1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
|
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2023 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#if swift(>=6)
@_spi(RawSyntax) @_spi(ExperimentalLanguageFeatures) internal import SwiftSyntax
#else
@_spi(RawSyntax) @_spi(ExperimentalLanguageFeatures) import SwiftSyntax
#endif
extension Parser {
/// Parse a pattern.
mutating func parsePattern() -> RawPatternSyntax {
enum PatternOnlyExpectedTokens: TokenSpecSet {
case leftParen
case wildcard
case identifier
case dollarIdentifier // For recovery
init?(lexeme: Lexer.Lexeme, experimentalFeatures: Parser.ExperimentalFeatures) {
switch PrepareForKeywordMatch(lexeme) {
case TokenSpec(.leftParen): self = .leftParen
case TokenSpec(.wildcard): self = .wildcard
case TokenSpec(.identifier): self = .identifier
case TokenSpec(.dollarIdentifier): self = .dollarIdentifier
default: return nil
}
}
var spec: TokenSpec {
switch self {
case .leftParen: return .leftParen
case .wildcard: return .wildcard
case .identifier: return .identifier
case .dollarIdentifier: return .dollarIdentifier
}
}
}
typealias ExpectedTokens = EitherTokenSpecSet<
PatternOnlyExpectedTokens,
ValueBindingPatternSyntax.BindingSpecifierOptions
>
switch self.at(anyIn: ExpectedTokens.self) {
case (.lhs(.leftParen), let handle)?:
let lparen = self.eat(handle)
let elements = self.parsePatternTupleElements()
let (unexpectedBeforeRParen, rparen) = self.expect(.rightParen)
return RawPatternSyntax(
RawTuplePatternSyntax(
leftParen: lparen,
elements: elements,
unexpectedBeforeRParen,
rightParen: rparen,
arena: self.arena
)
)
case (.lhs(.wildcard), let handle)?:
let wildcard = self.eat(handle)
return RawPatternSyntax(
RawWildcardPatternSyntax(
wildcard: wildcard,
arena: self.arena
)
)
case (.rhs(let introducer), let handle)?
where self.withLookahead { $0.shouldParsePatternBinding(introducer: introducer) }:
let bindingSpecifier = self.eat(handle)
let value = self.parsePattern()
return RawPatternSyntax(
RawValueBindingPatternSyntax(
bindingSpecifier: bindingSpecifier,
pattern: value,
arena: self.arena
)
)
case (.lhs(.identifier), let handle)?,
// If we shouldn't contextually parse a pattern binding introducer (because the previous pattern match guard failed), then parse it as an identifier.
(.rhs(_), let handle)?:
let identifier = self.eat(handle)
return RawPatternSyntax(
RawIdentifierPatternSyntax(
identifier: identifier,
arena: self.arena
)
)
case (.lhs(.dollarIdentifier), let handle)?:
let dollarIdent = self.eat(handle)
let unexpectedBeforeIdentifier = RawUnexpectedNodesSyntax(elements: [RawSyntax(dollarIdent)], arena: self.arena)
return RawPatternSyntax(
RawIdentifierPatternSyntax(
unexpectedBeforeIdentifier,
identifier: missingToken(.identifier),
arena: self.arena
)
)
case nil:
break
}
if self.currentToken.isLexerClassifiedKeyword, !self.atStartOfLine {
// Recover if a keyword was used instead of an identifier
let keyword = self.consumeAnyToken()
return RawPatternSyntax(
RawIdentifierPatternSyntax(
RawUnexpectedNodesSyntax([keyword], arena: self.arena),
identifier: missingToken(.identifier),
arena: self.arena
)
)
} else {
return RawPatternSyntax(RawMissingPatternSyntax(arena: self.arena))
}
}
/// Parse a typed pattern.
mutating func parseTypedPattern(
allowRecoveryFromMissingColon: Bool = true
) -> (RawPatternSyntax, RawTypeAnnotationSyntax?) {
let pattern = self.parsePattern()
// Now parse an optional type annotation.
let colon = self.consume(if: .colon)
var lookahead = self.lookahead()
var type: RawTypeAnnotationSyntax?
if let colon {
let result = self.parseResultType()
type = RawTypeAnnotationSyntax(
colon: colon,
type: result,
arena: self.arena
)
} else if allowRecoveryFromMissingColon
&& !self.atStartOfLine
&& lookahead.canParseType()
{
let (unexpectedBeforeColon, colon) = self.expect(.colon)
let result = self.parseType()
type = RawTypeAnnotationSyntax(
unexpectedBeforeColon,
colon: colon,
type: result,
arena: self.arena
)
}
return (pattern, type)
}
/// Parse the elements of a tuple pattern.
mutating func parsePatternTupleElements() -> RawTuplePatternElementListSyntax {
if let remainingTokens = remainingTokensIfMaximumNestingLevelReached() {
return RawTuplePatternElementListSyntax(
elements: [
RawTuplePatternElementSyntax(
remainingTokens,
label: nil,
colon: nil,
pattern: RawPatternSyntax(RawMissingPatternSyntax(arena: self.arena)),
trailingComma: nil,
arena: self.arena
)
],
arena: self.arena
)
}
var elements = [RawTuplePatternElementSyntax]()
do {
var keepGoing = true
var loopProgress = LoopProgressCondition()
while !self.at(.endOfFile, .rightParen) && keepGoing && self.hasProgressed(&loopProgress) {
// If the tuple element has a label, parse it.
let labelAndColon = self.consume(if: .identifier, followedBy: .colon)
var (label, colon) = (labelAndColon?.0, labelAndColon?.1)
/// If we have something like `x SomeType`, use the indication that `SomeType` starts with a capital letter (and is thus probably a type name)
/// as an indication that the user forgot to write the colon instead of forgetting to write the comma to separate two elements.
if label == nil, colon == nil, self.at(.identifier), peek(isAt: .identifier),
peek().tokenText.isStartingWithUppercase
{
label = consume(if: .identifier)
colon = self.missingToken(.colon)
}
let pattern = self.parsePattern()
var trailingComma = self.consume(if: .comma)
if trailingComma == nil && self.at(TokenSpec(.identifier, allowAtStartOfLine: false)) {
trailingComma = self.missingToken(RawTokenKind.comma)
}
keepGoing = trailingComma != nil
elements.append(
RawTuplePatternElementSyntax(
label: label,
colon: colon,
pattern: pattern,
trailingComma: trailingComma,
arena: self.arena
)
)
}
}
return RawTuplePatternElementListSyntax(elements: elements, arena: self.arena)
}
}
extension Parser {
/// Parse a pattern that appears immediately under syntax for conditionals like
/// for-in loops and guard clauses.
mutating func parseMatchingPattern(context: PatternContext) -> RawPatternSyntax {
// Parse productions that can only be patterns.
switch self.at(anyIn: MatchingPatternStart.self) {
case (.lhs(.is), let handle)?:
let isKeyword = self.eat(handle)
let type = self.parseType()
return RawPatternSyntax(
RawIsTypePatternSyntax(
isKeyword: isKeyword,
type: type,
arena: self.arena
)
)
case (.rhs(let introducer), let handle)?
where self.withLookahead { $0.shouldParsePatternBinding(introducer: introducer) }:
let bindingSpecifier = self.eat(handle)
let value = self.parseMatchingPattern(context: .bindingIntroducer)
return RawPatternSyntax(
RawValueBindingPatternSyntax(
bindingSpecifier: bindingSpecifier,
pattern: value,
arena: self.arena
)
)
case (.rhs(_), _)?,
nil:
break
}
// Fall back to expression parsing for ambiguous forms. Name lookup will
// disambiguate.
let patternSyntax = self.parseSequenceExpression(flavor: .stmtCondition, pattern: context)
if let pat = patternSyntax.as(RawPatternExprSyntax.self) {
// The most common case here is to parse something that was a lexically
// obvious pattern, which will come back wrapped in an immediate
// RawUnresolvedPatternExprSyntax.
//
// FIXME: This is pretty gross. Let's find a way to disambiguate let
// binding patterns much earlier.
return RawPatternSyntax(pat.pattern)
}
let expr = RawExprSyntax(patternSyntax)
return RawPatternSyntax(RawExpressionPatternSyntax(expression: expr, arena: self.arena))
}
}
// MARK: Lookahead
extension Parser.Lookahead {
/// Returns true if we should parse a pattern binding specifier contextually
/// as one.
mutating func shouldParsePatternBinding(introducer: ValueBindingPatternSyntax.BindingSpecifierOptions) -> Bool {
switch introducer {
// TODO: the other ownership modifiers (borrowing/consuming/mutating) more
// than likely need to be made contextual as well before finalizing their
// grammar.
case ._borrowing, .borrowing:
return peek(isAt: TokenSpec(.identifier, allowAtStartOfLine: false))
default:
// Other keywords can be parsed unconditionally.
return true
}
}
mutating func canParsePattern() -> Bool {
enum PurePatternStartTokens: TokenSpecSet {
case identifier
case wildcard
case leftParen
init?(lexeme: Lexer.Lexeme, experimentalFeatures: Parser.ExperimentalFeatures) {
switch PrepareForKeywordMatch(lexeme) {
case TokenSpec(.identifier): self = .identifier
case TokenSpec(.wildcard): self = .wildcard
case TokenSpec(.leftParen): self = .leftParen
default: return nil
}
}
var spec: TokenSpec {
switch self {
case .identifier: return .identifier
case .wildcard: return .wildcard
case .leftParen: return .leftParen
}
}
}
typealias PatternStartTokens = EitherTokenSpecSet<
PurePatternStartTokens,
ValueBindingPatternSyntax.BindingSpecifierOptions
>
switch self.at(anyIn: PatternStartTokens.self) {
case (.lhs(.leftParen), _)?:
return self.canParsePatternTuple()
case (.rhs(let introducer), let handle)? where shouldParsePatternBinding(introducer: introducer):
// Parse as a binding introducer, like `let x`.
self.eat(handle)
return self.canParsePattern()
case (.lhs(.identifier), let handle)?,
(.lhs(.wildcard), let handle)?,
// If a binding introducer is not contextually introducing a binding, then parse like an identifier.
(.rhs(_), let handle)?:
self.eat(handle)
return true
case nil:
return false
}
}
private mutating func canParsePatternTuple() -> Bool {
guard self.consume(if: .leftParen) != nil else {
return false
}
if !self.at(.rightParen) {
var loopProgress = LoopProgressCondition()
repeat {
guard self.canParsePattern() else {
return false
}
} while self.consume(if: .comma) != nil && self.hasProgressed(&loopProgress)
}
return self.consume(if: .rightParen) != nil
}
/// Determine whether we are at the start of a parameter name when
/// parsing a parameter.
/// If `allowMisplacedSpecifierRecovery` is `true`, then this will skip over any type
/// specifiers before checking whether this lookahead starts a parameter name.
mutating func startsParameterName(isClosure: Bool, allowMisplacedSpecifierRecovery: Bool) -> Bool {
if allowMisplacedSpecifierRecovery {
while canHaveParameterSpecifier,
self.consume(ifAnyIn: SimpleTypeSpecifierSyntax.SpecifierOptions.self) != nil
{}
}
// To have a parameter name here, we need a name.
guard self.atArgumentLabel(allowDollarIdentifier: true) else {
return false
}
// If the next token is ':', this is a name.
let nextTok = self.peek()
if nextTok.rawTokenKind == .colon {
return true
}
// If the next token can be an argument label, we might have a name.
if nextTok.isArgumentLabel(allowDollarIdentifier: true) {
// If the first name wasn't a contextual keyword, we're done.
if !self.at(.keyword(.isolated))
&& !self.at(.keyword(.some))
&& !self.at(.keyword(.any))
&& !self.at(.keyword(.each))
&& !self.at(.keyword(.repeat))
&& !self.at(.keyword(.__shared))
&& !self.at(.keyword(.__owned))
&& !self.at(.keyword(.borrowing))
&& !self.at(.keyword(.consuming))
&& !self.at(.keyword(.sending))
&& !(experimentalFeatures.contains(.nonescapableTypes) && self.at(.keyword(._resultDependsOn)))
{
return true
}
// Parameter specifiers can be an argument label, but it's also a contextual keyword,
// so look ahead one more token (two total) see if we have a ':' that would
// indicate that this is an argument label.
do {
if self.at(.colon) {
return true // isolated :
}
self.consumeAnyToken()
return self.atArgumentLabel(allowDollarIdentifier: true) && self.peek().rawTokenKind == .colon
}
}
if nextTok.rawTokenKind == .postfixQuestionMark || nextTok.rawTokenKind == .exclamationMark {
return false
}
// The identifier could be a name or it could be a type. In a closure, we
// assume it's a name, because the type can be inferred. Elsewhere, we
// assume it's a type.
return isClosure
}
}
|