File: Stack.swift

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (222 lines) | stat: -rw-r--r-- 7,263 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
//===--- Stack.swift - defines the Stack data structure -------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2022 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//

import OptimizerBridging
import SIL

/// A very efficient implementation of a stack, which can also be iterated over.
///
/// A Stack is the best choice for things like worklists, etc., if no random
/// access is needed.
/// Compared to Array, it does not require any memory allocations, because it
/// uses a recycling bump pointer allocator for allocating the slabs.
/// All operations have (almost) zero cost.
///
/// This type should be a move-only type, but unfortunately we don't have move-only
/// types yet. Therefore it's needed to call `deinitialize()` explicitly to
/// destruct this data structure, e.g. in a `defer {}` block.
struct Stack<Element> : CollectionLikeSequence {

  private let bridgedContext: BridgedPassContext
  private var firstSlab = BridgedPassContext.Slab(nil)
  private var lastSlab = BridgedPassContext.Slab(nil)
  private var endIndex: Int = 0

  private static var slabCapacity: Int {
    BridgedPassContext.Slab.getCapacity() / MemoryLayout<Element>.stride
  }

  private func allocate(after lastSlab: BridgedPassContext.Slab? = nil) -> BridgedPassContext.Slab {
    let lastSlab = lastSlab ?? BridgedPassContext.Slab(nil)
    let newSlab = bridgedContext.allocSlab(lastSlab)
    UnsafeMutableRawPointer(newSlab.data!).bindMemory(to: Element.self, capacity: Stack.slabCapacity)
    return newSlab
  }

  private static func element(in slab: BridgedPassContext.Slab, at index: Int) -> Element {
    return pointer(in: slab, at: index).pointee
  }

  private static func pointer(in slab: BridgedPassContext.Slab, at index: Int) -> UnsafeMutablePointer<Element> {
    return UnsafeMutableRawPointer(slab.data!).assumingMemoryBound(to: Element.self) + index
  }

  struct Iterator : IteratorProtocol {
    var slab: BridgedPassContext.Slab
    var index: Int
    let lastSlab: BridgedPassContext.Slab
    let endIndex: Int
    
    mutating func next() -> Element? {
      let end = (slab.data == lastSlab.data ? endIndex : slabCapacity)
      
      guard index < end else { return nil }
    
      let elem = Stack.element(in: slab, at: index)
      index += 1
      
      if index >= end && slab.data != lastSlab.data {
        slab = slab.getNext()
        index = 0
      }
      return elem
    }
  }
  
  init(_ context: some Context) { self.bridgedContext = context._bridged }

  func makeIterator() -> Iterator {
    return Iterator(slab: firstSlab, index: 0, lastSlab: lastSlab, endIndex: endIndex)
  }

  var first: Element? {
    isEmpty ? nil : Stack.element(in: firstSlab, at: 0)
  }

  var last: Element? {
    isEmpty ? nil : Stack.element(in: lastSlab, at: endIndex &- 1)
  }

  mutating func push(_ element: Element) {
    if endIndex >= Stack.slabCapacity {
      lastSlab = allocate(after: lastSlab)
      endIndex = 0
    } else if firstSlab.data == nil {
      assert(endIndex == 0)
      firstSlab = allocate()
      lastSlab = firstSlab
    }
    Stack.pointer(in: lastSlab, at: endIndex).initialize(to: element)
    endIndex += 1
  }

  /// The same as `push` to provide an Array-like append API.
  mutating func append(_ element: Element) { push(element) }

  mutating func append<S: Sequence>(contentsOf other: S) where S.Element == Element {
    for elem in other {
      append(elem)
    }
  }

  var isEmpty: Bool { return endIndex == 0 }
  
  mutating func pop() -> Element? {
    if isEmpty {
      return nil
    }
    assert(endIndex > 0)
    endIndex -= 1
    let elem = Stack.pointer(in: lastSlab, at: endIndex).move()
    
    if endIndex == 0 {
      if lastSlab.data == firstSlab.data {
        _ = bridgedContext.freeSlab(lastSlab)
        firstSlab.data = nil
        lastSlab.data = nil
        endIndex = 0
      } else {
        lastSlab = bridgedContext.freeSlab(lastSlab)
        endIndex = Stack.slabCapacity
      }
    }

    return elem
  }
  
  mutating func removeAll() {
    while pop() != nil { }
  }

  /// TODO: once we have move-only types, make this a real deinit.
  mutating func deinitialize() { removeAll() }
}

extension Stack {
  /// Mark a stack location for future iteration.
  ///
  /// TODO: Marker should be ~Escapable.
  struct Marker {
    let slab: BridgedPassContext.Slab
    let index: Int
  }

  var top: Marker { Marker(slab: lastSlab, index: endIndex) }

  struct Segment : CollectionLikeSequence {
    let low: Marker
    let high: Marker

    init(in stack: Stack, low: Marker, high: Marker) {
      if low.slab.data == nil {
        assert(low.index == 0, "invalid empty stack marker")
        // `low == nil` and `high == nil` is a valid empty segment,
        // even though `assertValid(marker:)` would return false.
        if high.slab.data != nil {
          stack.assertValid(marker: high)
        }
        self.low = Marker(slab: stack.firstSlab, index: 0)
        self.high = high
        return
      }
      stack.assertValid(marker: low)
      stack.assertValid(marker: high)
      self.low = low
      self.high = high
    }

    func makeIterator() -> Stack.Iterator {
      return Iterator(slab: low.slab, index: low.index,
                      lastSlab: high.slab, endIndex: high.index)
    }
  }

  /// Assert that `marker` is valid based on the current `top`.
  ///
  /// This is an assert rather than a query because slabs can reuse
  /// memory leading to a stale marker that appears valid.
  func assertValid(marker: Marker) {
    var currentSlab = lastSlab
    var currentIndex = endIndex
    while currentSlab.data != marker.slab.data {
      assert(currentSlab.data != firstSlab.data, "Invalid stack marker")
      currentSlab = currentSlab.getPrevious()
      currentIndex = Stack.slabCapacity
    }
    assert(marker.index <= currentIndex, "Invalid stack marker")
  }

  /// Execute the `body` closure, passing it `self` for further
  /// mutation of the stack and passing `marker` to mark the stack
  /// position prior to executing `body`. `marker` must not escape the
  /// `body` closure.
  mutating func withMarker<R>(
    _ body: (inout Stack<Element>, Marker) throws -> R) rethrows -> R {
    return try body(&self, top)
  }

  /// Record a stack marker, execute a `body` closure, then execute a
  /// `handleNewElements` closure with the Segment that contains all
  /// elements that remain on the stack after being pushed on the
  /// stack while executing `body`. `body` must push more elements
  /// than it pops.
  mutating func withMarker<R>(
    pushElements body: (inout Stack) throws -> R,
    withNewElements handleNewElements: ((Segment) -> ())
  ) rethrows -> R {
    return try withMarker { (stack: inout Stack<Element>, marker: Marker) in
      let result = try body(&stack)
      handleNewElements(Segment(in: stack, low: marker, high: stack.top))
      return result
    }
  }
}