1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
|
//===--- SimplifyBuiltin.swift --------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2023 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
import SIL
extension BuiltinInst : OnoneSimplifyable {
func simplify(_ context: SimplifyContext) {
switch id {
case .IsConcrete:
// Don't constant fold a Builtin.isConcrete of a type with archetypes in the middle
// of the pipeline, because a generic specializer might run afterwards which turns the
// type into a concrete type.
optimizeIsConcrete(allowArchetypes: false, context)
case .IsSameMetatype:
optimizeIsSameMetatype(context)
case .Once:
optimizeBuiltinOnce(context)
case .CanBeObjCClass:
optimizeCanBeClass(context)
case .AssertConf:
optimizeAssertConfig(context)
case .Sizeof,
.Strideof,
.Alignof:
optimizeTargetTypeConst(context)
case .DestroyArray,
.CopyArray,
.TakeArrayNoAlias,
.TakeArrayFrontToBack,
.TakeArrayBackToFront,
.AssignCopyArrayNoAlias,
.AssignCopyArrayFrontToBack,
.AssignCopyArrayBackToFront,
.AssignTakeArray,
.AllocVector,
.IsPOD:
optimizeArgumentToThinMetatype(argument: 0, context)
case .ICMP_EQ:
constantFoldIntegerEquality(isEqual: true, context)
case .ICMP_NE:
constantFoldIntegerEquality(isEqual: false, context)
default:
if let literal = constantFold(context) {
uses.replaceAll(with: literal, context)
}
}
}
}
extension BuiltinInst : LateOnoneSimplifyable {
func simplifyLate(_ context: SimplifyContext) {
if id == .IsConcrete {
// At the end of the pipeline we can be sure that the isConcrete's type doesn't get "more" concrete.
optimizeIsConcrete(allowArchetypes: true, context)
} else {
simplify(context)
}
}
}
private extension BuiltinInst {
func optimizeIsConcrete(allowArchetypes: Bool, _ context: SimplifyContext) {
let hasArchetype = operands[0].value.type.hasArchetype
if hasArchetype && !allowArchetypes {
return
}
let builder = Builder(before: self, context)
let result = builder.createIntegerLiteral(hasArchetype ? 0 : 1, type: type)
uses.replaceAll(with: result, context)
context.erase(instruction: self)
}
func optimizeIsSameMetatype(_ context: SimplifyContext) {
let lhs = operands[0].value
let rhs = operands[1].value
guard let equal = typesOfValuesAreEqual(lhs, rhs, in: parentFunction) else {
return
}
let builder = Builder(before: self, context)
let result = builder.createIntegerLiteral(equal ? 1 : 0, type: type)
uses.replaceAll(with: result, context)
}
func optimizeBuiltinOnce(_ context: SimplifyContext) {
guard let callee = calleeOfOnce, callee.isDefinition else {
return
}
context.notifyDependency(onBodyOf: callee)
// If the callee is side effect-free we can remove the whole builtin "once".
// We don't use the callee's memory effects but instead look at all callee instructions
// because memory effects are not computed in the Onone pipeline, yet.
// This is no problem because the callee (usually a global init function )is mostly very small,
// or contains the side-effect instruction `alloc_global` right at the beginning.
if callee.instructions.contains(where: hasSideEffectForBuiltinOnce) {
return
}
for use in uses {
let ga = use.instruction as! GlobalAddrInst
ga.clearToken(context)
}
context.erase(instruction: self)
}
var calleeOfOnce: Function? {
let callee = operands[1].value
if let fri = callee as? FunctionRefInst {
return fri.referencedFunction
}
return nil
}
func optimizeCanBeClass(_ context: SimplifyContext) {
guard let ty = substitutionMap.replacementTypes[0] else {
return
}
let literal: IntegerLiteralInst
switch ty.canBeClass {
case .IsNot:
let builder = Builder(before: self, context)
literal = builder.createIntegerLiteral(0, type: type)
case .Is:
let builder = Builder(before: self, context)
literal = builder.createIntegerLiteral(1, type: type)
case .CanBe:
return
default:
fatalError()
}
uses.replaceAll(with: literal, context)
context.erase(instruction: self)
}
func optimizeAssertConfig(_ context: SimplifyContext) {
let literal: IntegerLiteralInst
switch context.options.assertConfiguration {
case .enabled:
let builder = Builder(before: self, context)
literal = builder.createIntegerLiteral(1, type: type)
case .disabled:
let builder = Builder(before: self, context)
literal = builder.createIntegerLiteral(0, type: type)
default:
return
}
uses.replaceAll(with: literal, context)
context.erase(instruction: self)
}
func optimizeTargetTypeConst(_ context: SimplifyContext) {
guard let ty = substitutionMap.replacementTypes[0] else {
return
}
let value: Int?
switch id {
case .Sizeof:
value = ty.getStaticSize(context: context)
case .Strideof:
value = ty.getStaticStride(context: context)
case .Alignof:
value = ty.getStaticAlignment(context: context)
default:
fatalError()
}
guard let value else {
return
}
let builder = Builder(before: self, context)
let literal = builder.createIntegerLiteral(value, type: type)
uses.replaceAll(with: literal, context)
context.erase(instruction: self)
}
func optimizeArgumentToThinMetatype(argument: Int, _ context: SimplifyContext) {
let type: Type
if let metatypeInst = operands[argument].value as? MetatypeInst {
type = metatypeInst.type
} else if let initExistentialInst = operands[argument].value as? InitExistentialMetatypeInst {
type = initExistentialInst.metatype.type
} else {
return
}
guard type.representationOfMetatype(in: parentFunction) == .Thick else {
return
}
let instanceType = type.instanceTypeOfMetatype(in: parentFunction)
let builder = Builder(before: self, context)
let newMetatype = builder.createMetatype(of: instanceType, representation: .Thin)
operands[argument].set(to: newMetatype, context)
}
func constantFoldIntegerEquality(isEqual: Bool, _ context: SimplifyContext) {
if constantFoldStringNullPointerCheck(isEqual: isEqual, context) {
return
}
if let literal = constantFold(context) {
uses.replaceAll(with: literal, context)
}
}
func constantFoldStringNullPointerCheck(isEqual: Bool, _ context: SimplifyContext) -> Bool {
if operands[1].value.isZeroInteger &&
operands[0].value.lookThroughScalarCasts is StringLiteralInst
{
let builder = Builder(before: self, context)
let result = builder.createIntegerLiteral(isEqual ? 0 : 1, type: type)
uses.replaceAll(with: result, context)
context.erase(instruction: self)
return true
}
return false
}
}
private extension Value {
var isZeroInteger: Bool {
if let literal = self as? IntegerLiteralInst,
let value = literal.value
{
return value == 0
}
return false
}
var lookThroughScalarCasts: Value {
guard let bi = self as? BuiltinInst else {
return self
}
switch bi.id {
case .ZExt, .ZExtOrBitCast, .PtrToInt:
return bi.operands[0].value.lookThroughScalarCasts
default:
return self
}
}
}
private func hasSideEffectForBuiltinOnce(_ instruction: Instruction) -> Bool {
switch instruction {
case is DebugStepInst, is DebugValueInst:
return false
default:
return instruction.mayReadOrWriteMemory ||
instruction.hasUnspecifiedSideEffects
}
}
private func typesOfValuesAreEqual(_ lhs: Value, _ rhs: Value, in function: Function) -> Bool? {
if lhs == rhs {
return true
}
guard let lhsExistential = lhs as? InitExistentialMetatypeInst,
let rhsExistential = rhs as? InitExistentialMetatypeInst else {
return nil
}
let lhsMetatype = lhsExistential.metatype.type
let rhsMetatype = rhsExistential.metatype.type
if lhsMetatype.isDynamicSelfMetatype != rhsMetatype.isDynamicSelfMetatype {
return nil
}
let lhsTy = lhsMetatype.instanceTypeOfMetatype(in: function)
let rhsTy = rhsMetatype.instanceTypeOfMetatype(in: function)
// Do we know the exact types? This is not the case e.g. if a type is passed as metatype
// to the function.
let typesAreExact = lhsExistential.metatype is MetatypeInst &&
rhsExistential.metatype is MetatypeInst
switch (lhsTy.typeKind, rhsTy.typeKind) {
case (_, .unknown), (.unknown, _):
return nil
case (let leftKind, let rightKind) where leftKind != rightKind:
// E.g. a function type is always different than a struct, regardless of what archetypes
// the two types may contain.
return false
case (.struct, .struct), (.enum, .enum):
// Two different structs/enums are always not equal, regardless of what archetypes
// the two types may contain.
if lhsTy.nominal != rhsTy.nominal {
return false
}
case (.class, .class):
// In case of classes this only holds if we know the exact types.
// Otherwise one class could be a sub-class of the other class.
if typesAreExact && lhsTy.nominal != rhsTy.nominal {
return false
}
default:
break
}
if !typesAreExact {
// Types which e.g. come from type parameters may differ at runtime while the declared AST types are the same.
return nil
}
if lhsTy.hasArchetype || rhsTy.hasArchetype {
// We don't know anything about archetypes. They may be identical at runtime or not.
// We could do something more sophisticated here, e.g. look at conformances. But for simplicity,
// we are just conservative.
return nil
}
// Generic ObjectiveC class, which are specialized for different NSObject types have different AST types
// but the same runtime metatype.
if lhsTy.isOrContainsObjectiveCClass || rhsTy.isOrContainsObjectiveCClass {
return nil
}
return lhsTy == rhsTy
}
private extension Type {
enum TypeKind {
case `struct`, `class`, `enum`, tuple, function, unknown
}
var typeKind: TypeKind {
if isStruct { return .struct }
if isClass { return .class }
if isEnum { return .enum }
if isTuple { return .tuple }
if isFunction { return .function }
return .unknown
}
}
|