1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
|
//===--- StackPromotion.swift - Stack promotion optimization --------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2022 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
import SIL
/// Promotes heap allocated objects to the stack.
///
/// It handles `alloc_ref` and `alloc_ref_dynamic` instructions of native swift
/// classes: if promoted, the `[stack]` attribute is set in the allocation
/// instruction and a `dealloc_stack_ref` is inserted at the end of the object's
/// lifetime.
/// The main criteria for stack promotion is that the allocated object must not
/// escape its function.
///
/// Example:
/// %k = alloc_ref $Klass
/// // .. some uses of %k
/// destroy_value %k // The end of %k's lifetime
///
/// is transformed to:
///
/// %k = alloc_ref [stack] $Klass
/// // .. some uses of %k
/// destroy_value %k
/// dealloc_stack_ref %k
///
/// The destroy/release of the promoted object remains in the SIL, but is effectively
/// a no-op, because a stack promoted object is initialized with an "immortal"
/// reference count.
/// Later optimizations can clean that up.
let stackPromotion = FunctionPass(name: "stack-promotion") {
(function: Function, context: FunctionPassContext) in
let deadEndBlocks = context.deadEndBlocks
var needFixStackNesting = false
for inst in function.instructions {
if let allocRef = inst as? AllocRefInstBase {
if !context.continueWithNextSubpassRun(for: allocRef) {
break
}
if tryPromoteAlloc(allocRef, deadEndBlocks, context) {
needFixStackNesting = true
}
}
}
if needFixStackNesting {
// Make sure that all stack allocating instructions are nested correctly.
function.fixStackNesting(context)
}
}
// Returns true if the allocation is promoted.
private func tryPromoteAlloc(_ allocRef: AllocRefInstBase,
_ deadEndBlocks: DeadEndBlocksAnalysis,
_ context: FunctionPassContext) -> Bool {
if allocRef.isObjC || allocRef.canAllocOnStack {
return false
}
// Usually resilient classes cannot be promoted anyway, because their initializers are
// not visible and let the object appear to escape.
if allocRef.type.nominal.isResilient(in: allocRef.parentFunction) {
return false
}
// The most important check: does the object escape the current function?
if allocRef.isEscaping(context) {
return false
}
if deadEndBlocks.isDeadEnd(allocRef.parentBlock) {
// Allocations inside a code region which ends up in a no-return block may missing their
// final release. Therefore we extend their lifetime indefinitely, e.g.
//
// %k = alloc_ref $Klass
// ...
// unreachable // The end of %k's lifetime
//
// There is one exception: if it's in a loop (within the dead-end region) we must not
// extend its lifetime. In this case we can be sure that its final release is not
// missing, because otherwise the object would be leaking. For example:
//
// bb1:
// %k = alloc_ref $Klass
// ... // %k's lifetime must end somewhere here
// cond_br %c, bb1, bb2
// bb2:
// unreachable
//
// Therefore, if the allocation is inside a loop, we can treat it like allocations in
// non dead-end regions.
if !isInLoop(block: allocRef.parentBlock, context) {
allocRef.setIsStackAllocatable(context)
return true
}
}
// Try to find the top most dominator block which dominates all use points.
// * This block can be located "earlier" than the actual allocation block, in case the
// promoted object is stored into an "outer" object, e.g.
//
// bb0: // outerDominatingBlock _
// %o = alloc_ref $Outer |
// ... |
// bb1: // allocation block _ |
// %k = alloc_ref $Klass | | "outer"
// %f = ref_element_addr %o, #Outer.f | "inner" | liferange
// store %k to %f | liferange |
// ... | |
// destroy_value %o _| _|
//
// * Finding the `outerDominatingBlock` is not guaranteed to work.
// In this example, the top most dominator block is `bb0`, but `bb0` has no
// use points in the outer liferange. We'll get `bb3` as outerDominatingBlock.
// This is no problem because 1. it's an unusual case and 2. the `outerBlockRange`
// is invalid in this case and we'll bail later.
//
// bb0: // real top most dominating block
// cond_br %c, bb1, bb2
// bb1:
// %o1 = alloc_ref $Outer
// br bb3(%o1)
// bb2:
// %o2 = alloc_ref $Outer
// br bb3(%o1)
// bb3(%o): // resulting outerDominatingBlock: wrong!
// %k = alloc_ref $Klass
// %f = ref_element_addr %o, #Outer.f
// store %k to %f
// destroy_value %o
//
let domTree = context.dominatorTree
let outerDominatingBlock = getDominatingBlockOfAllUsePoints(context: context, allocRef, domTree: domTree)
// The "inner" liferange contains all use points which are dominated by the allocation block.
// Note that this `visit` cannot fail because otherwise our initial `isEscaping` check would have failed already.
var innerRange = allocRef.visit(using: ComputeInnerLiferange(of: allocRef, domTree, context), context)!
defer { innerRange.deinitialize() }
// The "outer" liferange contains all use points.
// Same here: this `visit` cannot fail.
var outerBlockRange = allocRef.visit(using: ComputeOuterBlockrange(dominatedBy: outerDominatingBlock, context), context)!
defer { outerBlockRange.deinitialize() }
assert(innerRange.blockRange.isValid, "inner range should be valid because we did a dominance check")
if !outerBlockRange.isValid {
// This happens if we fail to find a correct outerDominatingBlock.
return false
}
// Check if there is a control flow edge from the inner to the outer liferange, which
// would mean that the promoted object can escape to the outer liferange.
// This can e.g. be the case if the inner liferange does not post dominate the outer range:
// _
// %o = alloc_ref $Outer |
// cond_br %c, bb1, bb2 |
// bb1: _ |
// %k = alloc_ref $Klass | | outer
// %f = ref_element_addr %o, #Outer.f | inner | range
// store %k to %f | range |
// br bb2 // branch from inner to outer _| |
// bb2: |
// destroy_value %o _|
//
// Or if there is a loop with a back-edge from the inner to the outer range:
// _
// %o = alloc_ref $Outer |
// br bb1 |
// bb1: _ |
// %k = alloc_ref $Klass | | outer
// %f = ref_element_addr %o, #Outer.f | inner | range
// store %k to %f | range |
// cond_br %c, bb1, bb2 // inner -> outer _| |
// bb2: |
// destroy_value %o _|
//
if innerRange.blockRange.hasControlFlowEdge(to: outerBlockRange) {
return false
}
// There shouldn't be any critical exit edges from the liferange, because that would mean
// that the promoted allocation is leaking.
// Just to be on the safe side, do a check and bail if we find critical exit edges: we
// cannot insert instructions on critical edges.
if innerRange.blockRange.containsCriticalExitEdges(deadEndBlocks: deadEndBlocks) {
return false
}
// Do the transformation!
// Insert `dealloc_stack_ref` instructions at the exit- and end-points of the inner liferange.
for exitInst in innerRange.exits {
if !deadEndBlocks.isDeadEnd(exitInst.parentBlock) {
let builder = Builder(before: exitInst, context)
builder.createDeallocStackRef(allocRef)
}
}
for endInst in innerRange.ends {
Builder.insert(after: endInst, location: allocRef.location, context) {
(builder) in builder.createDeallocStackRef(allocRef)
}
}
allocRef.setIsStackAllocatable(context)
return true
}
private func getDominatingBlockOfAllUsePoints(context: FunctionPassContext,
_ value: SingleValueInstruction,
domTree: DominatorTree) -> BasicBlock {
struct FindDominatingBlock : EscapeVisitorWithResult {
var result: BasicBlock
let domTree: DominatorTree
mutating func visitUse(operand: Operand, path: EscapePath) -> UseResult {
let defBlock = operand.value.parentBlock
if defBlock.dominates(result, domTree) {
result = defBlock
}
return .continueWalk
}
}
return value.visit(using: FindDominatingBlock(result: value.parentBlock, domTree: domTree), context)!
}
private struct ComputeInnerLiferange : EscapeVisitorWithResult {
var result: InstructionRange
let domTree: DominatorTree
init(of instruction: Instruction, _ domTree: DominatorTree, _ context: FunctionPassContext) {
result = InstructionRange(begin: instruction, context)
self.domTree = domTree
}
mutating func visitUse(operand: Operand, path: EscapePath) -> UseResult {
let user = operand.instruction
let beginBlockOfRange = result.blockRange.begin
if beginBlockOfRange.dominates(user.parentBlock, domTree) {
result.insert(user)
}
return .continueWalk
}
}
private struct ComputeOuterBlockrange : EscapeVisitorWithResult {
var result: BasicBlockRange
init(dominatedBy: BasicBlock, _ context: FunctionPassContext) {
result = BasicBlockRange(begin: dominatedBy, context)
}
mutating func visitUse(operand: Operand, path: EscapePath) -> UseResult {
let user = operand.instruction
result.insert(user.parentBlock)
let value = operand.value
let operandsDefinitionBlock = value.parentBlock
// Also insert the operand's definition. Otherwise we would miss allocation
// instructions (for which the `visitUse` closure is not called).
result.insert(operandsDefinitionBlock)
// We need to explicitly add predecessor blocks of phis becaues they
// are not necesesarily visited during the down-walk in `isEscaping()`.
// This is important for the special case where there is a back-edge from the
// inner range to the inner rage's begin-block:
//
// bb0: // <- need to be in the outer range
// br bb1(%some_init_val)
// bb1(%arg):
// %k = alloc_ref $Klass // innerInstRange.begin
// cond_br bb2, bb1(%k) // back-edge to bb1 == innerInstRange.blockRange.begin
//
if let phi = Phi(value) {
result.insert(contentsOf: phi.predecessors)
}
return .continueWalk
}
}
private extension BasicBlockRange {
/// Returns true if there is a direct edge connecting this range with the `otherRange`.
func hasControlFlowEdge(to otherRange: BasicBlockRange) -> Bool {
func isOnlyInOtherRange(_ block: BasicBlock) -> Bool {
return !inclusiveRangeContains(block) && otherRange.inclusiveRangeContains(block)
}
for lifeBlock in inclusiveRange {
assert(otherRange.inclusiveRangeContains(lifeBlock), "range must be a subset of other range")
for succ in lifeBlock.successors {
if isOnlyInOtherRange(succ) && succ != otherRange.begin {
return true
}
// The entry of the begin-block is conceptually not part of the range. We can check if
// it's part of the `otherRange` by checking the begin-block's predecessors.
if succ == begin && begin.predecessors.contains(where: { isOnlyInOtherRange($0) }) {
return true
}
}
}
return false
}
func containsCriticalExitEdges(deadEndBlocks: DeadEndBlocksAnalysis) -> Bool {
exits.contains { !deadEndBlocks.isDeadEnd($0) && !$0.hasSinglePredecessor }
}
}
private func isInLoop(block startBlock: BasicBlock, _ context: FunctionPassContext) -> Bool {
var worklist = BasicBlockWorklist(context)
defer { worklist.deinitialize() }
worklist.pushIfNotVisited(contentsOf: startBlock.successors)
while let block = worklist.pop() {
if block == startBlock {
return true
}
worklist.pushIfNotVisited(contentsOf: block.successors)
}
return false
}
|