File: Complex.swift

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (529 lines) | stat: -rw-r--r-- 16,191 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
//===--- Complex.swift ----------------------------------------*- swift -*-===//
//
// This source file is part of the Swift Numerics open source project
//
// Copyright (c) 2019 - 2020 Apple Inc. and the Swift Numerics project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
//
//===----------------------------------------------------------------------===//

import RealModule

/// A complex number represented by real and imaginary parts.
///
/// TODO: introductory text on complex numbers
///
/// Implementation notes:
/// -
/// This type does not provide heterogeneous real/complex arithmetic,
/// not even the natural vector-space operations like real * complex.
/// There are two reasons for this choice: first, Swift broadly avoids
/// mixed-type arithmetic when the operation can be adequately expressed
/// by a conversion and homogeneous arithmetic. Second, with the current
/// typechecker rules, it would lead to undesirable ambiguity in common
/// expressions (see README.md for more details).
///
/// Unlike C's `_Complex` and C++'s `std::complex<>` types, we do not
/// attempt to make meaningful semantic distinctions between different
/// representations of infinity or NaN. Any Complex value with at least
/// one non-finite component is simply "non-finite". In as much as
/// possible, we use the semantics of the point at infinity on the
/// Riemann sphere for such values. This approach simplifies the number of
/// edge cases that need to be considered for multiplication, division, and
/// the elementary functions considerably.
///
/// `.magnitude` does not return the Euclidean norm; it uses the "infinity
/// norm" (`max(|real|,|imaginary|)`) instead. There are two reasons for this
/// choice: first, it's simply faster to compute on most hardware. Second,
/// there exist values for which the Euclidean norm cannot be represented
/// (consider a number with `.real` and `.imaginary` both equal to
/// `RealType.greatestFiniteMagnitude`; the Euclidean norm would be
/// `.sqrt(2) * .greatestFiniteMagnitude`, which overflows). Using
/// the infinity norm avoids this problem entirely without significant
/// downsides. You can access the Euclidean norm using the `length`
/// property.
@frozen
public struct Complex<RealType> where RealType: Real {
  //  A note on the `x` and `y` properties
  //
  //  `x` and `y` are the names we use for the raw storage of the real and
  //  imaginary components of our complex number. We also provide public
  //  `.real` and `.imaginary` properties, which wrap this storage and
  //  fixup the semantics for non-finite values.
  
  /// The real component of the value.
  @usableFromInline @inline(__always)
  internal var x: RealType
  
  /// The imaginary part of the value.
  @usableFromInline @inline(__always)
  internal var y: RealType
  
  /// A complex number constructed by specifying the real and imaginary parts.
  @_transparent
  public init(_ real: RealType, _ imaginary: RealType) {
    x = real
    y = imaginary
  }
}

// MARK: - Basic properties
extension Complex {
  /// The real part of this complex value.
  ///
  /// If `z` is not finite, `z.real` is `.nan`.
  public var real: RealType {
    @_transparent
    get { isFinite ? x : .nan }

    @_transparent
    set { x = newValue }
  }
  
  /// The imaginary part of this complex value.
  ///
  /// If `z` is not finite, `z.imaginary` is `.nan`.
  public var imaginary: RealType {
    @_transparent
    get { isFinite ? y : .nan }

    @_transparent
    set { y = newValue }
  }
  
  /// The additive identity, with real and imaginary parts both zero.
  ///
  /// See also:
  /// -
  /// - .one
  /// - .i
  /// - .infinity
  @_transparent
  public static var zero: Complex {
    Complex(0, 0)
  }
  
  /// The multiplicative identity, with real part one and imaginary part zero.
  ///
  /// See also:
  /// -
  /// - .zero
  /// - .i
  /// - .infinity
  @_transparent
  public static var one: Complex {
    Complex(1, 0)
  }
  
  /// The imaginary unit.
  ///
  /// See also:
  /// -
  /// - .zero
  /// - .one
  /// - .infinity
  @_transparent
  public static var i: Complex {
    Complex(0, 1)
  }
  
  /// The point at infinity.
  ///
  /// See also:
  /// -
  /// - .zero
  /// - .one
  /// - .i
  @_transparent
  public static var infinity: Complex {
    Complex(.infinity, 0)
  }
  
  /// The complex conjugate of this value.
  @_transparent
  public var conjugate: Complex {
    Complex(x, -y)
  }
  
  /// True if this value is finite.
  ///
  /// A complex value is finite if neither component is an infinity or nan.
  ///
  /// See also:
  /// -
  /// - `.isNormal`
  /// - `.isSubnormal`
  /// - `.isZero`
  @_transparent
  public var isFinite: Bool {
    x.isFinite && y.isFinite
  }
  
  /// True if this value is normal.
  ///
  /// A complex number is normal if it is finite and *either* the real or
  /// imaginary component is normal. A floating-point number representing
  /// one of the components is normal if its exponent allows a full-precision
  /// representation.
  ///
  /// See also:
  /// -
  /// - `.isFinite`
  /// - `.isSubnormal`
  /// - `.isZero`
  @_transparent
  public var isNormal: Bool {
    isFinite && (x.isNormal || y.isNormal)
  }
  
  /// True if this value is subnormal.
  ///
  /// A complex number is subnormal if it is finite, not normal, and not zero.
  /// When the result of a computation is subnormal, underflow has occurred and
  /// the result generally does not have full precision.
  ///
  /// See also:
  /// -
  /// - `.isFinite`
  /// - `.isNormal`
  /// - `.isZero`
  @_transparent
  public var isSubnormal: Bool {
    isFinite && !isNormal && !isZero
  }
  
  /// True if this value is zero.
  ///
  /// A complex number is zero if *both* the real and imaginary components
  /// are zero.
  ///
  /// See also:
  /// -
  /// - `.isFinite`
  /// - `.isNormal`
  /// - `.isSubnormal`
  @_transparent
  public var isZero: Bool {
    x == 0 && y == 0
  }
  
  /// The ∞-norm of the value (`max(abs(real), abs(imaginary))`).
  ///
  /// If you need the Euclidean norm (a.k.a. 2-norm) use the `length` or
  /// `lengthSquared` properties instead.
  ///
  /// Edge cases:
  /// -
  /// - If `z` is not finite, `z.magnitude` is `.infinity`.
  /// - If `z` is zero, `z.magnitude` is `0`.
  /// - Otherwise, `z.magnitude` is finite and non-zero.
  ///
  /// See also:
  /// -
  /// - `.length`
  /// - `.lengthSquared`
  @_transparent
  public var magnitude: RealType {
    guard isFinite else { return .infinity }
    return max(abs(x), abs(y))
  }
  
  /// A "canonical" representation of the value.
  ///
  /// For normal complex numbers with a RealType conforming to
  /// BinaryFloatingPoint (the common case), the result is simply this value
  /// unmodified. For zeros, the result has the representation (+0, +0). For
  /// infinite values, the result has the representation (+inf, +0).
  ///
  /// If the RealType admits non-canonical representations, the x and y
  /// components are canonicalized in the result.
  ///
  /// This is mainly useful for interoperation with other languages, where
  /// you may want to reduce each equivalence class to a single representative
  /// before passing across language boundaries, but it may also be useful
  /// for some serialization tasks. It's also a useful implementation detail
  /// for some primitive operations.
  @_transparent
  public var canonicalized: Self {
    if isZero { return .zero }
    if isFinite { return self.multiplied(by: 1) }
    return .infinity
  }
}

// MARK: - Additional Initializers
extension Complex {
  /// The complex number with specified real part and zero imaginary part.
  ///
  /// Equivalent to `Complex(real, 0)`.
  @inlinable
  public init(_ real: RealType) {
    self.init(real, 0)
  }
  
  /// The complex number with specified imaginary part and zero real part.
  ///
  /// Equivalent to `Complex(0, imaginary)`.
  @inlinable
  public init(imaginary: RealType) {
    self.init(0, imaginary)
  }
  
  /// The complex number with specified real part and zero imaginary part.
  ///
  /// Equivalent to `Complex(RealType(real), 0)`.
  @inlinable
  public init<Other: BinaryInteger>(_ real: Other) {
    self.init(RealType(real), 0)
  }
  
  /// The complex number with specified real part and zero imaginary part,
  /// if it can be constructed without rounding.
  @inlinable
  public init?<Other: BinaryInteger>(exactly real: Other) {
    guard let real = RealType(exactly: real) else { return nil }
    self.init(real, 0)
  }
  
  public typealias IntegerLiteralType = Int
  
  @inlinable
  public init(integerLiteral value: Int) {
    self.init(RealType(value))
  }
}

extension Complex where RealType: BinaryFloatingPoint {
  /// `other` rounded to the nearest representable value of this type.
  @inlinable
  public init<Other: BinaryFloatingPoint>(_ other: Complex<Other>) {
    self.init(RealType(other.x), RealType(other.y))
  }
  
  /// `other`, if it can be represented exactly in this type; otherwise `nil`.
  @inlinable
  public init?<Other: BinaryFloatingPoint>(exactly other: Complex<Other>) {
    guard let x = RealType(exactly: other.x),
          let y = RealType(exactly: other.y) else { return nil }
    self.init(x, y)
  }
}

// MARK: - Conformance to Hashable and Equatable
//
// The Complex type identifies all non-finite points (waving hands slightly,
// we identify all NaNs and infinites as the point at infinity on the Riemann
// sphere).
extension Complex: Hashable {
  @_transparent
  public static func ==(a: Complex, b: Complex) -> Bool {
    // Identify all numbers with either component non-finite as a single
    // "point at infinity".
    guard a.isFinite || b.isFinite else { return true }
    // For finite numbers, equality is defined componentwise. Cases where
    // only one of a or b is infinite fall through to here as well, but this
    // expression correctly returns false for them so we don't need to handle
    // them explicitly.
    return a.x == b.x && a.y == b.y
  }
  
  @_transparent
  public func hash(into hasher: inout Hasher) {
    // There are two equivalence classes to which we owe special attention:
    // All zeros should hash to the same value, regardless of sign, and all
    // non-finite numbers should hash to the same value, regardless of
    // representation. The correct behavior for zero falls out for free from
    // the hash behavior of floating-point, but we need to use a
    // representative member for any non-finite values.
    if isFinite {
      hasher.combine(x)
      hasher.combine(y)
    } else {
      hasher.combine(RealType.infinity)
    }
  }
}

// MARK: - Conformance to Codable
// FloatingPoint does not refine Codable, so this is a conditional conformance.
extension Complex: Decodable where RealType: Decodable {
  public init(from decoder: Decoder) throws {
    var unkeyedContainer = try decoder.unkeyedContainer()
    let x = try unkeyedContainer.decode(RealType.self)
    let y = try unkeyedContainer.decode(RealType.self)
    self.init(x, y)
  }
}

extension Complex: Encodable where RealType: Encodable {
  public func encode(to encoder: Encoder) throws {
    var unkeyedContainer = encoder.unkeyedContainer()
    try unkeyedContainer.encode(x)
    try unkeyedContainer.encode(y)
  }
}

// MARK: - Formatting
extension Complex: CustomStringConvertible {
  public var description: String {
    guard isFinite else {
      return "inf"
    }
    return "(\(x), \(y))"
  }
}

extension Complex: CustomDebugStringConvertible {
  public var debugDescription: String {
    "Complex<\(RealType.self)>(\(String(reflecting: x)), \(String(reflecting: y)))"
  }
}

// MARK: - Operations for working with polar form
extension Complex {
  
  /// The Euclidean norm (a.k.a. 2-norm, `sqrt(real*real + imaginary*imaginary)`).
  ///
  /// This property takes care to avoid spurious over- or underflow in
  /// this computation. For example:
  ///
  ///     let x: Float = 3.0e+20
  ///     let x: Float = 4.0e+20
  ///     let naive = sqrt(x*x + y*y) // +Inf
  ///     let careful = Complex(x, y).length // 5.0e+20
  ///
  /// Note that it *is* still possible for this property to overflow,
  /// because the length can be as much as sqrt(2) times larger than
  /// either component, and thus may not be representable in the real type.
  ///
  /// For most use cases, you can use the cheaper `.magnitude`
  /// property (which computes the ∞-norm) instead, which always produces
  /// a representable result.
  ///
  /// Edge cases:
  /// -
  /// If a complex value is not finite, its `.length` is `infinity`.
  ///
  /// See also:
  /// -
  /// - `.magnitude`
  /// - `.lengthSquared`
  /// - `.phase`
  /// - `.polar`
  /// - `init(r:θ:)`
  @_transparent
  public var length: RealType {
    let naive = lengthSquared
    guard naive.isNormal else { return carefulLength }
    return .sqrt(naive)
  }
  
  //  Internal implementation detail of `length`, moving slow path off
  //  of the inline function. Note that even `carefulLength` can overflow
  //  for finite inputs, but only when the result is outside the range
  //  of representable values.
  @usableFromInline
  internal var carefulLength: RealType {
    guard isFinite else { return .infinity }
    return .hypot(x, y)
  }
  
  /// The squared length `(real*real + imaginary*imaginary)`.
  ///
  /// This property is more efficient to compute than `length`, but is
  /// highly prone to overflow or underflow; for finite values that are
  /// not well-scaled, `lengthSquared` is often either zero or
  /// infinity, even when `length` is a finite number. Use this property
  /// only when you are certain that this value is well-scaled.
  ///
  /// For many cases, `.magnitude` can be used instead, which is similarly
  /// cheap to compute and always returns a representable value.
  ///
  /// See also:
  /// -
  /// - `.length`
  /// - `.magnitude`
  @_transparent
  public var lengthSquared: RealType {
    x*x + y*y
  }
  
  @available(*, unavailable, renamed: "lengthSquared")
  public var unsafeLengthSquared: RealType { lengthSquared }
  
  /// The phase (angle, or "argument").
  ///
  /// Returns the angle (measured above the real axis) in radians. If
  /// the complex value is zero or infinity, the phase is not defined,
  /// and `nan` is returned.
  ///
  /// Edge cases:
  /// -
  /// If the complex value is zero or non-finite, phase is `nan`.
  ///
  /// See also:
  /// -
  /// - `.length`
  /// - `.polar`
  /// - `init(r:θ:)`
  @inlinable
  public var phase: RealType {
    guard isFinite && !isZero else { return .nan }
    return .atan2(y: y, x: x)
  }
  
  /// The length and phase (or polar coordinates) of this value.
  ///
  /// Edge cases:
  /// -
  /// If the complex value is zero or non-finite, phase is `.nan`.
  /// If the complex value is non-finite, length is `.infinity`.
  ///
  /// See also:
  /// -
  /// - `.length`
  /// - `.phase`
  /// - `init(r:θ:)`
  public var polar: (length: RealType, phase: RealType) {
    (length, phase)
  }
  
  /// Creates a complex value specified with polar coordinates.
  ///
  /// Edge cases:
  /// -
  /// - Negative lengths are interpreted as reflecting the point through the
  ///   origin, i.e.:
  ///   ```
  ///   Complex(length: -r, phase: θ) == -Complex(length: r, phase: θ)
  ///   ```
  /// - For any `θ`, even `.infinity` or `.nan`:
  ///   ```
  ///   Complex(length: .zero, phase: θ) == .zero
  ///   ```
  /// - For any `θ`, even `.infinity` or `.nan`, if `r` is infinite then:
  ///   ```
  ///   Complex(length: r, phase: θ) == .infinity
  ///   ```
  /// - Otherwise, `θ` must be finite, or a precondition failure occurs.
  ///
  /// See also:
  /// -
  /// - `.length`
  /// - `.phase`
  /// - `.polar`
  @inlinable
  public init(length: RealType, phase: RealType) {
    if phase.isFinite {
      self = Complex(.cos(phase), .sin(phase)).multiplied(by: length)
    } else {
      precondition(
        length.isZero || length.isInfinite,
        "Either phase must be finite, or length must be zero or infinite."
      )
      self = Complex(length)
    }
  }
}