1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
|
//===--- ElementaryFunctions.swift ----------------------------*- swift -*-===//
//
// This source file is part of the Swift Numerics open source project
//
// Copyright (c) 2019 Apple Inc. and the Swift Numerics project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
//
//===----------------------------------------------------------------------===//
/// A type that has elementary functions available.
///
/// An ["elementary function"][elfn] is a function built up from powers, roots,
/// exponentials, logarithms, trigonometric functions (sin, cos, tan) and
/// their inverses, and the hyperbolic functions (sinh, cosh, tanh) and their
/// inverses.
///
/// Conformance to this protocol means that all of these building blocks are
/// available as static functions on the type.
///
/// ```swift
/// let x: Float = 1
/// let y = Float.sin(x) // 0.84147096
/// ```
///
/// There are three broad families of functions defined by
/// `ElementaryFunctions`:
/// - Exponential, trigonometric, and hyperbolic functions:
/// `exp`, `expMinusOne`, `cos`, `sin`, `tan`, `cosh`, `sinh`, and `tanh`.
/// - Logarithmic, inverse trigonometric, and inverse hyperbolic functions:
/// `log`, `log(onePlus:)`, `acos`, `asin`, `atan`, `acosh`, `asinh`, and
/// `atanh`.
/// - Power and root functions:
/// `pow`, `sqrt`, and `root`.
///
/// `ElementaryFunctions` conformance implies `AdditiveArithmetic`, so addition
/// and subtraction and the `.zero` property are also available.
///
/// There are two other protocols that you are more likely to want to use
/// directly:
///
/// `RealFunctions` refines `ElementaryFunctions` and includes
/// additional functions specific to real number types.
///
/// `Real` conforms to `RealFunctions` and `FloatingPoint`, and is the
/// protocol that you will want to use most often for generic code.
///
/// See Also:
/// -
/// - `RealFunctions`
/// - `Real`
///
/// [elfn]: http://en.wikipedia.org/wiki/Elementary_function
public protocol ElementaryFunctions: AdditiveArithmetic {
/// The [exponential function][wiki] e^x whose base `e` is the base of the
/// natural logarithm.
///
/// See also:
/// -
/// - `expMinusOne()`
/// - `exp2()` (for types conforming to `RealFunctions`)
/// - `exp10()` (for types conforming to `RealFunctions`)
///
/// [wiki]: https://en.wikipedia.org/wiki/Exponential_function
static func exp(_ x: Self) -> Self
/// exp(x) - 1, computed in such a way as to maintain accuracy for small x.
///
/// When `x` is close to zero, the expression `.exp(x) - 1` suffers from
/// catastrophic cancellation and the result will not have full accuracy.
/// The `.expMinusOne(x)` function gives you a means to address this problem.
///
/// As an example, consider the expression `(x + 1)*exp(x) - 1`. When `x`
/// is smaller than `.ulpOfOne`, this expression evaluates to `0.0`, when it
/// should actually round to `2*x`. We can get a full-accuracy result by
/// using the following instead:
/// ```
/// let t = .expMinusOne(x)
/// return x*(t+1) + t // x*exp(x) + (exp(x)-1) = (x+1)*exp(x) - 1
/// ```
/// This re-written expression delivers an accurate result for all values
/// of `x`, not just for small values.
///
/// See also:
/// -
/// - `exp()`
/// - `exp2()` (for types conforming to `RealFunctions`)
/// - `exp10()` (for types conforming to `RealFunctions`)
static func expMinusOne(_ x: Self) -> Self
/// The [hyperbolic cosine][wiki] of `x`.
/// ```
/// e^x + e^-x
/// cosh(x) = ------------
/// 2
/// ```
///
/// See also:
/// -
/// - `sinh()`
/// - `tanh()`
/// - `acosh()`
///
/// [wiki]: https://en.wikipedia.org/wiki/Hyperbolic_function
static func cosh(_ x: Self) -> Self
/// The [hyperbolic sine][wiki] of `x`.
/// ```
/// e^x - e^-x
/// sinh(x) = ------------
/// 2
/// ```
///
/// See also:
/// -
/// - `cosh()`
/// - `tanh()`
/// - `asinh()`
///
/// [wiki]: https://en.wikipedia.org/wiki/Hyperbolic_function
static func sinh(_ x: Self) -> Self
/// The [hyperbolic tangent][wiki] of `x`.
/// ```
/// sinh(x)
/// tanh(x) = ---------
/// cosh(x)
/// ```
///
/// See also:
/// -
/// - `cosh()`
/// - `sinhh()`
/// - `atanh()`
///
/// [wiki]: https://en.wikipedia.org/wiki/Hyperbolic_function
static func tanh(_ x: Self) -> Self
/// The [cosine][wiki] of `x`.
///
/// For real types, `x` may be interpreted as an angle measured in radians.
///
/// See also:
/// -
/// - `sin()`
/// - `tan()`
/// - `acos()`
///
/// [wiki]: https://en.wikipedia.org/wiki/Cosine
static func cos(_ x: Self) -> Self
/// The [sine][wiki] of `x`.
///
/// For real types, `x` may be interpreted as an angle measured in radians.
///
/// See also:
/// -
/// - `cos()`
/// - `tan()`
/// - `asin()`
///
/// [wiki]: https://en.wikipedia.org/wiki/Sine
static func sin(_ x: Self) -> Self
/// The [tangent][wiki] of `x`.
///
/// For real types, `x` may be interpreted as an angle measured in radians.
///
/// See also:
/// -
/// - `cos()`
/// - `sin()`
/// - `atan()`
/// - `atan2(y:x:)` (for types conforming to `RealFunctions`)
/// ```
/// sin(x)
/// tan(x) = --------
/// cos(x)
/// ```
/// [wiki]: https://en.wikipedia.org/wiki/Tangent
static func tan(_ x: Self) -> Self
/// The [natural logarithm][wiki] of `x`.
///
/// See also:
/// -
/// - `log(onePlus:)`
/// - `log2()` (for types conforming to `RealFunctions`)
/// - `log10()` (for types conforming to `RealFunctions`)
///
/// [wiki]: https://en.wikipedia.org/wiki/Logarithm
static func log(_ x: Self) -> Self
/// log(1 + x), computed in such a way as to maintain accuracy for small x.
///
/// See also:
/// -
/// - `log()`
/// - `log2()` (for types conforming to `RealFunctions`)
/// - `log10()` (for types conforming to `RealFunctions`)
static func log(onePlus x: Self) -> Self
/// The [inverse hyperbolic cosine][wiki] of `x`.
/// ```
/// cosh(acosh(x)) ≅ x
/// ```
/// See also:
/// -
/// - `asinh()`
/// - `atanh()`
/// - `cosh()`
///
/// [wiki]: https://en.wikipedia.org/wiki/Inverse_hyperbolic_function
static func acosh(_ x: Self) -> Self
/// The [inverse hyperbolic sine][wiki] of `x`.
/// ```
/// sinh(asinh(x)) ≅ x
/// ```
/// See also:
/// -
/// - `acosh()`
/// - `atanh()`
/// - `sinh()`
///
/// [wiki]: https://en.wikipedia.org/wiki/Inverse_hyperbolic_function
static func asinh(_ x: Self) -> Self
/// The [inverse hyperbolic tangent][wiki] of `x`.
/// ```
/// tanh(atanh(x)) ≅ x
/// ```
/// See also:
/// -
/// - `acosh()`
/// - `asinh()`
/// - `tanh()`
///
/// [wiki]: https://en.wikipedia.org/wiki/Inverse_hyperbolic_function
static func atanh(_ x: Self) -> Self
/// The [arccosine][wiki] (inverse cosine) of `x`.
///
/// For real types, the result may be interpreted as an angle measured in
/// radians.
/// ```
/// cos(acos(x)) ≅ x
/// ```
/// See also:
/// -
/// - `asin()`
/// - `atan()`
/// - `cos()`
///
/// [wiki]: https://en.wikipedia.org/wiki/Inverse_trigonometric_functions
static func acos(_ x: Self) -> Self
/// The [arcsine][wiki] (inverse sine) of `x`.
///
/// For real types, the result may be interpreted as an angle measured in
/// radians.
/// ```
/// sin(asin(x)) ≅ x
/// ```
/// See also:
/// -
/// - `acos()`
/// - `atan()`
/// - `sin()`
///
/// [wiki]: https://en.wikipedia.org/wiki/Inverse_trigonometric_functions
static func asin(_ x: Self) -> Self
/// The [arctangent][wiki] (inverse tangent) of `x`.
///
/// For real types, the result may be interpreted as an angle measured in
/// radians.
/// ```
/// tan(atan(x)) ≅ x
/// ```
/// See also:
/// -
/// - `acos()`
/// - `asin()`
/// - `atan2()` (for types conforming to `RealFunctions`)
/// - `tan()`
///
/// [wiki]: https://en.wikipedia.org/wiki/Inverse_trigonometric_functions
static func atan(_ x: Self) -> Self
/// exp(y * log(x)) computed with additional internal precision.
///
/// See also:
/// -
/// - `sqrt()`
/// - `root()`
///
static func pow(_ x: Self, _ y: Self) -> Self
/// `x` raised to the nth power.
///
/// See also:
/// -
/// - `sqrt()`
/// - `root()`
///
static func pow(_ x: Self, _ n: Int) -> Self
/// The [square root][wiki] of `x`.
///
/// See also:
/// -
/// - `pow()`
/// - `root()`
///
/// [wiki]: https://en.wikipedia.org/wiki/Square_root
static func sqrt(_ x: Self) -> Self
/// The nth root of `x`.
///
/// See also:
/// -
/// - `pow()`
/// - `sqrt()`
///
static func root(_ x: Self, _ n: Int) -> Self
}
|