1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
|
//===--- EscapeUtils.swift ------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2022 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file provides utilities for transitively visiting all uses of a value.
// The most common use case is to check if a value "escapes" to some destination
// (e.g. an instruction) or if it "escapes" the current function at all.
//
// The APIs on `Value` and/or `ProjectedValue` are
// * `isEscaping(using:)`
// * `isEscapingWhenWalkingDown(using:)`
// * `visit(using:)`
// * `visitByWalkingDown(using:)`
//
// where a `EscapeVisitor` can be passed to the `using` argument to configure
// the visit.
//
// The term "escaping" means that the "bit pattern" of the value is visible
// at the destination. For example, in stack promotion we check if a reference to
// an allocated object can escape it's function, i.e. if the bit pattern of the
// reference can be visible outside it's function.
// But it's also possible to check the "escapeness" of trivial values, e.g. an
// `Int`. An `Int` escapes if its bit pattern is visible at the destination.
// Though, by default trivial values are ignored. This can be configured with
// `EscapeVisitor.followTrivialTypes`.
//
// By default, there is no distinction between addresses and value-type values.
// Even if the value in question has an address type, it's considered escaping
// if the stored value is escaping.
// This can be configured with `EscapeVisitor.followLoads`.
//
// The visit algorithm works by starting a walk at the value and alternately
// walking in two directions:
// * Starting at root definitions, like allocations: walks down from defs to uses
// ("Where does the value go to?")
// * Starting at stores, walks up from uses to defs
// ("Were does the value come from?")
//
// The value "escapes" if the walk reaches a point where the further flow of the value
// cannot be tracked anymore.
// Example:
// \code
// %1 = alloc_ref $X // 1. initial value: walk down to the `store`
// %2 = alloc_stack $X // 3. walk down to %3
// store %1 to %2 // 2. walk up to `%2`
// %3 = load %2 // 4. continue walking down to the `return`
// return %3 // 5. The value is escaping!
// \endcode
//
// The traversal stops at points where the current path doesn't match the original projection.
// For example, let's assume this function is called on a projected value with path `s0.c1`.
// \code
// %value : $Struct<X> // current path == s0.c1, the initial value
// %ref = struct_extract %value, #field0 // current path == c1
// %addr = ref_element_addr %ref, #field2 // mismatch: `c1` != `c2` -> ignored
// \endcode
//
//===----------------------------------------------------------------------===//
import SIL
extension ProjectedValue {
/// Returns true if the projected value escapes.
///
/// The provided `visitor` can be used to override the handling a certain defs and uses during
/// the walk. See `EscapeVisitor` for details.
///
func isEscaping(using visitor: some EscapeVisitor = DefaultVisitor(),
complexityBudget: Int = Int.max,
_ context: some Context) -> Bool {
var walker = EscapeWalker(visitor: visitor, complexityBudget: complexityBudget, context)
return walker.walkUp(addressOrValue: value, path: path.escapePath) == .abortWalk
}
/// Returns true if the function argument escapes, but ignoring any potential escapes in the caller.
///
/// This function is similar to `ProjectedValue.isEscaping()`, but it ignores any potential
/// escapes which might have happened before the argument's function is called.
/// Technically, this means that the walk starts downwards instead of upwards.
///
func isEscapingWhenWalkingDown(using visitor: some EscapeVisitor = DefaultVisitor(),
_ context: some Context) -> Bool {
var walker = EscapeWalker(visitor: visitor, context)
return walker.walkDown(addressOrValue: value, path: path.escapePath) == .abortWalk
}
/// Returns the result of the visitor if the projected value does not escape.
///
/// This function is similar to `isEscaping() -> Bool`, but instead of returning a Bool,
/// it returns the `result` of the `visitor`, if the projected value does not escape.
/// Returns nil, if the projected value escapes.
///
func visit<V: EscapeVisitorWithResult>(using visitor: V,
complexityBudget: Int = Int.max,
_ context: some Context) -> V.Result? {
var walker = EscapeWalker(visitor: visitor, complexityBudget: complexityBudget, context)
if walker.walkUp(addressOrValue: value, path: path.escapePath) == .abortWalk {
walker.visitor.cleanupOnAbort()
return nil
}
return walker.visitor.result
}
/// Returns the result of the visitor if the projected value does not escape - ignoring
/// any potential escapes in the caller.
///
/// This function is similar to `isEscapingIgnoringCallerEscapes() -> Bool`, but instead
/// of returning a Bool, it returns the `result` of the `visitor`.
///
func visitByWalkingDown<V: EscapeVisitorWithResult>(using visitor: V,
_ context: some Context) -> V.Result? {
var walker = EscapeWalker(visitor: visitor, context)
if walker.walkDown(addressOrValue: value, path: path.escapePath) == .abortWalk {
walker.visitor.cleanupOnAbort()
return nil
}
return walker.visitor.result
}
}
extension Value {
/// The un-projected version of `ProjectedValue.isEscaping()`.
func isEscaping(using visitor: some EscapeVisitor = DefaultVisitor(),
_ context: some Context) -> Bool {
return self.at(SmallProjectionPath()).isEscaping(using: visitor, context)
}
func isEscapingWhenWalkingDown(using visitor: some EscapeVisitor = DefaultVisitor(),
_ context: some Context) -> Bool {
return self.at(SmallProjectionPath()).isEscapingWhenWalkingDown(using: visitor, context)
}
/// The un-projected version of `ProjectedValue.visit()`.
func visit<V: EscapeVisitorWithResult>(using visitor: V, _ context: some Context) -> V.Result? {
return self.at(SmallProjectionPath()).visit(using: visitor, context)
}
}
/// This protocol is used to customize `ProjectedValue.isEscaping` (and similar functions)
/// by implementing `visitUse` and `visitDef` which are called for all uses and definitions
/// encountered during a walk.
protocol EscapeVisitor {
typealias UseResult = EscapeUtilityTypes.UseVisitResult
typealias DefResult = EscapeUtilityTypes.DefVisitResult
typealias EscapePath = EscapeUtilityTypes.EscapePath
/// Called during the DefUse walk for each use
mutating func visitUse(operand: Operand, path: EscapePath) -> UseResult
/// Called during the UseDef walk for each definition
mutating func visitDef(def: Value, path: EscapePath) -> DefResult
/// If true, the traversals follow values with trivial types.
var followTrivialTypes: Bool { get }
/// If true, the traveral follows loaded values.
var followLoads: Bool { get }
}
extension EscapeVisitor {
mutating func visitUse(operand: Operand, path: EscapePath) -> UseResult {
return .continueWalk
}
mutating func visitDef(def: Value, path: EscapePath) -> DefResult {
return .continueWalkUp
}
var followTrivialTypes: Bool { false }
var followLoads: Bool { true }
}
/// A visitor which returns a `result`.
protocol EscapeVisitorWithResult : EscapeVisitor {
associatedtype Result
var result: Result { get }
mutating func cleanupOnAbort()
}
extension EscapeVisitorWithResult {
mutating func cleanupOnAbort() {}
}
// FIXME: This ought to be marked private, but that triggers a compiler bug
// in debug builds (rdar://117413192)
struct DefaultVisitor : EscapeVisitor {}
struct EscapeUtilityTypes {
/// The EscapePath is updated and maintained during the up-walk and down-walk.
///
/// It's passed to the EscapeVisitor's `visitUse` and `visitDef`.
struct EscapePath: SmallProjectionWalkingPath {
/// During the walk, a projection path indicates where the initial value is
/// contained in an aggregate.
/// Example for a walk-down:
/// \code
/// %1 = alloc_ref // 1. initial value, path = empty
/// %2 = struct $S (%1) // 2. path = s0
/// %3 = tuple (%other, %1) // 3. path = t1.s0
/// %4 = tuple_extract %3, 1 // 4. path = s0
/// %5 = struct_extract %4, #field // 5. path = empty
/// \endcode
///
let projectionPath: SmallProjectionPath
/// This flag indicates if stored values should be included in the walk.
/// If the initial value is stored to some memory allocation, we usually don't
/// care if other values are stored to that location as well. Example:
/// \code
/// %1 = alloc_ref $X // 1. initial value, walk down to the `store`
/// %2 = alloc_stack $X // 3. walk down to the second `store`
/// store %1 to %2 // 2. walk up to %2
/// store %other to %2 // 4. ignore (followStores == false): %other doesn't impact the "escapeness" of %1
/// \endcode
///
/// But once the up-walk sees a load, it has to follow stores from that point on.
/// Example:
/// \code
/// bb0(%function_arg): // 7. escaping! %1 escapes through %function_arg
/// %1 = alloc_ref $X // 1. initial value, walk down to the second `store`
/// %addr = alloc_stack %X // 5. walk down to the first `store`
/// store %function_arg to %addr // 6. walk up to %function_arg (followStores == true)
/// %2 = load %addr // 4. walk up to %addr, followStores = true
/// %3 = ref_element_addr %2, #f // 3. walk up to %2
/// store %1 to %3 // 2. walk up to %3
/// \endcode
///
let followStores: Bool
/// Set to true if an address is stored.
/// This unusual situation can happen if an address is converted to a raw pointer and that pointer
/// is stored to a memory location.
/// In this case the walkers need to follow load instructions even if the visitor and current projection
/// path don't say so.
let addressIsStored: Bool
/// Not nil, if the exact type of the current value is know.
///
/// This is used for destructor analysis.
/// Example:
/// \code
/// %1 = alloc_ref $Derived // 1. initial value, knownType = $Derived
/// %2 = upcast %1 to $Base // 2. knownType = $Derived
/// destroy_value %2 : $Base // 3. We know that the destructor of $Derived is called here
/// \endcode
let knownType: Type?
func with(projectionPath: SmallProjectionPath) -> Self {
return Self(projectionPath: projectionPath, followStores: self.followStores,
addressIsStored: self.addressIsStored, knownType: self.knownType)
}
func with(followStores: Bool) -> Self {
return Self(projectionPath: self.projectionPath, followStores: followStores,
addressIsStored: self.addressIsStored, knownType: self.knownType)
}
func with(addressStored: Bool) -> Self {
return Self(projectionPath: self.projectionPath, followStores: self.followStores, addressIsStored: addressStored,
knownType: self.knownType)
}
func with(knownType: Type?) -> Self {
return Self(projectionPath: self.projectionPath, followStores: self.followStores,
addressIsStored: self.addressIsStored, knownType: knownType)
}
func merge(with other: EscapePath) -> EscapePath {
let mergedPath = self.projectionPath.merge(with: other.projectionPath)
let mergedFollowStores = self.followStores || other.followStores
let mergedAddrStored = self.addressIsStored || other.addressIsStored
let mergedKnownType: Type?
if let ty = self.knownType {
if let otherTy = other.knownType, ty != otherTy {
mergedKnownType = nil
} else {
mergedKnownType = ty
}
} else {
mergedKnownType = other.knownType
}
return EscapePath(projectionPath: mergedPath, followStores: mergedFollowStores,
addressIsStored: mergedAddrStored, knownType: mergedKnownType)
}
}
enum DefVisitResult {
case ignore
case continueWalkUp
case walkDown
case abort
}
enum UseVisitResult {
case ignore
case continueWalk
case abort
}
}
/// EscapeWalker is both a DefUse walker and UseDef walker. It implements both, the up-, and down-walk.
fileprivate struct EscapeWalker<V: EscapeVisitor> : ValueDefUseWalker,
AddressDefUseWalker,
ValueUseDefWalker,
AddressUseDefWalker {
typealias Path = EscapeUtilityTypes.EscapePath
init(visitor: V, complexityBudget: Int = Int.max, _ context: some Context) {
self.calleeAnalysis = context.calleeAnalysis
self.visitor = visitor
self.complexityBudget = complexityBudget
}
//===--------------------------------------------------------------------===//
// Walking down
//===--------------------------------------------------------------------===//
mutating func walkDown(addressOrValue: Value, path: Path) -> WalkResult {
if addressOrValue.type.isAddress {
return walkDownUses(ofAddress: addressOrValue, path: path)
} else {
return walkDownUses(ofValue: addressOrValue, path: path)
}
}
mutating func cachedWalkDown(addressOrValue: Value, path: Path) -> WalkResult {
if let path = walkDownCache.needWalk(for: addressOrValue, path: path) {
return walkDown(addressOrValue: addressOrValue, path: path)
} else {
return .continueWalk
}
}
mutating func walkDown(value: Operand, path: Path) -> WalkResult {
if complexityBudgetExceeded(value.value) {
return .abortWalk
}
if hasRelevantType(value.value, at: path.projectionPath) {
switch visitor.visitUse(operand: value, path: path) {
case .continueWalk:
return walkDownDefault(value: value, path: path)
case .ignore:
return .continueWalk
case .abort:
return .abortWalk
}
}
return .continueWalk
}
/// ``ValueDefUseWalker`` conformance: called when the value def-use walk can't continue,
/// i.e. when the result of the use is not a value.
mutating func leafUse(value operand: Operand, path: Path) -> WalkResult {
let instruction = operand.instruction
switch instruction {
case let rta as RefTailAddrInst:
if let path = pop(.tailElements, from: path, yielding: rta) {
return walkDownUses(ofAddress: rta, path: path.with(knownType: nil))
}
case let rea as RefElementAddrInst:
if let path = pop(.classField, index: rea.fieldIndex, from: path, yielding: rea) {
return walkDownUses(ofAddress: rea, path: path.with(knownType: nil))
}
case let pb as ProjectBoxInst:
if let path = pop(.classField, index: pb.fieldIndex, from: path, yielding: pb) {
return walkDownUses(ofAddress: pb, path: path.with(knownType: nil))
}
case is StoreInst, is StoreWeakInst, is StoreUnownedInst:
let store = instruction as! StoringInstruction
assert(operand == store.sourceOperand)
if !followLoads(at: path) {
return walkUp(address: store.destination, path: path.with(addressStored: true))
}
return walkUp(address: store.destination, path: path)
case is DestroyValueInst, is ReleaseValueInst, is StrongReleaseInst:
if handleDestroy(of: operand.value, path: path) == .abortWalk {
return .abortWalk
}
case is ReturnInst:
return isEscaping
case is ApplyInst, is TryApplyInst, is BeginApplyInst:
return walkDownCallee(argOp: operand, apply: instruction as! FullApplySite, path: path)
case let pai as PartialApplyInst:
// Check whether the partially applied argument can escape in the body.
if walkDownCallee(argOp: operand, apply: pai, path: path.with(knownType: nil)) == .abortWalk {
return .abortWalk
}
// Additionally we need to follow the partial_apply value for two reasons:
// 1. the closure (with the captured values) itself can escape
// and the use "transitively" escapes
// 2. something can escape in a destructor when the context is destroyed
return walkDownUses(ofValue: pai, path: path.with(knownType: nil))
case let pta as PointerToAddressInst:
return walkDownUses(ofAddress: pta, path: path.with(knownType: nil))
case let cv as ConvertFunctionInst:
return walkDownUses(ofValue: cv, path: path.with(knownType: nil))
case let bi as BuiltinInst:
switch bi.id {
case .DestroyArray:
// If it's not the array base pointer operand -> bail. Though, that shouldn't happen
// because the other operands (metatype, count) shouldn't be visited anyway.
if operand.index != 1 { return isEscaping }
// Class references, which are directly located in the array elements cannot escape,
// because those are passed as `self` to their deinits - and `self` cannot escape in a deinit.
if !path.projectionPath.mayHaveClassProjection {
return .continueWalk
}
return isEscaping
case .AtomicLoad:
// Treat atomic loads as regular loads and just walk down their uses.
if !followLoads(at: path) {
return .continueWalk
}
// Even when analyzing atomics, a loaded trivial value can be ignored.
if hasRelevantType(bi, at: path.projectionPath) {
return .continueWalk
}
return walkDownUses(ofValue: bi, path: path.with(knownType: nil))
case .AtomicStore, .AtomicRMW:
// If we shouldn't follow the store, then we can keep walking.
if !path.followStores {
return .continueWalk
}
// Be conservative and just say the store is escaping.
return isEscaping
case .CmpXChg:
// If we have to follow loads or stores of a cmpxchg, then just bail.
if followLoads(at: path) || path.followStores {
return isEscaping
}
return .continueWalk
case .Fence:
// Fences do not affect escape analysis.
return .continueWalk
default:
return isEscaping
}
case is StrongRetainInst, is RetainValueInst, is DebugValueInst, is ValueMetatypeInst,
is InitExistentialMetatypeInst, is OpenExistentialMetatypeInst,
is ExistentialMetatypeInst, is DeallocRefInst, is FixLifetimeInst,
is ClassifyBridgeObjectInst, is BridgeObjectToWordInst, is EndBorrowInst,
is StrongRetainInst, is RetainValueInst,
is ClassMethodInst, is SuperMethodInst, is ObjCMethodInst,
is ObjCSuperMethodInst, is WitnessMethodInst, is DeallocStackRefInst:
return .continueWalk
case is DeallocStackInst:
// dealloc_stack %f : $@noescape @callee_guaranteed () -> ()
// type is a value
assert(operand.value.definingInstruction is PartialApplyInst)
return .continueWalk
default:
return isEscaping
}
return .continueWalk
}
mutating func walkDown(address: Operand, path: Path) -> WalkResult {
if complexityBudgetExceeded(address.value) {
return .abortWalk
}
if hasRelevantType(address.value, at: path.projectionPath) {
switch visitor.visitUse(operand: address, path: path) {
case .continueWalk:
return walkDownDefault(address: address, path: path)
case .ignore:
return .continueWalk
case .abort:
return .abortWalk
}
}
return .continueWalk
}
/// ``AddressDefUseWalker`` conformance: called when the address def-use walk can't continue,
/// i.e. when the result of the use is not an address.
mutating func leafUse(address operand: Operand, path: Path) -> WalkResult {
let instruction = operand.instruction
switch instruction {
case is StoreInst, is StoreWeakInst, is StoreUnownedInst:
let store = instruction as! StoringInstruction
assert(operand == store.destinationOperand)
if let si = store as? StoreInst, si.storeOwnership == .assign {
if handleDestroy(of: operand.value, path: path.with(knownType: nil)) == .abortWalk {
return .abortWalk
}
}
if path.followStores {
return walkUp(value: store.source, path: path)
}
case let copyAddr as CopyAddrInst:
if !followLoads(at: path) {
return .continueWalk
}
if operand == copyAddr.sourceOperand {
return walkUp(address: copyAddr.destination, path: path)
} else {
if !copyAddr.isInitializationOfDest {
if handleDestroy(of: operand.value, path: path.with(knownType: nil)) == .abortWalk {
return .abortWalk
}
}
if path.followStores {
assert(operand == copyAddr.destinationOperand)
return walkUp(value: copyAddr.source, path: path)
}
}
case is DestroyAddrInst:
if handleDestroy(of: operand.value, path: path) == .abortWalk {
return .abortWalk
}
case is ReturnInst:
return isEscaping
case is ApplyInst, is TryApplyInst, is BeginApplyInst:
return walkDownCallee(argOp: operand, apply: instruction as! FullApplySite, path: path)
case let pai as PartialApplyInst:
if walkDownCallee(argOp: operand, apply: pai, path: path.with(knownType: nil)) == .abortWalk {
return .abortWalk
}
// We need to follow the partial_apply value for two reasons:
// 1. the closure (with the captured values) itself can escape
// 2. something can escape in a destructor when the context is destroyed
return walkDownUses(ofValue: pai, path: path.with(knownType: nil))
case is LoadInst, is LoadWeakInst, is LoadUnownedInst, is LoadBorrowInst:
if !followLoads(at: path) {
return .continueWalk
}
let svi = instruction as! SingleValueInstruction
// Even when analyzing addresses, a loaded trivial value can be ignored.
if svi.hasTrivialNonPointerType { return .continueWalk }
return walkDownUses(ofValue: svi, path: path.with(knownType: nil))
case let atp as AddressToPointerInst:
return walkDownUses(ofValue: atp, path: path.with(knownType: nil))
case is DeallocStackInst, is InjectEnumAddrInst, is FixLifetimeInst, is EndBorrowInst, is EndAccessInst,
is DebugValueInst:
return .continueWalk
default:
return isEscaping
}
return .continueWalk
}
/// Check whether the value escapes through the deinitializer
private func handleDestroy(of value: Value, path: Path) -> WalkResult {
// Even if this is a destroy_value of a struct/tuple/enum, the called destructor(s) only take a
// single class reference as parameter.
let p = path.projectionPath.popAllValueFields()
if p.isEmpty {
// The object to destroy (= the argument of the destructor) cannot escape itself.
return .continueWalk
}
if !visitor.followLoads && p.matches(pattern: SmallProjectionPath(.anyValueFields).push(.anyClassField)) {
// Any address of a class property of the object to destroy cannot escape the destructor.
// (Whereas a value stored in such a property could escape.)
return .continueWalk
}
if path.followStores {
return isEscaping
}
if let exactTy = path.knownType {
guard let destructor = calleeAnalysis.getDestructor(ofExactType: exactTy) else {
return isEscaping
}
if destructor.effects.escapeEffects.canEscape(argumentIndex: 0, path: pathForArgumentEscapeChecking(p)) {
return isEscaping
}
} else {
// We don't know the exact type, so get all possible called destructure from
// the callee analysis.
guard let destructors = calleeAnalysis.getDestructors(of: value.type) else {
return isEscaping
}
for destructor in destructors {
if destructor.effects.escapeEffects.canEscape(argumentIndex: 0, path: pathForArgumentEscapeChecking(p)) {
return isEscaping
}
}
}
return .continueWalk
}
/// Handle an apply (full or partial) during the walk-down.
private mutating
func walkDownCallee(argOp: Operand, apply: ApplySite, path: Path) -> WalkResult {
guard let calleeArgIdx = apply.calleeArgumentIndex(of: argOp) else {
// The callee or a type dependent operand of the apply does not let escape anything.
return .continueWalk
}
// Indirect arguments cannot escape the function, but loaded values from such can.
if !followLoads(at: path) &&
// Except for begin_apply: it can yield an address value.
!apply.isBeginApplyWithIndirectResults {
return .continueWalk
}
if argOp.value.type.isNoEscapeFunction {
// Per definition a `partial_apply [on_stack]` cannot escape the callee.
// Potential escapes of its captured values are already handled when visiting the `partial_apply`.
return .continueWalk
}
// Argument effects do not consider any potential stores to the argument (or it's content).
// Therefore, if we need to track stores, the argument effects do not correctly describe what we need.
// For example, argument 0 in the following function is marked as not-escaping, although there
// is a store to the argument:
//
// sil [escapes !%0.**] @callee(@inout X, @owned X) -> () {
// bb0(%0 : $*X, %1 : $X):
// store %1 to %0 : $*X
// }
if path.followStores {
return isEscaping
}
guard let callees = calleeAnalysis.getCallees(callee: apply.callee) else {
// The callees are not know, e.g. if the callee is a closure, class method, etc.
return isEscaping
}
for callee in callees {
let effects = callee.effects
if !effects.escapeEffects.canEscape(argumentIndex: calleeArgIdx,
path: pathForArgumentEscapeChecking(path.projectionPath)) {
continue
}
if walkDownArgument(calleeArgIdx: calleeArgIdx, argPath: path,
apply: apply, effects: effects) == .abortWalk {
return .abortWalk
}
}
return .continueWalk
}
/// Handle `.escaping` effects for an apply argument during the walk-down.
private mutating
func walkDownArgument(calleeArgIdx: Int, argPath: Path,
apply: ApplySite, effects: FunctionEffects) -> WalkResult {
var matched = false
for effect in effects.escapeEffects.arguments {
switch effect.kind {
case .escapingToArgument(let toArgIdx, let toPath):
// Note: exclusive argument -> argument effects cannot appear, so we don't need to handle them here.
if effect.matches(calleeArgIdx, argPath.projectionPath) {
guard let argOp = apply.operand(forCalleeArgumentIndex: toArgIdx) else {
return isEscaping
}
// Continue at the destination of an arg-to-arg escape.
let arg = argOp.value
let p = Path(projectionPath: toPath, followStores: false, addressIsStored: argPath.addressIsStored,
knownType: nil)
if walkUp(addressOrValue: arg, path: p) == .abortWalk {
return .abortWalk
}
matched = true
}
case .escapingToReturn(let toPath, let exclusive):
if effect.matches(calleeArgIdx, argPath.projectionPath) {
guard let fas = apply as? FullApplySite, let result = fas.singleDirectResult else {
return isEscaping
}
let p = Path(projectionPath: toPath, followStores: false, addressIsStored: argPath.addressIsStored,
knownType: exclusive ? argPath.knownType : nil)
if walkDownUses(ofValue: result, path: p) == .abortWalk {
return .abortWalk
}
matched = true
}
case .notEscaping:
break
}
}
if !matched { return isEscaping }
return .continueWalk
}
//===--------------------------------------------------------------------===//
// Walking up
//===--------------------------------------------------------------------===//
mutating func walkUp(addressOrValue: Value, path: Path) -> WalkResult {
if addressOrValue.type.isAddress {
return walkUp(address: addressOrValue, path: path)
} else {
return walkUp(value: addressOrValue, path: path)
}
}
mutating func walkUp(value: Value, path: Path) -> WalkResult {
if complexityBudgetExceeded(value) {
return .abortWalk
}
if hasRelevantType(value, at: path.projectionPath) {
switch visitor.visitDef(def: value, path: path) {
case .continueWalkUp:
return walkUpDefault(value: value, path: path)
case .walkDown:
return cachedWalkDown(addressOrValue: value, path: path.with(knownType: nil))
case .ignore:
return .continueWalk
case .abort:
return .abortWalk
}
}
return .continueWalk
}
/// ``ValueUseDefWalker`` conformance: called when the value use-def walk can't continue,
/// i.e. when the operand (if any) of the instruction of a definition is not a value.
mutating func rootDef(value def: Value, path: Path) -> WalkResult {
switch def {
case is AllocRefInst, is AllocRefDynamicInst:
return cachedWalkDown(addressOrValue: def, path: path.with(knownType: def.type))
case is AllocBoxInst:
return cachedWalkDown(addressOrValue: def, path: path.with(knownType: nil))
case let arg as Argument:
guard let termResult = TerminatorResult(arg) else { return isEscaping }
switch termResult.terminator {
case let ta as TryApplyInst:
if termResult.successor != ta.normalBlock { return isEscaping }
return walkUpApplyResult(apply: ta, path: path.with(knownType: nil))
default:
return isEscaping
}
case let ap as ApplyInst:
return walkUpApplyResult(apply: ap, path: path.with(knownType: nil))
case is LoadInst, is LoadWeakInst, is LoadUnownedInst, is LoadBorrowInst:
if !followLoads(at: path) {
// When walking up we shouldn't end up at a load where followLoads is false,
// because going from a (non-followLoads) address to a load always involves a class indirection.
// There is one exception: loading a raw pointer, e.g.
// %l = load %a : $Builtin.RawPointer
// %a = pointer_to_address %l // the up-walk starts at %a
return isEscaping
}
return walkUp(address: (def as! UnaryInstruction).operand.value,
path: path.with(followStores: true).with(knownType: nil))
case let atp as AddressToPointerInst:
return walkUp(address: atp.address, path: path.with(knownType: nil))
default:
return isEscaping
}
}
mutating func walkUp(address: Value, path: Path) -> WalkResult {
if complexityBudgetExceeded(address) {
return .abortWalk
}
if hasRelevantType(address, at: path.projectionPath) {
switch visitor.visitDef(def: address, path: path) {
case .continueWalkUp:
return walkUpDefault(address: address, path: path)
case .walkDown:
return cachedWalkDown(addressOrValue: address, path: path)
case .ignore:
return .continueWalk
case .abort:
return .abortWalk
}
}
return .continueWalk
}
/// ``AddressUseDefWalker`` conformance: called when the address use-def walk can't continue,
/// i.e. when the operand (if any) of the instruction of a definition is not an address.
mutating func rootDef(address def: Value, path: Path) -> WalkResult {
switch def {
case is AllocStackInst:
return cachedWalkDown(addressOrValue: def, path: path.with(knownType: nil))
case let arg as FunctionArgument:
if !followLoads(at: path) && arg.convention.isExclusiveIndirect && !path.followStores {
return cachedWalkDown(addressOrValue: def, path: path.with(knownType: nil))
} else {
return isEscaping
}
case is PointerToAddressInst:
return walkUp(value: (def as! SingleValueInstruction).operands[0].value, path: path.with(knownType: nil))
case let rta as RefTailAddrInst:
return walkUp(value: rta.instance, path: path.push(.tailElements, index: 0).with(knownType: nil))
case let rea as RefElementAddrInst:
return walkUp(value: rea.instance, path: path.push(.classField, index: rea.fieldIndex).with(knownType: nil))
case let pb as ProjectBoxInst:
return walkUp(value: pb.box, path: path.push(.classField, index: pb.fieldIndex).with(knownType: nil))
default:
return isEscaping
}
}
/// Walks up from the return to the source argument if there is an "exclusive"
/// escaping effect on an argument.
private mutating
func walkUpApplyResult(apply: FullApplySite,
path: Path) -> WalkResult {
guard let callees = calleeAnalysis.getCallees(callee: apply.callee) else {
return .abortWalk
}
for callee in callees {
var matched = false
for effect in callee.effects.escapeEffects.arguments {
switch effect.kind {
case .escapingToReturn(let toPath, let exclusive):
if exclusive && path.projectionPath.matches(pattern: toPath) {
guard let argOp = apply.operand(forCalleeArgumentIndex: effect.argumentIndex) else {
return .abortWalk
}
let arg = argOp.value
let p = Path(projectionPath: effect.pathPattern, followStores: path.followStores,
addressIsStored: path.addressIsStored, knownType: nil)
if walkUp(addressOrValue: arg, path: p) == .abortWalk {
return .abortWalk
}
matched = true
}
case .notEscaping, .escapingToArgument:
break
}
}
if !matched {
return isEscaping
}
}
return .continueWalk
}
//===--------------------------------------------------------------------===//
// private state
//===--------------------------------------------------------------------===//
var visitor: V
// The caches are not only useful for performance, but are need to avoid infinite
// recursions of walkUp-walkDown cycles.
var walkDownCache = WalkerCache<Path>()
var walkUpCache = WalkerCache<Path>()
// Only this number of up/and down walks are done until the walk aborts.
// Used to avoid quadratic complexity in some scenarios.
var complexityBudget: Int
private let calleeAnalysis: CalleeAnalysis
//===--------------------------------------------------------------------===//
// private utility functions
//===--------------------------------------------------------------------===//
/// Tries to pop the given projection from path, if the projected `value` has a relevant type.
private func pop(_ kind: Path.FieldKind, index: Int? = nil, from path: Path, yielding value: Value) -> Path? {
if let newPath = path.popIfMatches(kind, index: index),
hasRelevantType(value, at: newPath.projectionPath) {
return newPath
}
return nil
}
private func hasRelevantType(_ value: Value, at path: SmallProjectionPath) -> Bool {
if visitor.followTrivialTypes &&
// When part of a class field only need to follow non-trivial types
!path.hasClassProjection {
return true
}
if !value.hasTrivialNonPointerType {
return true
}
return false
}
private func followLoads(at path: Path) -> Bool {
return visitor.followLoads ||
// When part of a class field we have to follow loads.
path.projectionPath.mayHaveClassProjection ||
path.addressIsStored
}
private func pathForArgumentEscapeChecking(_ path: SmallProjectionPath) -> SmallProjectionPath {
if visitor.followLoads {
return path
}
return path.popLastClassAndValuesFromTail()
}
private mutating func complexityBudgetExceeded(_ v: Value) -> Bool {
if complexityBudget <= 0 {
return true
}
complexityBudget = complexityBudget &- 1
return false
}
// Set a breakpoint here to debug when a value is escaping.
private var isEscaping: WalkResult { .abortWalk }
}
private extension SmallProjectionPath {
var escapePath: EscapeUtilityTypes.EscapePath {
EscapeUtilityTypes.EscapePath(projectionPath: self, followStores: false, addressIsStored: false, knownType: nil)
}
}
private extension ApplySite {
var isBeginApplyWithIndirectResults: Bool {
guard let ba = self as? BeginApplyInst else {
return false
}
// Note that the token result is always a non-address type.
return ba.results.contains { $0.type.isAddress }
}
}
|