1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
|
//===--- ArithmeticTests.swift --------------------------------*- swift -*-===//
//
// This source file is part of the Swift Numerics open source project
//
// Copyright (c) 2019 Apple Inc. and the Swift Numerics project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
//
//===----------------------------------------------------------------------===//
import XCTest
import ComplexModule
import RealModule
// TODO: improve this to be a general-purpose complex comparison with tolerance
func relativeError<T>(_ a: Complex<T>, _ b: Complex<T>) -> T {
if a == b { return 0 }
let scale = max(a.magnitude, b.magnitude, T.leastNormalMagnitude).ulp
return (a - b).magnitude / scale
}
func closeEnough<T: Real>(_ a: T, _ b: T, ulps allowed: T) -> Bool {
let scale = max(a.magnitude, b.magnitude, T.leastNormalMagnitude).ulp
return (a - b).magnitude <= allowed * scale
}
func checkMultiply<T>(
_ a: Complex<T>, _ b: Complex<T>, expected: Complex<T>, ulps allowed: T
) -> Bool {
let observed = a*b
let rel = relativeError(observed, expected)
if rel > allowed {
print("Over-large error in \(a)*\(b)")
print("Expected: \(expected)\nObserved: \(observed)")
print("Relative error was \(rel) (tolerance: \(allowed).")
return true
}
return false
}
func checkDivide<T>(
_ a: Complex<T>, _ b: Complex<T>, expected: Complex<T>, ulps allowed: T
) -> Bool {
let observed = a/b
let rel = relativeError(observed, expected)
if rel > allowed {
print("Over-large error in \(a)/\(b)")
print("Expected: \(expected)\nObserved: \(observed)")
print("Relative error was \(rel) (tolerance: \(allowed).")
return true
}
return false
}
final class ArithmeticTests: XCTestCase {
struct Polar<T: Real> {
let length: T
let phase: T
}
func testPolar<T>(_ type: T.Type)
where T: BinaryFloatingPoint, T: Real,
T.Exponent: FixedWidthInteger, T.RawSignificand: FixedWidthInteger {
// In order to support round-tripping from rectangular to polar coordinate
// systems, as a special case phase can be non-finite when length is
// either zero or infinity.
XCTAssertEqual(Complex<T>(length: .zero, phase: .infinity), .zero)
XCTAssertEqual(Complex<T>(length: .zero, phase:-.infinity), .zero)
XCTAssertEqual(Complex<T>(length: .zero, phase: .nan ), .zero)
XCTAssertEqual(Complex<T>(length: .infinity, phase: .infinity), .infinity)
XCTAssertEqual(Complex<T>(length: .infinity, phase:-.infinity), .infinity)
XCTAssertEqual(Complex<T>(length: .infinity, phase: .nan ), .infinity)
XCTAssertEqual(Complex<T>(length:-.infinity, phase: .infinity), .infinity)
XCTAssertEqual(Complex<T>(length:-.infinity, phase:-.infinity), .infinity)
XCTAssertEqual(Complex<T>(length:-.infinity, phase: .nan ), .infinity)
let exponentRange =
(T.leastNormalMagnitude.exponent + T.Exponent(T.significandBitCount)) ...
T.greatestFiniteMagnitude.exponent
let inputs = (0..<100).map { _ in
Polar(length: T(
sign: .plus,
exponent: T.Exponent.random(in: exponentRange),
significand: T.random(in: 1 ..< 2)
), phase: T.random(in: -.pi ... .pi))
}
for p in inputs {
// first test that each value can round-trip between rectangular and
// polar coordinates with reasonable accuracy. We'll probably need to
// relax this for some platforms (currently we're using the default
// RNG, which means we don't get the same sequence of values each time;
// this is good--more test coverage!--and bad, because without tight
// bounds on every platform's libm, we can't get tight bounds on the
// accuracy of these operations, so we need to relax them gradually).
let z = Complex(length: p.length, phase: p.phase)
if !closeEnough(z.length, p.length, ulps: 16) {
print("p = \(p)\nz = \(z)\nz.length = \(z.length)")
XCTFail()
}
if !closeEnough(z.phase, p.phase, ulps: 16) {
print("p = \(p)\nz = \(z)\nz.phase = \(z.phase)")
XCTFail()
}
// Complex(length: -r, phase: θ) = -Complex(length: r, phase: θ).
let w = Complex(length: -p.length, phase: p.phase)
if w != -z {
print("p = \(p)\nw = \(w)\nz = \(z)")
XCTFail()
}
XCTAssertEqual(w, -z)
// if length*length is normal, it should be lengthSquared, up
// to small error.
if (p.length*p.length).isNormal {
if !closeEnough(z.lengthSquared, p.length*p.length, ulps: 16) {
print("p = \(p)\nz = \(z)\nz.lengthSquared = \(z.lengthSquared)")
XCTFail()
}
}
// Test reciprocal and normalized:
let r = Complex(length: 1/p.length, phase: -p.phase)
if r.isNormal {
if relativeError(r, z.reciprocal!) > 16 {
print("p = \(p)\nz = \(z)\nz.reciprocal = \(r)")
XCTFail()
}
} else { XCTAssertNil(z.reciprocal) }
let n = Complex(length: 1, phase: p.phase)
if relativeError(n, z.normalized!) > 16 {
print("p = \(p)\nz = \(z)\nz.normalized = \(n)")
XCTFail()
}
// Now test multiplication and division using the polar inputs:
for q in inputs {
let w = Complex(length: q.length, phase: q.phase)
let product = Complex(length: p.length * q.length, phase: p.phase + q.phase)
if checkMultiply(z, w, expected: product, ulps: 16) { XCTFail() }
let quotient = Complex(length: p.length / q.length, phase: p.phase - q.phase)
if checkDivide(z, w, expected: quotient, ulps: 16) { XCTFail() }
}
}
}
func testPolar() {
testPolar(Float.self)
testPolar(Double.self)
#if (arch(i386) || arch(x86_64)) && !os(Windows) && !os(Android)
testPolar(Float80.self)
#endif
}
func testBaudinSmith() {
// A struct representing a test case from Baudin & Smith's
// "A Robust Complex Division in Scilab".
//
// Their paper tests only a/b == c. These are also interesting cases for
// testing a/c == b and a == b*c, so we run all three of those.
// Additionally, B&S expect these all to be exactly equal, but that's only
// true for a division operation satisfying a (perhaps) unrealistically
// high precision requirement (see discussion in Arithmetic.swift).
struct BaudinSmithCase {
let a: Complex<Double>
let b: Complex<Double>
let c: Complex<Double>
init(_ a: Complex<Double>, _ b: Complex<Double>, _ c: Complex<Double>) {
self.a = a
self.b = b
self.c = c
}
}
// The ten test cases from Baudin & Smith's paper. These only apply to
// Double.
let vectors: [BaudinSmithCase] = [
BaudinSmithCase(Complex(1,1), Complex(1, 0x1p1023), Complex(0x1p-1023, -0x1p-1023)),
BaudinSmithCase(Complex(1,1), Complex(0x1p-1023, 0x1p-1023), Complex(0x1p1023)),
BaudinSmithCase(Complex(0x1p1023, 0x1p-1023), Complex(0x1p677, 0x1p-677),
Complex(0x1p346, -0x1p-1008)),
BaudinSmithCase(Complex(0x1p1023, 0x1p1023), Complex(1, 1), Complex(0x1p1023)),
BaudinSmithCase(Complex(0x1p1020, 0x1p-844), Complex(0x1p656, 0x1p-780),
Complex(0x1p364, -0x1p-1072)),
BaudinSmithCase(Complex(0x1p-71, 0x1p1021), Complex(0x1p1001, 0x1p-323),
Complex(0x1p-1072, 0x1p20)),
BaudinSmithCase(Complex(0x1p-347, 0x1p-54), Complex(0x1p-1037, 0x1p-1058),
Complex(3.8981256045591133e289, 8.174961907852353577e295)),
BaudinSmithCase(Complex(0x1p-1074, 0x1p-1074), Complex(0x1p-1073, 0x1p-1074), Complex(0.6, 0.2)),
BaudinSmithCase(Complex(0x1p1015, 0x1p-989), Complex(0x1p1023, 0x1p1023), Complex(0.001953125, -0.001953125)),
BaudinSmithCase(Complex(0x1p-622, 0x1p-1071), Complex(0x1p-343, 0x1p-798),
Complex(1.02951151789360578e-84, 6.97145987515076231e-220)),
]
for test in vectors {
if checkDivide(test.a, test.b, expected: test.c, ulps: 0.5) { XCTFail() }
if checkDivide(test.a, test.c, expected: test.b, ulps: 1.0) { XCTFail() }
if checkMultiply(test.b, test.c, expected: test.a, ulps: 1.0) { XCTFail() }
}
}
func testDivisionByZero() {
XCTAssertFalse((Complex(0, 0) / Complex(0, 0)).isFinite)
XCTAssertFalse((Complex(1, 1) / Complex(0, 0)).isFinite)
XCTAssertFalse((Complex.infinity / Complex(0, 0)).isFinite)
XCTAssertFalse((Complex.i / Complex(0, 0)).isFinite)
}
}
|