File: RedundantLoadElimination.swift

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (592 lines) | stat: -rw-r--r-- 21,749 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
//===--- RedundantLoadElimination.swift ------------------------------------==//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2023 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//

import SIL

/// Replaces redundant load instructions with already available values.
///
/// A load is redundant if the loaded value is already available at that point.
/// This can be via a preceding store to the same address:
///
///     store %1 to %addr
///     ...               // no writes to %addr
///     %2 = load %addr
/// ->
///     store %1 to %addr
///     ...               // no writes to %addr
///     // replace uses of %2 with the available value %1
///
/// or a preceding load from the same address:
///
///     %1 = load %addr
///     ...               // no writes to %addr
///     %2 = load %addr
/// ->
///     %1 = load %addr
///     ...               // no writes to %addr
///     // replace uses of %2 with the available value %1
///
/// In case of a partial redundant load, the load is split so that some of the new
/// individual loads can be eliminated in the next round of the optimization:
///
///     %fa1 = struct_element_addr %addr, #field1
///     store %1 to %fa1
///     ...               // no writes to %fa1
///     %2 = load %addr   // partially redundant
/// ->
///     %fa1 = struct_extract %addr, #field1
///     store %1 to %fa1
///     ...               // no writes to %fa1
///     %fa1 = struct_element_addr %addr, #field1
///     %f1 = load %fa1                              // this load is redundant now
///     %fa2 = struct_element_addr %addr, #field2
///     %f2 = load %fa2
///     %2 = struct (%f1, %f2)
///
/// The algorithm is a data flow analysis which starts at the original load and searches
/// for preceding stores or loads by following the control flow in backward direction.
/// The preceding stores and loads provide the "available values" with which the original
/// load can be replaced.
///
/// If the function is in OSSA, redundant loads are replaced in a way that no additional
/// copies of the loaded value are introduced. If this is not possible, the redundant load
/// is not replaced.
///
let redundantLoadElimination = FunctionPass(name: "redundant-load-elimination") {
    (function: Function, context: FunctionPassContext) in
  eliminateRedundantLoads(in: function, ignoreArrays: false, context)
}

// Early RLE does not touch loads from Arrays. This is important because later array optimizations,
// like ABCOpt, get confused if an array load in a loop is converted to a pattern with a phi argument.
let earlyRedundantLoadElimination = FunctionPass(name: "early-redundant-load-elimination") {
    (function: Function, context: FunctionPassContext) in
  eliminateRedundantLoads(in: function, ignoreArrays: true, context)
}

private func eliminateRedundantLoads(in function: Function, ignoreArrays: Bool, _ context: FunctionPassContext) {

  // Avoid quadratic complexity by limiting the number of visited instructions.
  // This limit is sufficient for most "real-world" functions, by far.
  var complexityBudget = 50_000

  for block in function.blocks.reversed() {

    // We cannot use for-in iteration here because if the load is split, the new
    // individual loads are inserted right before and they would be ignored by a for-in iteration.
    var inst = block.instructions.reversed().first
    while let i = inst {
      defer { inst = i.previous }

      if let load = inst as? LoadInst {
        if !context.continueWithNextSubpassRun(for: load) {
          return
        }
        if ignoreArrays && load.type.isNominal && load.type.nominal == context.swiftArrayDecl {
          continue
        }
        tryEliminate(load: load, complexityBudget: &complexityBudget, context)
      }
    }
  }
}

private func tryEliminate(load: LoadInst, complexityBudget: inout Int, _ context: FunctionPassContext) {
  switch load.isRedundant(complexityBudget: &complexityBudget, context) {
  case .notRedundant:
    break
  case .redundant(let availableValues):
    replace(load: load, with: availableValues, context)
  case .maybePartiallyRedundant(let subPath):
    // Check if the a partial load would really be redundant to avoid unnecessary splitting.
    switch load.isRedundant(at: subPath, complexityBudget: &complexityBudget, context) {
      case .notRedundant, .maybePartiallyRedundant:
        break
      case .redundant:
        // The new individual loads are inserted right before the current load and
        // will be optimized in the following loop iterations.
        load.trySplit(context)
    }
  }
}

private extension LoadInst {

  enum DataflowResult {
    case notRedundant
    case redundant([AvailableValue])
    case maybePartiallyRedundant(AccessPath)

    init(notRedundantWith subPath: AccessPath?) {
      if let subPath = subPath {
        self = .maybePartiallyRedundant(subPath)
      } else {
        self = .notRedundant
      }
    }
  }

  func isRedundant(complexityBudget: inout Int, _ context: FunctionPassContext) -> DataflowResult {
    return isRedundant(at: address.accessPath, complexityBudget: &complexityBudget, context)
  }

  func isRedundant(at accessPath: AccessPath, complexityBudget: inout Int, _ context: FunctionPassContext) -> DataflowResult {
    var scanner = InstructionScanner(load: self, accessPath: accessPath, context.aliasAnalysis)

    switch scanner.scan(instructions: ReverseInstructionList(first: self.previous),
                        in: parentBlock,
                        complexityBudget: &complexityBudget)
    {
    case .overwritten:
      return DataflowResult(notRedundantWith: scanner.potentiallyRedundantSubpath)
    case .available:
      return .redundant(scanner.availableValues)
    case .transparent:
      return self.isRedundantInPredecessorBlocks(scanner: &scanner, complexityBudget: &complexityBudget, context)
    }
  }

  private func isRedundantInPredecessorBlocks(
    scanner: inout InstructionScanner,
    complexityBudget: inout Int,
    _ context: FunctionPassContext
  ) -> DataflowResult {

    var liferange = Liferange(endBlock: self.parentBlock, context)
    defer { liferange.deinitialize() }
    liferange.pushPredecessors(of: self.parentBlock)

    while let block = liferange.pop() {
      switch scanner.scan(instructions: block.instructions.reversed(),
                          in: block,
                          complexityBudget: &complexityBudget)
      {
      case .overwritten:
        return DataflowResult(notRedundantWith: scanner.potentiallyRedundantSubpath)
      case .available:
        liferange.add(beginBlock: block)
      case .transparent:
        liferange.pushPredecessors(of: block)
      }
    }
    if !self.canReplaceWithoutInsertingCopies(liferange: liferange, context) {
      return DataflowResult(notRedundantWith: scanner.potentiallyRedundantSubpath)
    }
    return .redundant(scanner.availableValues)
  }

  func canReplaceWithoutInsertingCopies(liferange: Liferange,_ context: FunctionPassContext) -> Bool {
    switch self.loadOwnership {
    case .trivial, .unqualified:
      return true

    case .copy, .take:
      let deadEndBlocks = context.deadEndBlocks

      // The liferange of the value has an "exit", i.e. a path which doesn't lead to the load,
      // it means that we would have to insert a destroy on that exit to satisfy ownership rules.
      // But an inserted destroy also means that we would need to insert copies of the value which
      // were not there originally. For example:
      //
      //     store %1 to [init] %addr
      //     cond_br bb1, bb2
      //   bb1:
      //     %2 = load [take] %addr
      //   bb2:                      // liferange exit
      //
      // TODO: we could extend OSSA to transfer ownership to support liferange exits without copying. E.g.:
      //
      //     %b = store_and_borrow %1 to [init] %addr   // %b is borrowed from %addr
      //     cond_br bb1, bb2
      //   bb1:
      //     %o = borrowed_to_owned %b take_ownership_from %addr
      //     // replace %2 with %o
      //   bb2:
      //     end_borrow %b
      //
      if liferange.hasExits(deadEndBlocks) {
        return false
      }

      // Handle a corner case: if the load is in an infinite loop, the liferange doesn't have an exit,
      // but we still would need to insert a copy. For example:
      //
      //     store %1 to [init] %addr
      //     br bb1
      //   bb1:
      //     %2 = load [copy] %addr   // would need to insert a copy here
      //    br bb1                    // no exit from the liferange
      //
      // For simplicity, we don't handle this in OSSA.
      if deadEndBlocks.isDeadEnd(parentBlock) {
        return false
      }
      return true
    }
  }
}

private func replace(load: LoadInst, with availableValues: [AvailableValue], _ context: FunctionPassContext) {
  var ssaUpdater = SSAUpdater(function: load.parentFunction,
                              type: load.type, ownership: load.ownership, context)

  for availableValue in availableValues {
    let block = availableValue.instruction.parentBlock
    let availableValue = provideValue(for: load, from: availableValue, context)
    ssaUpdater.addAvailableValue(availableValue, in: block)
  }

  let newValue: Value
  if availableValues.count == 1 {
    // A single available value means that this available value is located _before_ the load. E.g.:
    //
    //     store %1 to %addr   // a single available value
    //     ...
    //     %2 = load %addr     // The load
    //
    newValue = ssaUpdater.getValue(atEndOf: load.parentBlock)
  } else {
    // In case of multiple available values, if an available value is defined in the same basic block
    // as the load, this available is located _after_ the load. E.g.:
    //
    //     store %1 to %addr   // an available value
    //     br bb1
    //   bb1:
    //     %2 = load %addr     // The load
    //     store %3 to %addr   // another available value
    //     cond_br bb1, bb2
    //
    newValue = ssaUpdater.getValue(inMiddleOf: load.parentBlock)
  }
  load.uses.replaceAll(with: newValue, context)
  context.erase(instruction: load)
}

private func provideValue(
  for load: LoadInst,
  from availableValue: AvailableValue,
  _ context: FunctionPassContext
) -> Value {
  let projectionPath = availableValue.address.accessPath.getMaterializableProjection(to: load.address.accessPath)!

  switch load.loadOwnership {
  case .unqualified:
    return availableValue.value.createProjection(path: projectionPath,
                                                 builder: availableValue.getBuilderForProjections(context))
  case .copy, .trivial:
    // Note: even if the load is trivial, the available value may be projected out of a non-trivial value.
    return availableValue.value.createProjectionAndCopy(path: projectionPath,
                                                        builder: availableValue.getBuilderForProjections(context))
  case .take:
    if projectionPath.isEmpty {
      return shrinkMemoryLifetime(from: load, to: availableValue, context)
    } else {
      return shrinkMemoryLifetimeAndSplit(from: load, to: availableValue, projectionPath: projectionPath, context)
    }
  }
}

/// In case of a `load [take]` shrink lifetime of the value in memory back to the `availableValue`
/// and return the (possibly projected) available value. For example:
///
///     store %1 to [assign] %addr
///     ...
///     %2 = load [take] %addr
/// ->
///     destroy_addr %addr
///     ...
///     // replace %2 with %1
///
private func shrinkMemoryLifetime(from load: LoadInst, to availableValue: AvailableValue, _ context: FunctionPassContext) -> Value {
  switch availableValue {
  case .viaLoad(let availableLoad):
    assert(availableLoad.loadOwnership == .copy)
    let builder = Builder(after: availableLoad, context)
    availableLoad.set(ownership: .take, context)
    return builder.createCopyValue(operand: availableLoad)
  case .viaStore(let availableStore):
    let builder = Builder(after: availableStore, context)
    let valueToAdd = availableStore.source
    switch availableStore.storeOwnership {
    case .assign:
      builder.createDestroyAddr(address: availableStore.destination)
      context.erase(instruction: availableStore)
    case .initialize,
         // It can be the case that e non-payload case is stored as trivial enum and the enum is loaded as [take], e.g.
         //   %1 = enum $Optional<Class>, #Optional.none
         //   store %1 to [trivial] %addr : $*Optional<Class>
         //   %2 = load [take] %addr : $*Optional<Class>
         .trivial:
      context.erase(instruction: availableStore)
    case .unqualified:
      fatalError("unqualified store in ossa function?")
    }
    return valueToAdd
  }
}

/// Like `shrinkMemoryLifetime`, but the available value must be projected.
/// In this case we cannot just shrink the lifetime and reuse the available value.
/// Therefore, we split the available load or store and load the projected available value.
/// The inserted load can be optimized with the split value in the next iteration.
///
///     store %1 to [assign] %addr
///     ...
///     %2 = struct_element_addr %addr, #field1
///     %3 = load [take] %2
/// ->
///     %f1 = struct_extract %1, #field1
///     %fa1 = struct_element_addr %addr, #field1
///     store %f1 to [assign] %fa1
///     %f2 = struct_extract %1, #field2
///     %fa2 = struct_element_addr %addr, #field2
///     store %f2 to [assign] %fa2
///     %1 = load [take] %fa1         // will be combined with `store %f1 to [assign] %fa1` in the next iteration
///     ...
///     // replace %3 with %1
///
private func shrinkMemoryLifetimeAndSplit(from load: LoadInst, to availableValue: AvailableValue, projectionPath: SmallProjectionPath, _ context: FunctionPassContext) -> Value {
  switch availableValue {
  case .viaLoad(let availableLoad):
    assert(availableLoad.loadOwnership == .copy)
    let builder = Builder(after: availableLoad, context)
    let addr = availableLoad.address.createAddressProjection(path: projectionPath, builder: builder)
    let valueToAdd = builder.createLoad(fromAddress: addr, ownership: .take)
    availableLoad.trySplit(context)
    return valueToAdd
  case .viaStore(let availableStore):
    let builder = Builder(after: availableStore, context)
    let addr = availableStore.destination.createAddressProjection(path: projectionPath, builder: builder)
    let valueToAdd = builder.createLoad(fromAddress: addr, ownership: .take)
    availableStore.trySplit(context)
    return valueToAdd
  }
}

/// Either a `load` or `store` which is preceding the original load and provides the loaded value.
private enum AvailableValue {
  case viaLoad(LoadInst)
  case viaStore(StoreInst)

  var value: Value {
    switch self {
    case .viaLoad(let load):   return load
    case .viaStore(let store): return store.source
    }
  }

  var address: Value {
    switch self {
    case .viaLoad(let load):   return load.address
    case .viaStore(let store): return store.destination
    }
  }

  var instruction: Instruction {
    switch self {
    case .viaLoad(let load):   return load
    case .viaStore(let store): return store
    }
  }

  func getBuilderForProjections(_ context: FunctionPassContext) -> Builder {
    switch self {
    case .viaLoad(let load):   return Builder(after: load, context)
    case .viaStore(let store): return Builder(before: store, context)
    }
  }
}

private struct InstructionScanner {
  private let load: LoadInst
  private let accessPath: AccessPath
  private let storageDefBlock: BasicBlock?
  private let aliasAnalysis: AliasAnalysis

  private(set) var potentiallyRedundantSubpath: AccessPath? = nil
  private(set) var availableValues = Array<AvailableValue>()

  init(load: LoadInst, accessPath: AccessPath, _ aliasAnalysis: AliasAnalysis) {
    self.load = load
    self.accessPath = accessPath
    self.storageDefBlock = accessPath.base.reference?.referenceRoot.parentBlock
    self.aliasAnalysis = aliasAnalysis
  }

  enum ScanResult {
    case overwritten
    case available
    case transparent
  }

  mutating func scan(instructions: ReverseInstructionList,
                     in block: BasicBlock,
                     complexityBudget: inout Int) -> ScanResult
  {
    for inst in instructions {
      complexityBudget -= 1
      if complexityBudget <= 0 {
        return .overwritten
      }

      switch visit(instruction: inst) {
        case .available:   return .available
        case .overwritten: return .overwritten
        case .transparent: break
      }
    }

    // Abort if we find the storage definition of the access in case of a loop, e.g.
    //
    //   bb1:
    //     %storage_root = apply
    //     %2 = ref_element_addr %storage_root
    //     %3 = load %2
    //     cond_br %c, bb1, bb2
    //
    // The storage root is different in each loop iteration. Therefore the load in a
    // successive loop iteration does not load from the same address as in the previous iteration.
    if let storageDefBlock = storageDefBlock,
       block == storageDefBlock {
      return .overwritten
    }
    if block.predecessors.isEmpty {
      // We reached the function entry without finding an available value.
      return .overwritten
    }
    return .transparent
  }

  private mutating func visit(instruction: Instruction) -> ScanResult {
    switch instruction {
    case is FixLifetimeInst, is EndAccessInst, is BeginBorrowInst, is EndBorrowInst:
      return .transparent

    case let precedingLoad as LoadInst:
      if precedingLoad == load {
        // We need to stop the data flow analysis when we visit the original load again.
        // This happens if the load is in a loop.
        return .available
      }
      let precedingLoadPath = precedingLoad.address.accessPath
      if precedingLoadPath.getMaterializableProjection(to: accessPath) != nil {
        availableValues.append(.viaLoad(precedingLoad))
        return .available
      }
      if accessPath.getMaterializableProjection(to: precedingLoadPath) != nil,
         potentiallyRedundantSubpath == nil {
        potentiallyRedundantSubpath = precedingLoadPath
      }
      if load.loadOwnership != .take {
        return .transparent
      }

    case let precedingStore as StoreInst:
      if precedingStore.source is Undef {
        return .overwritten
      }
      let precedingStorePath = precedingStore.destination.accessPath
      if precedingStorePath.getMaterializableProjection(to: accessPath) != nil {
        availableValues.append(.viaStore(precedingStore))
        return .available
      }
      if accessPath.getMaterializableProjection(to: precedingStorePath) != nil,
         potentiallyRedundantSubpath == nil {
        potentiallyRedundantSubpath = precedingStorePath
      }

    default:
      break
    }
    if load.loadOwnership == .take {
      // In case of `take`, don't allow reading instructions in the liferange.
      // Otherwise we cannot shrink the memory liferange afterwards.
      if instruction.mayReadOrWrite(address: load.address, aliasAnalysis) {
        return .overwritten
      }
    } else {
      if instruction.mayWrite(toAddress: load.address, aliasAnalysis) {
        return .overwritten
      }
    }
    return .transparent
  }
}

/// Represents the liferange (in terms of basic blocks) of the loaded value.
///
/// In contrast to a BlockRange, this liferange has multiple begin blocks (containing the
/// available values) and a single end block (containing the original load). For example:
///
///   bb1:
///     store %1 to %addr   // begin block
///     br bb3
///   bb2:
///     store %2 to %addr   // begin block
///     br bb3
///   bb3:
///     %3 = load %addr     // end block
///
private struct Liferange {
  private var worklist: BasicBlockWorklist
  private var containingBlocks: Stack<BasicBlock> // doesn't include the end-block
  private var beginBlocks: BasicBlockSet
  private let endBlock: BasicBlock

  init(endBlock: BasicBlock, _ context: FunctionPassContext) {
    self.worklist = BasicBlockWorklist(context)
    self.containingBlocks = Stack(context)
    self.beginBlocks = BasicBlockSet(context)
    self.endBlock = endBlock
    pushPredecessors(of: endBlock)
  }

  mutating func deinitialize() {
    worklist.deinitialize()
    containingBlocks.deinitialize()
    beginBlocks.deinitialize()
  }

  mutating func pushPredecessors(of block: BasicBlock) {
    worklist.pushIfNotVisited(contentsOf: block.predecessors)
    containingBlocks.append(contentsOf: block.predecessors)
  }

  mutating func pop() -> BasicBlock? { worklist.pop() }

  mutating func add(beginBlock: BasicBlock) {
    beginBlocks.insert(beginBlock)
  }

  /// Returns true if there is some path from a begin block to a function exit which doesn't
  /// go through the end-block. For example:
  ///
  ///     store %1 to %addr   // begin
  ///     cond_br bb1, bb2
  ///   bb1:
  ///     %2 = load %addr     // end
  ///   bb2:
  ///     ...                 // exit
  ///
  func hasExits(_ deadEndBlocks: DeadEndBlocksAnalysis) -> Bool {
    for block in containingBlocks {
      for succ in block.successors {
        if succ != endBlock,
           (!worklist.hasBeenPushed(succ) || beginBlocks.contains(succ)),
           !deadEndBlocks.isDeadEnd(succ) {
          return true
        }
      }
    }
    return false
  }
}