1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
|
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2023 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for Swift project authors
//
import SwiftSyntax
import SwiftSyntaxMacros
/// The result of parsing the condition argument passed to `#expect()` or
/// `#require()`.
struct Condition {
/// The name of the function to call in the macro expansion (e.g.
/// `__check()`.)
var expandedFunctionName: TokenSyntax
/// The condition as one or more arguments to the evaluation function,
/// suitable for passing as partial arguments to a call to `__check()`.
var arguments: [Argument]
/// The condition's source code as an expression that produces an instance of
/// the testing library's `__Expression` type.
var expression: ExprSyntax
init(_ expandedFunctionName: String, arguments: [Argument], expression: ExprSyntax) {
self.expandedFunctionName = .identifier(expandedFunctionName)
self.arguments = arguments
self.expression = expression
}
/// Initialize an instance of this type representing a single expression (i.e.
/// one that could not be broken down further.)
///
/// - Parameters:
/// - expr: The expression.
/// - expressionNode: The node from which to derive the `expression`
/// property. If `nil`, `expr` is used.
init(expression expr: some ExprSyntaxProtocol, expressionNode: Syntax? = nil) {
let expressionNode: Syntax = expressionNode ?? Syntax(expr)
self.init(
"__checkValue",
arguments: [Argument(expression: expr)],
expression: createExpressionExpr(from: expressionNode)
)
}
}
/// Emit a diagnostic if an expression resolves to a trivial boolean literal
/// (e.g. `#expect(true)`.)
///
/// - Parameters:
/// - expr: The condition expression to parse.
/// - macro: The macro expression being expanded.
/// - context: The macro context in which the expression is being parsed.
///
/// If `expr` is a trivial boolean expression, a diagnostic is emitted on the
/// assumption that this is not what the developer intended.
private func _diagnoseTrivialBooleanValue(from expr: ExprSyntax, for macro: some FreestandingMacroExpansionSyntax, in context: some MacroExpansionContext) {
if let literal = expr.as(BooleanLiteralExprSyntax.self) {
switch literal.literal.tokenKind {
case .keyword(.true):
context.diagnose(.condition(expr, isAlways: true, in: macro))
case .keyword(.false):
context.diagnose(.condition(expr, isAlways: false, in: macro))
default:
break
}
} else if let literal = _negatedExpression(expr)?.0.as(BooleanLiteralExprSyntax.self) {
// This expression is of the form !true or !false.
switch literal.literal.tokenKind {
case .keyword(.true):
context.diagnose(.condition(expr, isAlways: !true, in: macro))
case .keyword(.false):
context.diagnose(.condition(expr, isAlways: !false, in: macro))
default:
break
}
}
}
/// Extract the expression negated by another expression, assuming that the
/// input expression is the negation operator (`!`).
///
/// - Parameters:
/// - expr: The negation expression.
///
/// - Returns: The expression negated by `expr`, or `nil` if `expr` is not a
/// negation expression.
///
/// This function handles expressions such as `!foo` or `!(bar)`.
private func _negatedExpression(_ expr: ExprSyntax) -> (ExprSyntax, isParenthetical: Bool)? {
let expr = removeParentheses(from: expr) ?? expr
if let op = expr.as(PrefixOperatorExprSyntax.self),
op.operator.tokenKind == .prefixOperator("!") {
if let negatedExpr = removeParentheses(from: op.expression) {
return (negatedExpr, true)
} else {
return (op.expression, false)
}
}
return nil
}
/// Remove the parentheses surrounding an expression, if present.
///
/// - Parameters:
/// - expr: The parenthesized expression.
///
/// - Returns: The expression parenthesized by `expr`, or `nil` if it wasn't
/// parenthesized.
///
/// This function handles expressions such as `(foo)` or `((foo, bar))`. It does
/// not remove interior parentheses (e.g. `(foo, (bar))`.)
func removeParentheses(from expr: ExprSyntax) -> ExprSyntax? {
if let tuple = expr.as(TupleExprSyntax.self),
tuple.elements.count == 1,
let elementExpr = tuple.elements.first,
elementExpr.label == nil {
return removeParentheses(from: elementExpr.expression) ?? elementExpr.expression
}
return nil
}
// MARK: -
/// Parse a condition argument from a binary operation expression.
///
/// - Parameters:
/// - expr: The expression to which `lhs` _et al._ belong.
/// - lhs: The left-hand operand expression.
/// - op: The operator expression.
/// - rhs: The right-hand operand expression.
/// - macro: The macro expression being expanded.
/// - context: The macro context in which the expression is being parsed.
///
/// - Returns: An instance of ``Condition`` describing `expr`.
///
/// This function currently only recognizes and converts simple binary operator
/// expressions. More complex expressions are treated as monolithic.
private func _parseCondition(from expr: ExprSyntax, leftOperand lhs: ExprSyntax, operator op: BinaryOperatorExprSyntax, rightOperand rhs: ExprSyntax, for macro: some FreestandingMacroExpansionSyntax, in context: some MacroExpansionContext) -> Condition {
return Condition(
"__checkBinaryOperation",
arguments: [
Argument(expression: lhs),
Argument(expression: "{ $0 \(op.trimmed) $1() }"),
Argument(expression: rhs)
],
expression: createExpressionExprForBinaryOperation(lhs, op, rhs)
)
}
/// Parse a condition argument from an `is` expression.
///
/// - Parameters:
/// - expr: The `is` expression.
/// - macro: The macro expression being expanded.
/// - context: The macro context in which the expression is being parsed.
///
/// - Returns: An instance of ``Condition`` describing `expr`.
private func _parseCondition(from expr: IsExprSyntax, for macro: some FreestandingMacroExpansionSyntax, in context: some MacroExpansionContext) -> Condition {
let expression = expr.expression
let type = expr.type
return Condition(
"__checkCast",
arguments: [
Argument(expression: expression),
Argument(label: .identifier("is"), expression: "(\(type.trimmed)).self")
],
expression: createExpressionExprForBinaryOperation(expression, expr.isKeyword, type)
)
}
/// Parse a condition argument from an `as?` expression.
///
/// - Parameters:
/// - expr: The `as?` expression.
/// - macro: The macro expression being expanded.
/// - context: The macro context in which the expression is being parsed.
///
/// - Returns: An instance of ``Condition`` describing `expr`.
private func _parseCondition(from expr: AsExprSyntax, for macro: some FreestandingMacroExpansionSyntax, in context: some MacroExpansionContext) -> Condition {
let expression = expr.expression
let type = expr.type
switch expr.questionOrExclamationMark?.tokenKind {
case .postfixQuestionMark:
return Condition(
"__checkCast",
arguments: [
Argument(expression: expression),
Argument(label: .identifier("as"), expression: "(\(type.trimmed)).self")
],
expression: createExpressionExprForBinaryOperation(expression, TokenSyntax.unknown("as?"), type)
)
case .exclamationMark where !type.isNamed("Bool", inModuleNamed: "Swift") && !type.isOptional:
// Warn that as! will be evaluated before #expect() or #require(), which is
// probably not what the developer intended. We suppress the warning for
// casts to Bool and casts to optional types. Presumably such casts are not
// being performed for their optional-unwrapping behavior, but because the
// developer knows the type of the expression better than we do.
context.diagnose(.asExclamationMarkIsEvaluatedEarly(expr, in: macro))
default:
// Only diagnose for `x as! T`. `x as T` is perfectly fine if it otherwise
// compiles. For example, `#require(x as Int?)` should compile.
//
// If the token after "as" is something else entirely and got through the
// type checker, just leave it alone as we don't recognize it.
break
}
return Condition(expression: expr)
}
/// Parse a condition argument from a closure expression.
///
/// - Parameters:
/// - expr: The closure expression.
/// - macro: The macro expression being expanded.
/// - context: The macro context in which the expression is being parsed.
///
/// - Returns: An instance of ``Condition`` describing `expr`.
private func _parseCondition(from expr: ClosureExprSyntax, for macro: some FreestandingMacroExpansionSyntax, in context: some MacroExpansionContext) -> Condition {
if expr.signature == nil && expr.statements.count == 1, let item = expr.statements.first?.item {
// TODO: capture closures as a different kind of Testing.Expression with a
// separate subexpression per code item.
// If a closure contains a single statement or declaration, we can't
// meaningfully break it down as an expression, but we can still capture its
// source representation.
return Condition(expression: expr, expressionNode: Syntax(item))
}
return Condition(expression: expr)
}
/// Extract the underlying expression from an optional-chained expression as
/// well as the number of question marks required to reach it.
///
/// - Parameters:
/// - expr: The expression to examine, typically the `base` expression of a
/// `MemberAccessExprSyntax` instance.
///
/// - Returns: A copy of `expr` with trailing question marks from optional
/// chaining removed, as well as a string containing the number of question
/// marks needed to access a member of `expr` after it has been assigned to
/// another variable. If `expr` does not contain any optional chaining, it is
/// returned verbatim along with the empty string.
///
/// This function is used when expanding member accesses (either functions or
/// properties) that could contain optional chaining expressions such as
/// `foo?.bar()`. Since, in this case, `bar()` is ultimately going to be called
/// on a closure argument (i.e. `$0`), it is necessary to determine the number
/// of question mark characters needed to correctly construct that expression
/// and to capture the underlying expression of `foo?` without question marks so
/// that it remains syntactically correct when used without `bar()`.
private func _exprFromOptionalChainedExpr(_ expr: some ExprSyntaxProtocol) -> (ExprSyntax, questionMarks: String) {
let originalExpr = expr
var expr = ExprSyntax(expr)
var questionMarkCount = 0
while let optionalExpr = expr.as(OptionalChainingExprSyntax.self) {
// If the rightmost base expression is an optional-chained member access
// expression (e.g. "bar?" in the member access expression
// "foo.bar?.isQuux"), drop the question mark.
expr = optionalExpr.expression
questionMarkCount += 1
}
// If the rightmost expression is not itself optional-chained, check if any of
// the member accesses in the expression use optional chaining and, if one
// does, ensure we preserve optional chaining in the macro expansion.
if questionMarkCount == 0 {
func isOptionalChained(_ expr: some ExprSyntaxProtocol) -> Bool {
if expr.is(OptionalChainingExprSyntax.self) {
return true
} else if let memberAccessBaseExpr = expr.as(MemberAccessExprSyntax.self)?.base {
return isOptionalChained(memberAccessBaseExpr)
}
return false
}
if isOptionalChained(originalExpr) {
questionMarkCount = 1
}
}
let questionMarks = String(repeating: "?", count: questionMarkCount)
return (expr, questionMarks)
}
/// Parse a condition argument from a member function call.
///
/// - Parameters:
/// - expr: The function call expression.
/// - macro: The macro expression being expanded.
/// - context: The macro context in which the expression is being parsed.
///
/// - Returns: An instance of ``Condition`` describing `expr`.
private func _parseCondition(from expr: FunctionCallExprSyntax, for macro: some FreestandingMacroExpansionSyntax, in context: some MacroExpansionContext) -> Condition {
// If the member function call involves the `try` or `await` keywords, assume
// we cannot expand it. This check cannot handle expressions like
// `try #expect(a.b(c))` where `b()` is throwing because the `try` keyword
// is outside the macro expansion. SEE: rdar://109470248
let containsTryOrAwait = expr.tokens(viewMode: .sourceAccurate).lazy
.map(\.tokenKind)
.contains { $0 == .keyword(.try) || $0 == .keyword(.await) }
if containsTryOrAwait {
return Condition(expression: expr)
}
// We do not support function calls with trailing closures because the
// transform required to forward them requires more information than is
// available solely from the syntax tree.
if expr.trailingClosure != nil {
return Condition(expression: expr)
}
// We also do not support expansion of closure invocations as they are
// diagnostically uninteresting.
if expr.calledExpression.is(ClosureExprSyntax.self) {
return Condition(expression: expr)
}
let memberAccessExpr = expr.calledExpression.as(MemberAccessExprSyntax.self)
let functionName = memberAccessExpr.map(\.declName.baseName).map(Syntax.init) ?? Syntax(expr.calledExpression)
let argumentList = expr.arguments.map(Argument.init)
let inOutArguments: [InOutExprSyntax] = argumentList.lazy
.map(\.expression)
.compactMap({ $0.as(InOutExprSyntax.self) })
if inOutArguments.count > 1 {
// There is more than one inout argument present. This requires that the
// corresponding __check() function support variadic generics, but there is
// a compiler bug preventing us from implementing variadic inout support.
return Condition(expression: expr)
} else if inOutArguments.count != 0 && inOutArguments.count != argumentList.count {
// There is a mix of inout and normal arguments. That's not feasible for
// us to support here, so back out.
return Condition(expression: expr)
}
// Which __check() function are we calling?
let expandedFunctionName = inOutArguments.isEmpty ? "__checkFunctionCall" : "__checkInoutFunctionCall"
let indexedArguments = argumentList.lazy
.enumerated()
.map { index, argument in
if argument.expression.is(InOutExprSyntax.self) {
return Argument(label: argument.label, expression: "&$\(raw: index + 1)")
}
return Argument(label: argument.label, expression: "$\(raw: index + 1)")
}
let forwardedArguments = argumentList.lazy
.map(\.expression)
.map { Argument(expression: $0) }
var baseExprForExpression: ExprSyntax?
var conditionArguments = [Argument]()
if let memberAccessExpr, var baseExpr = memberAccessExpr.base {
let questionMarks: String
(baseExpr, questionMarks) = _exprFromOptionalChainedExpr(baseExpr)
baseExprForExpression = baseExpr
conditionArguments.append(Argument(expression: "\(baseExpr.trimmed).self")) // BUG: rdar://113152370
conditionArguments.append(
Argument(
label: "calling",
expression: """
{
$0\(raw: questionMarks).\(functionName.trimmed)(\(LabeledExprListSyntax(indexedArguments)))
}
"""
)
)
} else {
// Substitute an empty tuple for the self argument, and call the function
// directly (without having to reorder the numbered closure arguments.) If
// the function takes zero arguments, we'll also need to suppress $0 in the
// closure body since it is unused.
let parameterList = forwardedArguments.isEmpty ? "_ in" : ""
conditionArguments.append(Argument(expression: "()"))
// If memberAccessExpr is not nil here, that means it had a nil base
// expression (i.e. the base is inferred.)
var dot: TokenSyntax?
if memberAccessExpr != nil {
dot = .periodToken()
}
conditionArguments.append(
Argument(
label: "calling",
expression: """
{ \(raw: parameterList)
\(dot)\(functionName.trimmed)(\(LabeledExprListSyntax(indexedArguments)))
}
"""
)
)
}
conditionArguments += forwardedArguments
return Condition(
expandedFunctionName,
arguments: conditionArguments,
expression: createExpressionExprForFunctionCall(baseExprForExpression, functionName, argumentList)
)
}
/// Parse a condition argument from a property access.
///
/// - Parameters:
/// - expr: The member access expression.
/// - macro: The macro expression being expanded.
/// - context: The macro context in which the expression is being parsed.
///
/// - Returns: An instance of ``Condition`` describing `expr`.
private func _parseCondition(from expr: MemberAccessExprSyntax, for macro: some FreestandingMacroExpansionSyntax, in context: some MacroExpansionContext) -> Condition {
// Only handle member access expressions where the base expression is known
// and where there are no argument names (which would otherwise indicate a
// reference to a member function which wouldn't resolve to anything useful at
// runtime.)
guard var baseExpr = expr.base, expr.declName.argumentNames == nil else {
return Condition(expression: expr)
}
let questionMarks: String
(baseExpr, questionMarks) = _exprFromOptionalChainedExpr(baseExpr)
return Condition(
"__checkPropertyAccess",
arguments: [
Argument(expression: "\(baseExpr.trimmed).self"),
Argument(label: "getting", expression: "{ $0\(raw: questionMarks).\(expr.declName.baseName) }")
],
expression: createExpressionExprForPropertyAccess(baseExpr, expr.declName)
)
}
/// Parse a condition argument from a property access.
///
/// - Parameters:
/// - expr: The expression that was negated.
/// - isParenthetical: Whether or not `expression` was enclosed in
/// parentheses (and the `!` operator was outside it.) This argument
/// affects how this expression is represented as a string.
/// - macro: The macro expression being expanded.
/// - context: The macro context in which the expression is being parsed.
///
/// - Returns: An instance of ``Condition`` describing `expr`.
private func _parseCondition(negating expr: ExprSyntax, isParenthetical: Bool, for macro: some FreestandingMacroExpansionSyntax, in context: some MacroExpansionContext) -> Condition {
var result = _parseCondition(from: expr, for: macro, in: context)
result.expression = createExpressionExprForNegation(of: result.expression, isParenthetical: isParenthetical)
return result
}
/// Parse a condition argument from an arbitrary expression.
///
/// - Parameters:
/// - expr: The condition expression to parse.
/// - macro: The macro expression being expanded.
/// - context: The macro context in which the expression is being parsed.
///
/// - Returns: An instance of ``Condition`` describing `expr`.
private func _parseCondition(from expr: ExprSyntax, for macro: some FreestandingMacroExpansionSyntax, in context: some MacroExpansionContext) -> Condition {
if let infixOperator = expr.as(InfixOperatorExprSyntax.self),
let op = infixOperator.operator.as(BinaryOperatorExprSyntax.self) {
return _parseCondition(from: expr, leftOperand: infixOperator.leftOperand, operator: op, rightOperand: infixOperator.rightOperand, for: macro, in: context)
}
// Handle `is` and `as?` expressions.
if let isExpr = expr.as(IsExprSyntax.self) {
return _parseCondition(from: isExpr, for: macro, in: context)
} else if let asExpr = expr.as(AsExprSyntax.self) {
return _parseCondition(from: asExpr, for: macro, in: context)
}
// Handle closures with a single expression in them (e.g. { $0.foo() })
if let closureExpr = expr.as(ClosureExprSyntax.self) {
return _parseCondition(from: closureExpr, for: macro, in: context)
}
// Handle function calls and member accesses.
if let functionCallExpr = expr.as(FunctionCallExprSyntax.self) {
return _parseCondition(from: functionCallExpr, for: macro, in: context)
} else if let memberAccessExpr = expr.as(MemberAccessExprSyntax.self) {
return _parseCondition(from: memberAccessExpr, for: macro, in: context)
}
// Handle negation.
if let negatedExpr = _negatedExpression(expr) {
return _parseCondition(negating: negatedExpr.0, isParenthetical: negatedExpr.isParenthetical, for: macro, in: context)
}
// Parentheses are parsed as if they were tuples, so (true && false) appears
// to the parser as a tuple containing one expression, `true && false`.
if let expr = removeParentheses(from: expr) {
return _parseCondition(from: expr, for: macro, in: context)
}
return Condition(expression: expr)
}
// MARK: -
/// Parse a condition argument from an arbitrary expression.
///
/// - Parameters:
/// - expr: The condition expression to parse.
/// - macro: The macro expression being expanded.
/// - context: The macro context in which the expression is being parsed.
///
/// - Returns: An instance of ``Condition`` describing `expr`.
func parseCondition(from expr: ExprSyntax, for macro: some FreestandingMacroExpansionSyntax, in context: some MacroExpansionContext) -> Condition {
_diagnoseTrivialBooleanValue(from: expr, for: macro, in: context)
let result = _parseCondition(from: expr, for: macro, in: context)
return result
}
|