1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
|
//===--- DeadStoreElimination.swift ----------------------------------------==//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2023 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
import SIL
/// Eliminates dead store instructions.
///
/// A store is dead if, after the store has occurred:
///
/// 1. The value in memory is not read until the memory object is deallocated:
///
/// %1 = alloc_stack
/// ...
/// store %2 to %1
/// ... // no reads from %1
/// dealloc_stack %1
///
/// 2. The value in memory is overwritten by another store before any potential read:
///
/// store %2 to %1
/// ... // no reads from %1
/// store %3 to %1
///
/// In case of a partial dead store, the store is split so that some of the new
/// individual stores can be eliminated in the next round of the optimization:
///
/// store %2 to %1 // partially dead
/// ... // no reads from %1
/// %3 = struct_element_addr %1, #field1
/// store %7 to %3
/// ->
/// %3 = struct_extract %2, #field1
/// %4 = struct_element_addr %1, #field1
/// store %3 to %4 // this store is dead now
/// %5 = struct_extract %2, #field2
/// %6 = struct_element_addr %1, #field2
/// store %5 to %6
/// ... // no reads from %1
/// store %7 to %3
///
/// The algorithm is a data flow analysis which starts at the original store and searches
/// for successive stores by following the control flow in forward direction.
///
let deadStoreElimination = FunctionPass(name: "dead-store-elimination") {
(function: Function, context: FunctionPassContext) in
// Avoid quadratic complexity by limiting the number of visited instructions.
// This limit is sufficient for most "real-world" functions, by far.
var complexityBudget = 10_000
for block in function.blocks {
// We cannot use for-in iteration here because if the store is split, the new
// individual stores are inserted right afterwards and they would be ignored by a for-in iteration.
var inst = block.instructions.first
while let i = inst {
if let store = i as? StoreInst {
if !context.continueWithNextSubpassRun(for: store) {
return
}
tryEliminate(store: store, complexityBudget: &complexityBudget, context)
}
inst = i.next
}
}
}
private func tryEliminate(store: StoreInst, complexityBudget: inout Int, _ context: FunctionPassContext) {
if !store.hasValidOwnershipForDeadStoreElimination {
return
}
switch store.isDead(complexityBudget: &complexityBudget, context) {
case .alive:
break
case .dead:
context.erase(instruction: store)
case .maybePartiallyDead(let subPath):
// Check if the a partial store would really be dead to avoid unnecessary splitting.
switch store.isDead(at: subPath, complexityBudget: &complexityBudget, context) {
case .alive, .maybePartiallyDead:
break
case .dead:
// The new individual stores are inserted right after the current store and
// will be optimized in the following loop iterations.
store.trySplit(context)
}
}
}
private extension StoreInst {
enum DataflowResult {
case alive
case dead
case maybePartiallyDead(AccessPath)
init(aliveWith subPath: AccessPath?) {
if let subPath = subPath {
self = .maybePartiallyDead(subPath)
} else {
self = .alive
}
}
}
func isDead(complexityBudget: inout Int, _ context: FunctionPassContext) -> DataflowResult {
return isDead(at: destination.accessPath, complexityBudget: &complexityBudget, context)
}
func isDead(at accessPath: AccessPath, complexityBudget: inout Int, _ context: FunctionPassContext) -> DataflowResult {
var scanner = InstructionScanner(storePath: accessPath, storeAddress: self.destination, context.aliasAnalysis)
let storageDefBlock = accessPath.base.reference?.referenceRoot.parentBlock
switch scanner.scan(instructions: InstructionList(first: self.next), complexityBudget: &complexityBudget) {
case .dead:
return .dead
case .alive:
return DataflowResult(aliveWith: scanner.potentiallyDeadSubpath)
case .transparent:
// Continue with iterative data flow analysis starting at the block's successors.
var worklist = BasicBlockWorklist(context)
defer { worklist.deinitialize() }
worklist.pushIfNotVisited(contentsOf: self.parentBlock.successors)
while let block = worklist.pop() {
// Abort if we find the storage definition of the access in case of a loop, e.g.
//
// bb1:
// %storage_root = apply
// %2 = ref_element_addr %storage_root
// store %3 to %2
// cond_br %c, bb1, bb2
//
// The storage root is different in each loop iteration. Therefore the store of a
// successive loop iteration does not overwrite the store of the previous iteration.
if let storageDefBlock = storageDefBlock, block == storageDefBlock {
return DataflowResult(aliveWith: scanner.potentiallyDeadSubpath)
}
switch scanner.scan(instructions: block.instructions, complexityBudget: &complexityBudget) {
case .transparent:
worklist.pushIfNotVisited(contentsOf: block.successors)
case .dead:
break
case .alive:
return DataflowResult(aliveWith: scanner.potentiallyDeadSubpath)
}
}
return .dead
}
}
var hasValidOwnershipForDeadStoreElimination: Bool {
switch storeOwnership {
case .unqualified, .trivial:
return true
case .initialize, .assign:
// In OSSA, non-trivial values cannot be dead-store eliminated because that could shrink
// the lifetime of the original stored value (because it's not kept in memory anymore).
return false
}
}
}
private struct InstructionScanner {
private let storePath: AccessPath
private let storeAddress: Value
private let aliasAnalysis: AliasAnalysis
private(set) var potentiallyDeadSubpath: AccessPath? = nil
init(storePath: AccessPath, storeAddress: Value, _ aliasAnalysis: AliasAnalysis) {
self.storePath = storePath
self.storeAddress = storeAddress
self.aliasAnalysis = aliasAnalysis
}
enum Result {
case alive
case dead
case transparent
}
mutating func scan(instructions: InstructionList, complexityBudget: inout Int) -> Result {
for inst in instructions {
switch inst {
case let successiveStore as StoreInst:
let successivePath = successiveStore.destination.accessPath
if successivePath.isEqualOrContains(storePath) {
return .dead
}
if potentiallyDeadSubpath == nil,
storePath.getMaterializableProjection(to: successivePath) != nil {
// Storing to a sub-field of the original store doesn't make the original store dead.
// But when we split the original store, then one of the new individual stores might be
// overwritten by this store.
// Requiring that the projection to the partial store path is materializable guarantees
// that we can split the store.
potentiallyDeadSubpath = successivePath
}
case is DeallocRefInst, is DeallocStackRefInst, is DeallocBoxInst:
if (inst as! Deallocation).isDeallocation(of: storePath.base) {
return .dead
}
case let ds as DeallocStackInst:
if ds.isStackDeallocation(of: storePath.base) {
return .dead
}
case is FixLifetimeInst, is EndAccessInst:
break
case let term as TermInst:
if term.isFunctionExiting {
return .alive
}
fallthrough
default:
complexityBudget -= 1
if complexityBudget <= 0 {
return .alive
}
if inst.mayRead(fromAddress: storeAddress, aliasAnalysis) {
return .alive
}
// TODO: We might detect that this is a partial read of the original store which potentially
// enables partial dead store elimination.
}
}
return .transparent
}
}
private extension Deallocation {
func isDeallocation(of base: AccessBase) -> Bool {
if let accessReference = base.reference,
accessReference.referenceRoot == self.allocatedValue.referenceRoot {
return true
}
return false
}
}
private extension DeallocStackInst {
func isStackDeallocation(of base: AccessBase) -> Bool {
if case .stack(let allocStack) = base, allocstack == allocStack {
return true
}
return false
}
}
|