1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
|
//===--- Complex.swift ----------------------------------------*- swift -*-===//
//
// This source file is part of the Swift Numerics open source project
//
// Copyright (c) 2019 - 2020 Apple Inc. and the Swift Numerics project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
//
//===----------------------------------------------------------------------===//
import RealModule
/// A complex number represented by real and imaginary parts.
///
/// TODO: introductory text on complex numbers
///
/// Implementation notes:
/// -
/// This type does not provide heterogeneous real/complex arithmetic,
/// not even the natural vector-space operations like real * complex.
/// There are two reasons for this choice: first, Swift broadly avoids
/// mixed-type arithmetic when the operation can be adequately expressed
/// by a conversion and homogeneous arithmetic. Second, with the current
/// typechecker rules, it would lead to undesirable ambiguity in common
/// expressions (see README.md for more details).
///
/// Unlike C's `_Complex` and C++'s `std::complex<>` types, we do not
/// attempt to make meaningful semantic distinctions between different
/// representations of infinity or NaN. Any Complex value with at least
/// one non-finite component is simply "non-finite". In as much as
/// possible, we use the semantics of the point at infinity on the
/// Riemann sphere for such values. This approach simplifies the number of
/// edge cases that need to be considered for multiplication, division, and
/// the elementary functions considerably.
///
/// `.magnitude` does not return the Euclidean norm; it uses the "infinity
/// norm" (`max(|real|,|imaginary|)`) instead. There are two reasons for this
/// choice: first, it's simply faster to compute on most hardware. Second,
/// there exist values for which the Euclidean norm cannot be represented
/// (consider a number with `.real` and `.imaginary` both equal to
/// `RealType.greatestFiniteMagnitude`; the Euclidean norm would be
/// `.sqrt(2) * .greatestFiniteMagnitude`, which overflows). Using
/// the infinity norm avoids this problem entirely without significant
/// downsides. You can access the Euclidean norm using the `length`
/// property.
@frozen
public struct Complex<RealType> where RealType: Real {
// A note on the `x` and `y` properties
//
// `x` and `y` are the names we use for the raw storage of the real and
// imaginary components of our complex number. We also provide public
// `.real` and `.imaginary` properties, which wrap this storage and
// fixup the semantics for non-finite values.
/// The real component of the value.
@usableFromInline @inline(__always)
internal var x: RealType
/// The imaginary part of the value.
@usableFromInline @inline(__always)
internal var y: RealType
/// A complex number constructed by specifying the real and imaginary parts.
@_transparent
public init(_ real: RealType, _ imaginary: RealType) {
x = real
y = imaginary
}
}
// MARK: - Basic properties
extension Complex {
/// The real part of this complex value.
///
/// If `z` is not finite, `z.real` is `.nan`.
public var real: RealType {
@_transparent
get { isFinite ? x : .nan }
@_transparent
set { x = newValue }
}
/// The imaginary part of this complex value.
///
/// If `z` is not finite, `z.imaginary` is `.nan`.
public var imaginary: RealType {
@_transparent
get { isFinite ? y : .nan }
@_transparent
set { y = newValue }
}
/// The additive identity, with real and imaginary parts both zero.
///
/// See also:
/// -
/// - .one
/// - .i
/// - .infinity
@_transparent
public static var zero: Complex {
Complex(0, 0)
}
/// The multiplicative identity, with real part one and imaginary part zero.
///
/// See also:
/// -
/// - .zero
/// - .i
/// - .infinity
@_transparent
public static var one: Complex {
Complex(1, 0)
}
/// The imaginary unit.
///
/// See also:
/// -
/// - .zero
/// - .one
/// - .infinity
@_transparent
public static var i: Complex {
Complex(0, 1)
}
/// The point at infinity.
///
/// See also:
/// -
/// - .zero
/// - .one
/// - .i
@_transparent
public static var infinity: Complex {
Complex(.infinity, 0)
}
/// The complex conjugate of this value.
@_transparent
public var conjugate: Complex {
Complex(x, -y)
}
/// True if this value is finite.
///
/// A complex value is finite if neither component is an infinity or nan.
///
/// See also:
/// -
/// - `.isNormal`
/// - `.isSubnormal`
/// - `.isZero`
@_transparent
public var isFinite: Bool {
x.isFinite && y.isFinite
}
/// True if this value is normal.
///
/// A complex number is normal if it is finite and *either* the real or
/// imaginary component is normal. A floating-point number representing
/// one of the components is normal if its exponent allows a full-precision
/// representation.
///
/// See also:
/// -
/// - `.isFinite`
/// - `.isSubnormal`
/// - `.isZero`
@_transparent
public var isNormal: Bool {
isFinite && (x.isNormal || y.isNormal)
}
/// True if this value is subnormal.
///
/// A complex number is subnormal if it is finite, not normal, and not zero.
/// When the result of a computation is subnormal, underflow has occurred and
/// the result generally does not have full precision.
///
/// See also:
/// -
/// - `.isFinite`
/// - `.isNormal`
/// - `.isZero`
@_transparent
public var isSubnormal: Bool {
isFinite && !isNormal && !isZero
}
/// True if this value is zero.
///
/// A complex number is zero if *both* the real and imaginary components
/// are zero.
///
/// See also:
/// -
/// - `.isFinite`
/// - `.isNormal`
/// - `.isSubnormal`
@_transparent
public var isZero: Bool {
x == 0 && y == 0
}
/// The ∞-norm of the value (`max(abs(real), abs(imaginary))`).
///
/// If you need the Euclidean norm (a.k.a. 2-norm) use the `length` or
/// `lengthSquared` properties instead.
///
/// Edge cases:
/// -
/// - If `z` is not finite, `z.magnitude` is `.infinity`.
/// - If `z` is zero, `z.magnitude` is `0`.
/// - Otherwise, `z.magnitude` is finite and non-zero.
///
/// See also:
/// -
/// - `.length`
/// - `.lengthSquared`
@_transparent
public var magnitude: RealType {
guard isFinite else { return .infinity }
return max(abs(x), abs(y))
}
/// A "canonical" representation of the value.
///
/// For normal complex numbers with a RealType conforming to
/// BinaryFloatingPoint (the common case), the result is simply this value
/// unmodified. For zeros, the result has the representation (+0, +0). For
/// infinite values, the result has the representation (+inf, +0).
///
/// If the RealType admits non-canonical representations, the x and y
/// components are canonicalized in the result.
///
/// This is mainly useful for interoperation with other languages, where
/// you may want to reduce each equivalence class to a single representative
/// before passing across language boundaries, but it may also be useful
/// for some serialization tasks. It's also a useful implementation detail
/// for some primitive operations.
@_transparent
public var canonicalized: Self {
if isZero { return .zero }
if isFinite { return self.multiplied(by: 1) }
return .infinity
}
}
// MARK: - Additional Initializers
extension Complex {
/// The complex number with specified real part and zero imaginary part.
///
/// Equivalent to `Complex(real, 0)`.
@inlinable
public init(_ real: RealType) {
self.init(real, 0)
}
/// The complex number with specified imaginary part and zero real part.
///
/// Equivalent to `Complex(0, imaginary)`.
@inlinable
public init(imaginary: RealType) {
self.init(0, imaginary)
}
/// The complex number with specified real part and zero imaginary part.
///
/// Equivalent to `Complex(RealType(real), 0)`.
@inlinable
public init<Other: BinaryInteger>(_ real: Other) {
self.init(RealType(real), 0)
}
/// The complex number with specified real part and zero imaginary part,
/// if it can be constructed without rounding.
@inlinable
public init?<Other: BinaryInteger>(exactly real: Other) {
guard let real = RealType(exactly: real) else { return nil }
self.init(real, 0)
}
public typealias IntegerLiteralType = Int
@inlinable
public init(integerLiteral value: Int) {
self.init(RealType(value))
}
}
extension Complex where RealType: BinaryFloatingPoint {
/// `other` rounded to the nearest representable value of this type.
@inlinable
public init<Other: BinaryFloatingPoint>(_ other: Complex<Other>) {
self.init(RealType(other.x), RealType(other.y))
}
/// `other`, if it can be represented exactly in this type; otherwise `nil`.
@inlinable
public init?<Other: BinaryFloatingPoint>(exactly other: Complex<Other>) {
guard let x = RealType(exactly: other.x),
let y = RealType(exactly: other.y) else { return nil }
self.init(x, y)
}
}
// MARK: - Conformance to Hashable and Equatable
//
// The Complex type identifies all non-finite points (waving hands slightly,
// we identify all NaNs and infinites as the point at infinity on the Riemann
// sphere).
extension Complex: Hashable {
@_transparent
public static func ==(a: Complex, b: Complex) -> Bool {
// Identify all numbers with either component non-finite as a single
// "point at infinity".
guard a.isFinite || b.isFinite else { return true }
// For finite numbers, equality is defined componentwise. Cases where
// only one of a or b is infinite fall through to here as well, but this
// expression correctly returns false for them so we don't need to handle
// them explicitly.
return a.x == b.x && a.y == b.y
}
@_transparent
public func hash(into hasher: inout Hasher) {
// There are two equivalence classes to which we owe special attention:
// All zeros should hash to the same value, regardless of sign, and all
// non-finite numbers should hash to the same value, regardless of
// representation. The correct behavior for zero falls out for free from
// the hash behavior of floating-point, but we need to use a
// representative member for any non-finite values.
if isFinite {
hasher.combine(x)
hasher.combine(y)
} else {
hasher.combine(RealType.infinity)
}
}
}
// MARK: - Conformance to Codable
// FloatingPoint does not refine Codable, so this is a conditional conformance.
extension Complex: Decodable where RealType: Decodable {
public init(from decoder: Decoder) throws {
var unkeyedContainer = try decoder.unkeyedContainer()
let x = try unkeyedContainer.decode(RealType.self)
let y = try unkeyedContainer.decode(RealType.self)
self.init(x, y)
}
}
extension Complex: Encodable where RealType: Encodable {
public func encode(to encoder: Encoder) throws {
var unkeyedContainer = encoder.unkeyedContainer()
try unkeyedContainer.encode(x)
try unkeyedContainer.encode(y)
}
}
// MARK: - Formatting
extension Complex: CustomStringConvertible {
public var description: String {
guard isFinite else {
return "inf"
}
return "(\(x), \(y))"
}
}
extension Complex: CustomDebugStringConvertible {
public var debugDescription: String {
"Complex<\(RealType.self)>(\(String(reflecting: x)), \(String(reflecting: y)))"
}
}
// MARK: - Operations for working with polar form
extension Complex {
/// The Euclidean norm (a.k.a. 2-norm, `sqrt(real*real + imaginary*imaginary)`).
///
/// This property takes care to avoid spurious over- or underflow in
/// this computation. For example:
///
/// let x: Float = 3.0e+20
/// let x: Float = 4.0e+20
/// let naive = sqrt(x*x + y*y) // +Inf
/// let careful = Complex(x, y).length // 5.0e+20
///
/// Note that it *is* still possible for this property to overflow,
/// because the length can be as much as sqrt(2) times larger than
/// either component, and thus may not be representable in the real type.
///
/// For most use cases, you can use the cheaper `.magnitude`
/// property (which computes the ∞-norm) instead, which always produces
/// a representable result.
///
/// Edge cases:
/// -
/// If a complex value is not finite, its `.length` is `infinity`.
///
/// See also:
/// -
/// - `.magnitude`
/// - `.lengthSquared`
/// - `.phase`
/// - `.polar`
/// - `init(r:θ:)`
@_transparent
public var length: RealType {
let naive = lengthSquared
guard naive.isNormal else { return carefulLength }
return .sqrt(naive)
}
// Internal implementation detail of `length`, moving slow path off
// of the inline function. Note that even `carefulLength` can overflow
// for finite inputs, but only when the result is outside the range
// of representable values.
@usableFromInline
internal var carefulLength: RealType {
guard isFinite else { return .infinity }
return .hypot(x, y)
}
/// The squared length `(real*real + imaginary*imaginary)`.
///
/// This property is more efficient to compute than `length`, but is
/// highly prone to overflow or underflow; for finite values that are
/// not well-scaled, `lengthSquared` is often either zero or
/// infinity, even when `length` is a finite number. Use this property
/// only when you are certain that this value is well-scaled.
///
/// For many cases, `.magnitude` can be used instead, which is similarly
/// cheap to compute and always returns a representable value.
///
/// See also:
/// -
/// - `.length`
/// - `.magnitude`
@_transparent
public var lengthSquared: RealType {
x*x + y*y
}
@available(*, unavailable, renamed: "lengthSquared")
public var unsafeLengthSquared: RealType { lengthSquared }
/// The phase (angle, or "argument").
///
/// Returns the angle (measured above the real axis) in radians. If
/// the complex value is zero or infinity, the phase is not defined,
/// and `nan` is returned.
///
/// Edge cases:
/// -
/// If the complex value is zero or non-finite, phase is `nan`.
///
/// See also:
/// -
/// - `.length`
/// - `.polar`
/// - `init(r:θ:)`
@inlinable
public var phase: RealType {
guard isFinite && !isZero else { return .nan }
return .atan2(y: y, x: x)
}
/// The length and phase (or polar coordinates) of this value.
///
/// Edge cases:
/// -
/// If the complex value is zero or non-finite, phase is `.nan`.
/// If the complex value is non-finite, length is `.infinity`.
///
/// See also:
/// -
/// - `.length`
/// - `.phase`
/// - `init(r:θ:)`
public var polar: (length: RealType, phase: RealType) {
(length, phase)
}
/// Creates a complex value specified with polar coordinates.
///
/// Edge cases:
/// -
/// - Negative lengths are interpreted as reflecting the point through the
/// origin, i.e.:
/// ```
/// Complex(length: -r, phase: θ) == -Complex(length: r, phase: θ)
/// ```
/// - For any `θ`, even `.infinity` or `.nan`:
/// ```
/// Complex(length: .zero, phase: θ) == .zero
/// ```
/// - For any `θ`, even `.infinity` or `.nan`, if `r` is infinite then:
/// ```
/// Complex(length: r, phase: θ) == .infinity
/// ```
/// - Otherwise, `θ` must be finite, or a precondition failure occurs.
///
/// See also:
/// -
/// - `.length`
/// - `.phase`
/// - `.polar`
@inlinable
public init(length: RealType, phase: RealType) {
if phase.isFinite {
self = Complex(.cos(phase), .sin(phase)).multiplied(by: length)
} else {
precondition(
length.isZero || length.isInfinite,
"Either phase must be finite, or length must be zero or infinite."
)
self = Complex(length)
}
}
}
|