1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
//===--- LetPropertyLowering.swift -----------------------------------------==//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2023 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
import SIL
/// Lowers let property accesses of classes.
///
/// Lowering consists of two tasks:
///
/// * In class initializers, insert `end_init_let_ref` instructions at places where all let-fields are initialized.
/// This strictly separates the life-range of the class into a region where let fields are still written during
/// initialization and a region where let fields are truly immutable.
///
/// * Add the `[immutable]` flag to all `ref_element_addr` instructions (for let-fields) which are in the "immutable"
/// region. This includes the region after an inserted `end_init_let_ref` in an class initializer, but also all
/// let-field accesses in other functions than the initializer and the destructor.
///
/// This pass should run after DefiniteInitialization but before RawSILInstLowering (because it relies on
/// `mark_uninitialized` still present in the class initializer).
///
/// Note that it's not mandatory to run this pass. If it doesn't run, SIL is still correct.
///
/// Simplified example (after lowering):
///
/// bb0(%0 : @owned C): // = self of the class initializer
/// %1 = mark_uninitialized %0
/// %2 = ref_element_addr %1, #C.l // a let-field
/// store %init_value to %2
/// %3 = end_init_let_ref %1 // inserted by lowering
/// %4 = ref_element_addr [immutable] %3, #C.l // set to immutable by lowering
/// %5 = load %4
///
let letPropertyLowering = FunctionPass(name: "let-property-lowering") {
(function: Function, context: FunctionPassContext) in
assert(context.silStage == .raw, "let-property-lowering must run before RawSILInstLowering")
if context.hadError {
// If DefiniteInitialization (or other passes) already reported an error, we cannot assume valid SIL anymore.
return
}
if function.isDestructor {
// Let-fields are not immutable in the class destructor.
return
}
for inst in function.instructions {
switch inst {
// First task of lowering: insert `end_init_let_ref` instructions in class initializers.
case let markUninitialized as MarkUninitializedInst
where markUninitialized.type.isClass &&
// TODO: support move-only classes
!markUninitialized.type.isMoveOnly &&
// We only have to do that for root classes because derived classes call the super-initializer
// _after_ all fields in the derived class are already initialized.
markUninitialized.kind == .rootSelf:
insertEndInitInstructions(for: markUninitialized, context)
// Second task of lowering: set the `immutable` flags.
case let rea as RefElementAddrInst
where rea.fieldIsLet && !rea.isInUninitializedRegion &&
// TODO: support move-only classes
!rea.instance.type.isMoveOnly:
rea.set(isImmutable: true, context)
default:
break
}
}
}
private func insertEndInitInstructions(for markUninitialized: MarkUninitializedInst, _ context: FunctionPassContext) {
assert(!markUninitialized.type.isAddress, "self of class should not be an address")
// The region which contains all let-field initializations, including any partial
// let-field de-initializations (in case of a fail-able or throwing initializer).
var initRegion = InstructionRange(begin: markUninitialized, context)
defer { initRegion.deinitialize() }
constructLetInitRegion(of: markUninitialized, result: &initRegion, context)
insertEndInitInstructions(for: markUninitialized, atEndOf: initRegion, context)
}
private func insertEndInitInstructions(
for markUninitialized: MarkUninitializedInst,
atEndOf initRegion: InstructionRange,
_ context: FunctionPassContext
) {
var ssaUpdater = SSAUpdater(function: markUninitialized.parentFunction,
type: markUninitialized.type, ownership: .owned, context)
ssaUpdater.addAvailableValue(markUninitialized, in: markUninitialized.parentBlock)
for endInst in initRegion.ends {
let builder = Builder(after: endInst, context)
let newValue = builder.createEndInitLetRef(operand: markUninitialized)
ssaUpdater.addAvailableValue(newValue, in: endInst.parentBlock)
}
for exitInst in initRegion.exits {
let builder = Builder(before: exitInst, context)
let newValue = builder.createEndInitLetRef(operand: markUninitialized)
ssaUpdater.addAvailableValue(newValue, in: exitInst.parentBlock)
}
for use in markUninitialized.uses {
if !initRegion.inclusiveRangeContains(use.instruction) &&
!(use.instruction is EndInitLetRefInst)
{
use.set(to: ssaUpdater.getValue(atEndOf: use.instruction.parentBlock), context)
}
}
}
private func constructLetInitRegion(
of markUninitialized: MarkUninitializedInst,
result initRegion: inout InstructionRange,
_ context: FunctionPassContext
) {
// Adding the initial `mark_uninitialized` ensures that a single `end_init_let_ref` is inserted (after the
// `mark_uninitialized`) in case there are no let-field accesses at all.
// Note that we have to insert an `end_init_let_ref` even if there are no let-field initializations, because
// derived classes could have let-field initializations in their initializers (which eventually call the
// root-class initializer).
initRegion.insert(markUninitialized)
var borrows = Stack<BorrowIntroducingInstruction>(context)
defer { borrows.deinitialize() }
for inst in markUninitialized.parentFunction.instructions {
switch inst {
case let assign as AssignInst
where assign.destination.isLetFieldAddress(of: markUninitialized):
assert(assign.assignOwnership == .initialize)
initRegion.insert(inst)
case let store as StoreInst
where store.destination.isLetFieldAddress(of: markUninitialized):
assert(store.storeOwnership != .assign)
initRegion.insert(inst)
case let copy as CopyAddrInst
where copy.destination.isLetFieldAddress(of: markUninitialized):
assert(copy.isInitializationOfDest)
initRegion.insert(inst)
case let beginAccess as BeginAccessInst
where beginAccess.accessKind == .deinit &&
beginAccess.address.isLetFieldAddress(of: markUninitialized):
// Include let-field partial de-initializations in the region.
initRegion.insert(inst)
case let beginBorrow as BeginBorrowInst
where beginBorrow.borrowedValue.isReferenceDerived(from: markUninitialized):
borrows.append(beginBorrow)
case let storeBorrow as StoreBorrowInst
where storeBorrow.source.isReferenceDerived(from: markUninitialized):
borrows.append(storeBorrow)
default:
break
}
}
// Extend the region to whole borrow scopes to avoid that we insert an `end_init_let_ref` in the
// middle of a borrow scope.
for borrow in borrows where initRegion.contains(borrow) {
initRegion.insert(borrowScopeOf: borrow, context)
}
}
private extension RefElementAddrInst {
var isInUninitializedRegion: Bool {
var root = self.instance
while true {
switch root {
case let beginBorrow as BeginBorrowInst:
root = beginBorrow.borrowedValue
case let loadBorrow as LoadBorrowInst:
// Initializers of derived classes store `self` into a stack location from where
// it's loaded via a `load_borrow`.
root = loadBorrow.address
case is MarkUninitializedInst:
return true
default:
return false
}
}
}
}
private extension Value {
func isReferenceDerived(from root: Value) -> Bool {
var parent: Value = self
while true {
if parent == root {
return true
}
if let operand = parent.forwardingInstruction?.singleForwardedOperand {
parent = operand.value
continue
}
if let transition = parent.definingInstruction as? OwnershipTransitionInstruction {
parent = transition.operand.value
continue
}
return false
}
}
func isLetFieldAddress(of markUninitialized: MarkUninitializedInst) -> Bool {
if case .class(let rea) = self.accessBase,
rea.fieldIsLet,
rea.instance.isReferenceDerived(from: markUninitialized)
{
return true
}
return false
}
}
|