTAssertNoThrow(try everythingWasReadPromise.futureResult.wait())
})
}
func testTimerFDIsLevelTriggered() throws {
// this is a regression test for https://github.com/apple/swift-nio/issues/872
let delayToUseInMicroSeconds: Int64 = 100_000 // needs to be much greater than time it takes to EL.execute
let group = MultiThreadedEventLoopGroup(numberOfThreads: 1)
defer {
XCTAssertNoThrow(try group.syncShutdownGracefully())
}
class FakeSocket: Socket {
private let hasBeenClosedPromise: EventLoopPromise<Void>
init(hasBeenClosedPromise: EventLoopPromise<Void>, socket: NIOBSDSocket.Handle) throws {
self.hasBeenClosedPromise = hasBeenClosedPromise
try super.init(socket: socket)
}
override func close() throws {
self.hasBeenClosedPromise.succeed(())
try super.close()
}
}
var socketFDs: [CInt] = [-1, -1]
XCTAssertNoThrow(try Posix.socketpair(domain: .local,
type: .stream,
protocol: 0,
socketVector: &socketFDs))
let numberFires = NIOAtomic<Int>.makeAtomic(value: 0)
let el = group.next() as! SelectableEventLoop
let channelHasBeenClosedPromise = el.makePromise(of: Void.self)
let channel = try SocketChannel(socket: FakeSocket(hasBeenClosedPromise: channelHasBeenClosedPromise,
socket: socketFDs[0]), eventLoop: el)
let sched = el.scheduleRepeatedTask(initialDelay: .microseconds(delayToUseInMicroSeconds),
delay: .microseconds(delayToUseInMicroSeconds)) { (_: RepeatedTask) in
_ = numberFires.add(1)
}
XCTAssertNoThrow(try el.submit {
// EL tick 1: this is used to
// - actually arm the timer (timerfd_settime)
// - set the channel restration up
if numberFires.load() > 0 {
print("WARNING: This test hit a race and this result doesn't mean it actually worked." +
" This should really only ever happen in very bizarre conditions.")
}
channel.interestedEvent = [.readEOF, .reset]
func workaroundSR9815() {
channel.registerAlreadyConfigured0(promise: nil)
}
workaroundSR9815()
}.wait())
usleep(10_000) // this makes this repro very stable
el.execute {
// EL tick 2: this is used to
// - close one end of the socketpair so that in EL tick 3, we'll see a EPOLLHUP
// - sleep `delayToUseInMicroSeconds + 10` so in EL tick 3, we'll also see timerfd fire
close(socketFDs[1])
usleep(.init(delayToUseInMicroSeconds))
}
// EL tick 3: happens in the background here. We will likely lose the timer signal because of the
// `deregistrationsHappened` workaround in `Selector.swift` and we expect to pick it up again when we enter
// `epoll_wait`/`kevent` next. This however only works if the timer event is level triggered.
assert(numberFires.load() > 5, within: .seconds(1), "timer only fired \(numberFires.load()) times")
sched.cancel()
XCTAssertNoThrow(try channelHasBeenClosedPromise.futureResult.wait())
}
}
|