1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
|
//===--- LifetimeDependenceUtils.swift - Utils for lifetime dependence ----===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2023 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Utilities that specify lifetime dependence:
//
// gatherVariableIntroducers(for:) is a use-def walk that returns the
// values that most closely associated with the variable declarations
// that the given value holds an instance of.
//
// LifetimeDependence.init models the lifetime dependence for a
// FunctionArgument or a MarkDependenceInst, categorizing the kind of
// dependence scope that the lifetime represents.
//
// LifetimeDependence.Scope.computeRange() computes the instruction
// range covered by a dependence scope.
//
// LifetimeDependence.visitDependenceRoots(enclosing:) is a use-def
// walk that walks up the chain of dependent values and visits the
// earliest LifetimeDependencies that whose lifetime can be inherited
// by the given value.
//
// LifetimeDependenceDefUseWalker walks the def-use chain to find all
// values that depend on the given OSSA lifetime.
//
//===----------------------------------------------------------------------===//
//
// TODO_reachingdef: see this tag (in visitStoredUses) to see where
// reaching-def analysis can improve diagnostics. The analysis will
// work as follows:
//
// Given an operand that satisfies `isAddressInitialization`,
// transitively find all uses of the stored value, conservatively.
//
// Given a load/copy_addr transitively find all values stored.
//
// This can be a reaching-def style analysis on an alloc_stack, very
// similar to the mem2reg analysis. Or it can be a cached
// walker. Either way, we only care about mutable local. Temporary
// copies should already be handled by findSingleInitializer. There is
// no need for any complicated value depenence walk. The client can do
// that. Just walk the address projections to find all writes. Partial
// writes are destructive, but only full writes initialize the local.
//
//===----------------------------------------------------------------------===//
import SIL
private let verbose = false
private func log(_ message: @autoclosure () -> String) {
if verbose {
print("### \(message())")
}
}
/// Walk up the value dependence chain to find the best-effort
/// variable declaration. Typically called while diagnosing an error.
///
/// The walk stops at:
/// - an address
/// - a variable declaration (begin_borrow [var_decl], move_value [var_decl])
/// - the root of the dependence chain
///
/// If the introducer is an address, then the client can call
/// Value.enclosingAccess iteratively to find to AccessBase. This
/// walker is useful for finding the innermost access, which may also
/// be relevant for diagnostics.
func gatherVariableIntroducers(for value: Value, _ context: Context)
-> SingleInlineArray<Value>
{
var introducers = SingleInlineArray<Value>()
var useDefVisitor = VariableIntroducerUseDefWalker(context) {
introducers.push($0)
return .continueWalk
}
defer { useDefVisitor.deinitialize() }
_ = useDefVisitor.walkUp(valueOrAddress: value)
return introducers
}
/// A lifetime dependence represents a scope in which some parent
/// value is alive and accessible along with a dependent value. All
/// values derived from the dependent value must be used within this
/// scope. This supports diagnostics on non-escapable types.
///
/// A lifetime dependence is produced by either 'mark_dependence [nonescaping]':
///
/// %dependent = mark_dependence [nonescaping] %value on %parent
///
/// or a non-escapable function argument:
///
/// bb0(%dependent : NonEscapableThing):
///
/// A lifetime dependence identifies its parent value, the kind of
/// scope that the parent value represents, and a dependent value. A
/// self-dependence has the same parent and dependent value:
///
/// %dependent = mark_dependence [nonescaping] %value on %value
///
/// Self-dependence is useful to ensure that derived values, including
/// copies, do not escape the lifetime of the original
/// value. Non-escapable function arguments are implicitly
/// self-dependent, meaning that the argument's value does not escape
/// the function body. Note that we do not insert a 'mark_dependence
/// [nonescaping]' for function arguments because the caller must
/// already represent the argument's dependence on some parent
/// value. That parent value may not be the value directly passed to
/// the argument. After inlining, an additional self-dependence on
/// argument value would be overly strict.
struct LifetimeDependence : CustomStringConvertible {
enum Scope : CustomStringConvertible {
/// A guaranteed or inout argument whose scope is provided by the caller
/// and covers the entire function.
case caller(Argument)
/// An access scope.
case access(BeginAccessInst)
/// An coroutine.
case yield(Value)
/// An owned value whose OSSA lifetime encloses nonescapable values
case owned(Value)
/// Singly-initialized addressible storage (likely for an
/// immutable address-only value). The lifetime extends until the
/// memory is destroyed. e.g. A value produced by an @in
/// FunctionArgument or @out apply. @inout has caller scope
/// instead because its lifetime does not end inside the callee. A
/// separate analysis diagnoses mutation after the dependence is
/// formed.
///
/// If `initializingStore` is nil, then the `initialAddress` is
/// initialized on function entry.
case initialized(initialAddress: Value, initializingStore: Instruction?)
// TODO: make .unknown a SIL Verification error
case unknown(Value)
var parentValue: Value {
switch self {
case let .caller(argument): return argument
case let .access(beginAccess): return beginAccess
case let .yield(value): return value
case let .owned(value): return value
case let .initialized(initialAddress, _): return initialAddress
case let .unknown(value): return value
}
}
func checkPrecondition() {
switch self {
case let .caller(argument):
precondition(argument.ownership == .guaranteed,
"only guaranteed arguments have a caller scope")
case .access, .unknown:
break
case let .yield(value):
precondition(value.definingInstruction is BeginApplyInst)
case let .owned(value):
precondition(value.ownership == .owned)
case let .initialized(initialAddress, initializingStore):
precondition(initialAddress.type.isAddress, "expected an address")
precondition(initialAddress is AllocStackInst
|| initialAddress is FunctionArgument,
"expected storage for a a local 'let'")
precondition(initializingStore is StoringInstruction
|| initializingStore is SourceDestAddrInstruction
|| initializingStore is FullApplySite,
"expected a store")
}
}
var description: String {
{
switch self {
case .caller: return "Caller: "
case .access: return "Access: "
case .yield: return "Yield: "
case .owned: return "Owned: "
case .initialized: return "Initialized: "
case .unknown: return "Unknown: "
}
}() + "\(parentValue)"
}
}
let scope: Scope
let dependentValue: Value
var parentValue: Value { scope.parentValue }
var function: Function {
dependentValue.parentFunction
}
var description: String {
return scope.description + "\nDependent: \(dependentValue)"
}
}
extension LifetimeDependence {
/// Construct LifetimeDependence from a function argument.
///
/// Returns 'nil' for indirect results.
init?(_ arg: FunctionArgument, _ context: some Context) {
if arg.isIndirectResult {
return nil
}
self.scope = Scope(base: arg, context)!
self.dependentValue = arg
}
// Construct a LifetimeDependence from a return value. This only
// constructs a dependence for ~Escapable results that do not have a
// lifetime dependence (@_unsafeNonescapableResult).
//
// TODO: handle indirect results
init?(unsafeApplyResult value: Value, _ context: some Context) {
if value.isEscapable {
return nil
}
if (value.definingInstructionOrTerminator as! FullApplySite).hasResultDependence {
return nil
}
assert(value.ownership == .owned, "apply result must be owned")
self.scope = Scope(base: value, context)!
self.dependentValue = value
}
var isUnsafeApplyResult: Bool {
if case let .owned(value) = scope {
if let apply = value.definingInstruction as? FullApplySite {
assert(!apply.hasResultDependence)
return true
}
}
return false
}
/// Construct LifetimeDependence from mark_dependence [unresolved]
///
/// For any LifetimeDependence constructed from a mark_dependence,
/// its `dependentValue` will be the result of the mark_dependence.
///
/// TODO: Add SIL verification that all mark_depedence [unresolved]
/// have a valid LifetimeDependence.
init?(_ markDep: MarkDependenceInst, _ context: some Context) {
switch markDep.dependenceKind {
case .Unresolved, .NonEscaping:
guard let scope = Scope(base: markDep.base, context) else {
return nil
}
self.scope = scope
self.dependentValue = markDep
case .Escaping:
return nil
}
}
/// Compute the range of the dependence scope.
///
/// Returns nil if the dependence scope covers the entire function
/// or if 'dependentValue' is part of the parent's forwarded
/// lifetime.
///
/// Note: The caller must deinitialize the returned range.
func computeRange(_ context: Context) -> InstructionRange? {
if dependentValue.isForwarded(from: parentValue) {
return nil
}
return scope.computeRange(context)
}
func resolve(_ context: some Context) {
if let mdi = dependentValue as? MarkDependenceInst {
mdi.resolveToNonEscaping()
}
}
}
private extension Value {
func isForwarded(from: Value) -> Bool {
if self == from {
return true
}
if let forward = self.forwardingInstruction,
let singleOp = forward.singleForwardedOperand {
return singleOp.value.isForwarded(from: from)
}
return false
}
}
extension LifetimeDependence.Scope {
/// Construct a lifetime dependence scope from the base value that
/// other values depend on. This derives the kind of dependence
/// scope and its parentValue from `base`.
///
/// `base` represents the OSSA lifetime that the dependent value
/// must be used within. If `base` is owned, then it directly
/// defines the parent lifetime. If `base` is guaranteed, then it
/// must have a single borrow introducer, which defines the parent
/// lifetime. `base` must not be derived from a guaranteed phi or
/// forwarded (via struct/tuple) from multiple guaranteed values.
init?(base: Value, _ context: some Context) {
if base.type.isAddress {
guard let scope = Self(address: base, context) else {
return nil
}
self = scope
return
}
switch base.ownership {
case .owned:
self = .owned(base)
return
case .guaranteed:
guard let scope = Self(guaranteed: base, context) else {
return nil
}
self = scope
case .none:
// lifetime dependence requires a nontrivial value"
return nil
case .unowned:
self = .unknown(base)
}
}
private init?(address: Value, _ context: some Context) {
switch address.enclosingAccessScope {
case let .scope(access):
self = .access(access)
case let .base(accessBase):
switch accessBase {
case let .box(projectBox):
// Note: the box may be in a borrow scope.
guard let scope = Self(base: projectBox.operand.value, context) else {
return nil
}
self = scope
case let .stack(allocStack):
guard let scope = Self(allocation: allocStack, context) else {
return nil
}
self = scope
case .global:
self = .unknown(address)
case .class, .tail:
let refElt = address as! UnaryInstruction
guard let scope = Self(guaranteed: refElt.operand.value, context) else {
return nil
}
self = scope
case let .argument(arg):
if arg.convention.isIndirectIn {
self = .initialized(initialAddress: arg, initializingStore: nil)
} else if arg.convention.isIndirectOut {
// TODO: verify that @out values are never reassigned.
self = .caller(arg)
} else {
// Note: we do not expect arg.convention.isInout because
// mutable variables require an access scope. The .caller
// scope is assumed to be immutable.
self = .unknown(address)
}
case let .yield(result):
self = Self(yield: result)
case .storeBorrow(let sb):
guard let scope = Self(base: sb.source, context) else {
return nil
}
self = scope
case .pointer, .unidentified:
self = .unknown(address)
}
}
}
private init?(guaranteed base: Value, _ context: some Context) {
var introducers = Stack<BeginBorrowValue>(context)
gatherBorrowIntroducers(for: base, in: &introducers, context)
// If introducers is empty, then the dependence is on a trivial value, so
// there is no dependence scope.
//
// TODO: Add a SIL verifier check that a mark_dependence [nonescaping]
// base is never a guaranteed phi.
guard let beginBorrow = introducers.pop() else { return nil }
assert(introducers.isEmpty,
"guaranteed phis not allowed when diagnosing lifetime dependence")
switch beginBorrow {
case .beginBorrow, .loadBorrow:
let borrowOperand = beginBorrow.baseOperand!
guard let scope = LifetimeDependence.Scope(base: borrowOperand.value,
context) else {
return nil
}
self = scope
case let .beginApply(value):
self = .yield(value)
case .functionArgument:
self = .caller(beginBorrow.value as! Argument)
case .reborrow:
fatalError("reborrows are not supported in diagnostics")
}
}
private init(yield result: MultipleValueInstructionResult) {
// Consider an @in yield an .initialized scope. We must find the destroys.
let apply = result.parentInstruction as! FullApplySite
if apply.convention(of: result).isIndirectIn {
self = .initialized(initialAddress: result, initializingStore: nil)
return
}
self = .yield(result)
}
private init?(allocation: AllocStackInst, _ context: Context) {
if let initializer = allocation.accessBase.findSingleInitializer(context) {
self = .initialized(initialAddress: initializer.initialAddress,
initializingStore: initializer.initializingStore)
}
return nil
}
}
extension LifetimeDependence.Scope {
/// Compute the range of the dependence scope.
///
/// Returns nil if the dependence scope covers the entire function.
///
/// Note: The caller must deinitialize the returned range.
func computeRange(_ context: Context) -> InstructionRange? {
switch self {
case .caller:
return nil
case let .access(beginAccess):
var range = InstructionRange(begin: beginAccess, context)
range.insert(contentsOf: beginAccess.endInstructions)
return range
case let .yield(value):
// This assumes @inout or @in_guaranteed convention.
let def = value.definingInstruction!
var range = InstructionRange(begin: def, context)
_ = BorrowingInstruction(def)!.visitScopeEndingOperands(context) {
range.insert($0.instruction)
return .continueWalk
}
return range
case let .owned(value):
// Note: This could compute forwarded liveness instead of linear
// liveness. That would be more forgiving for copies. But, then
// how would we ensure that the borrowed mark_dependence value
// is within this value's OSSA lifetime?
return computeLinearLiveness(for: value, context)
case let .initialized(initialAddress, initializingStore):
return LifetimeDependence.Scope.computeInitializedRange(
initialAddress: initialAddress, initializingStore: initializingStore,
context)
case let .unknown(value):
// Return an empty range.
return InstructionRange(for: value, context)
}
}
private static func computeInitializedRange(initialAddress: Value,
initializingStore: Instruction?,
_ context: Context)
-> InstructionRange {
assert(initialAddress.type.isAddress)
var range: InstructionRange
if let initializingStore {
range = InstructionRange(begin: initializingStore, context)
} else {
range = InstructionRange(for: initialAddress, context)
}
for use in initialAddress.uses {
let inst = use.instruction
switch inst {
case is DestroyAddrInst:
range.insert(inst)
case let sdai as SourceDestAddrInstruction
where sdai.sourceOperand == use && sdai.isTakeOfSrc:
range.insert(inst)
case let li as LoadInst where li.loadOwnership == .take:
range.insert(inst)
default:
break
}
}
return range
}
}
extension LifetimeDependence {
/// TODO: By making UseDefVisitor a NonEscapable type, we should be
/// able to make \p visitor a non-escaping closure.
static func visitDependenceRoots(enclosing value: Value,
_ context: Context,
_ visitor: @escaping (LifetimeDependence.Scope) -> WalkResult)
-> WalkResult {
var useDefVisitor = UseDefVisitor(context, visitor)
defer { useDefVisitor.deinitialize() }
return useDefVisitor.walkUp(valueOrAddress: value)
}
private struct UseDefVisitor : LifetimeDependenceUseDefWalker {
let context: Context
// This visited set is only really needed for instructions with
// multiple results, including phis.
private var visitedValues: ValueSet
// Call \p visit rather than calling this directly.
private let visitorClosure: (LifetimeDependence.Scope) -> WalkResult
init(_ context: Context,
_ visitor: @escaping (LifetimeDependence.Scope) -> WalkResult) {
self.context = context
self.visitedValues = ValueSet(context)
self.visitorClosure = visitor
}
mutating func deinitialize() {
visitedValues.deinitialize()
}
mutating func needWalk(for value: Value, _ owner: Value?) -> Bool {
// FIXME: cache the value's owner, and support walking up
// multiple guaranteed forwards to different owners, then
// reconverging.
visitedValues.insert(value)
}
// Visit the base value of a lifetime dependence. If the base is an address, the dependence scope is the enclosing
// access. The walker does not walk past an `mark_dependence [nonescaping]` that produces an address, because that
// will never occur inside of an access scope. An address type mark_dependence [unresolved]` can only result from an
// indirect function result when opaque values are not enabled. Address type `mark_dependence [nonescaping]`
// instruction are also produced for captured arguments but ClosureLifetimeFixup, but those aren't considered to
// have a LifetimeDependence scope.
mutating func introducer(_ value: Value, _ owner: Value?) -> WalkResult {
let base = owner ?? value
guard let scope = LifetimeDependence.Scope(base: base, context)
else {
return .continueWalk
}
scope.checkPrecondition()
return visitorClosure(scope)
}
}
}
/// Walk up the lifetime dependence
///
/// This uses LifetimeDependenceUseDefWalker to find the introducers
/// of a dependence chain, which represent the value's "inherited"
/// dependencies. This stops at an address, unless the address refers
/// to a singly-initialized temprorary, in which case it continues to
/// walk up the stored value.
///
/// This overrides LifetimeDependenceUseDefWalker to stop at a value
/// that introduces an immutable variable: move_value [var_decl] or
/// begin_borrow [var_decl], and to stop at an access of a mutable
/// variable: begin_access.
///
/// Start walking:
/// walkUp(valueOrAddress: Value) -> WalkResult
struct VariableIntroducerUseDefWalker : LifetimeDependenceUseDefWalker {
let context: Context
// This visited set is only really needed for instructions with
// multiple results, including phis.
private var visitedValues: ValueSet
// Call \p visit rather than calling this directly.
private let visitorClosure: (Value) -> WalkResult
init(_ context: Context, _ visitor: @escaping (Value) -> WalkResult) {
self.context = context
self.visitedValues = ValueSet(context)
self.visitorClosure = visitor
}
mutating func deinitialize() {
visitedValues.deinitialize()
}
mutating func needWalk(for value: Value, _ owner: Value?) -> Bool {
visitedValues.insert(value)
}
mutating func introducer(_ value: Value, _ owner: Value?) -> WalkResult {
return visitorClosure(value)
}
mutating func walkUp(value: Value, _ owner: Value?) -> WalkResult {
switch value.definingInstruction {
case let moveInst as MoveValueInst:
if moveInst.isFromVarDecl {
return introducer(moveInst, owner)
}
case let borrow as BeginBorrowInst:
if borrow.isFromVarDecl {
return introducer(borrow, owner)
}
default:
break
}
return walkUpDefault(dependent: value, owner: owner)
}
mutating func walkUp(address: Value) -> WalkResult {
if let beginAccess = address.definingInstruction as? BeginAccessInst {
return introducer(beginAccess, nil)
}
return walkUpDefault(address: address)
}
}
/// Walk up the lifetime dependence chain.
///
/// This finds the introducers of a dependence chain. which represent the value's "inherited" dependencies. This stops
/// at phis, so all introducers dominate their dependencies. This stops at addresses in general, but if the value is
/// loaded from a singly-initialized location, then it continues walking up the value stored by the initializer. This
/// bypasses the copies to temporary memory locations emitted by SILGen.
///
/// In this example, the dependence root is copied, borrowed, and forwarded before being used as the base operand of
/// `mark_dependence`. The dependence "root" is the parent of the outer-most dependence scope.
///
/// %root = apply // lifetime dependence root
/// %copy = copy_value %root
/// %parent = begin_borrow %copy // lifetime dependence parent value
/// %base = struct_extract %parent // lifetime dependence base value
/// %dependent = mark_dependence [nonescaping] %value on %base
///
/// This extends the ForwardingUseDefWalker, which finds the forward-extended lifetime introducers. Certain
/// forward-extended lifetime introducers can inherit a lifetime dependency from their operand: namely copies, moves,
/// and borrows. These introducers are considered part of their operand's dependence scope because non-escapable values
/// can be copied, moved, and borrowed. Nonetheless, all of their uses must remain within original dependence scope.
///
/// # owned lifetime dependence
/// %parent = apply // begin dependence scope -+
/// ... |
/// %1 = mark_dependence [nonescaping] %value on %parent |
/// ... |
/// %2 = copy_value %1 -+ |
/// # forwarding instruction | |
/// %3 = struct $S (%2) | forward-extended lifetime |
/// | | OSSA Lifetime
/// %4 = move_value %3 -+ |
/// ... | forward-extended lifetime |
/// %5 = begin_borrow %4 | -+ |
/// # dependent use of %1 | | forward-extended lifetime|
/// end_borrow %5 | -+ |
/// destroy_value %4 -+ |
/// ... |
/// destroy_value %parent // end dependence scope -+
///
/// All of the dependent uses including `end_borrow %5` and `destroy_value %4` must be before the end of the dependence
/// scope: `destroy_value %parent`. In this case, the dependence parent is an owned value, so the scope is simply the
/// value's OSSA lifetime.
///
/// Minimal requirements:
/// var context: Context
/// introducer(_ value: Value) -> WalkResult
/// needWalk(for value: Value) -> Bool
///
/// Start walking:
/// walkUp(valueOrAddress: Value) -> WalkResult
protocol LifetimeDependenceUseDefWalker : ForwardingUseDefWalker where PathContext == Value? {
var context: Context { get }
mutating func introducer(_ value: Value, _ owner: Value?) -> WalkResult
// Minimally, check a ValueSet. This walker may traverse chains of
// aggregation and destructuring along with phis.
mutating func needWalk(for value: Value, _ owner: Value?) -> Bool
mutating func walkUp(value: Value, _ owner: Value?) -> WalkResult
mutating func walkUp(address: Value) -> WalkResult
}
// Implement ForwardingUseDefWalker
extension LifetimeDependenceUseDefWalker {
mutating func walkUp(valueOrAddress: Value) -> WalkResult {
if valueOrAddress.type.isAddress {
return walkUp(address: valueOrAddress)
}
let owner = valueOrAddress.ownership == .owned ? valueOrAddress : nil
return walkUp(value: valueOrAddress, owner)
}
mutating func walkUp(value: Value, _ owner: Value?) -> WalkResult {
walkUpDefault(dependent: value, owner: owner)
}
mutating func walkUp(address: Value) -> WalkResult {
walkUpDefault(address: address)
}
// Extend ForwardingUseDefWalker to handle copies, moves, and
// borrows. Also transitively walk up other lifetime dependencies to
// find the roots.
//
// If `value` is an address, this immediately invokes
// `introducer()`. We only expect to see an address-type
// `mark_dependence [nonescaping]` when opaque values are disabled.
//
// Handles loads as a convenience so the client receives the load's
// address as an introducer.
mutating func walkUpDefault(dependent value: Value, owner: Value?)
-> WalkResult {
switch value.definingInstruction {
case let transition as OwnershipTransitionInstruction:
return walkUp(newLifetime: transition.operand.value)
case let load as LoadInstruction:
return walkUp(address: load.address)
case let markDep as MarkDependenceInst:
if let dependence = LifetimeDependence(markDep, context) {
let parent = dependence.parentValue
if markDep.isForwarded(from: parent) {
return walkUp(value: dependence.parentValue, owner)
} else {
return walkUp(newLifetime: dependence.parentValue)
}
}
default:
break
}
// If the dependence chain has a phi, consider it a root. Dependence roots
// are currently expected to dominate all dependent values.
if Phi(value) != nil {
return introducer(value, owner)
}
// ForwardingUseDefWalker will callback to introducer() when it finds no forwarding instruction.
return walkUpDefault(forwarded: value, owner)
}
// Walk up from a load of a singly-initialized address to find the
// dependence root of the stored value. This ignores mutable
// variables, which require an access scope. This ignores applies
// because an lifetime dependence will already be expressed as a
// mark_dependence.
mutating func walkUpDefault(address: Value) -> WalkResult {
if let (_, initializingStore) =
address.accessBase.findSingleInitializer(context) {
switch initializingStore {
case let store as StoringInstruction:
return walkUp(newLifetime: store.source)
case let srcDestInst as SourceDestAddrInstruction:
return walkUp(address: srcDestInst.sourceOperand.value)
default:
break
}
}
return introducer(address, nil)
}
private mutating func walkUp(newLifetime: Value) -> WalkResult {
let newOwner = newLifetime.ownership == .owned ? newLifetime : nil
return walkUp(value: newLifetime, newOwner)
}
}
/// Walk down dependent values.
///
/// First classifies all values using OwnershipUseVisitor. Delegates forwarding uses to the ForwardingUseDefWalker.
/// Transitively follows OwnershipTransitionInstructions (copy, move, borrow, and mark_dependence). Transitively
/// follows interior pointers using AddressUseVisitor. Handles stores to and loads from local variables using
/// LocalVariableReachabilityCache.
///
/// Ignores trivial values (~Escapable types are never trivial. Escapable types may only be lifetime-depenent values if
/// they are non-trivial).
///
/// Skips uses within nested borrow scopes.
///
/// TODO: override BeginAccessInst to handle EndAccessInst.
///
/// Minimal requirements:
/// needWalk(for value: Value) -> Bool
/// leafUse(of: Operand) -> WalkResult
/// deadValue(_ value: Value, using operand: Operand?) -> WalkResult
/// escapingDependence(on operand: Operand) -> WalkResult
/// returnedDependence(result: Operand) -> WalkResult
/// returnedDependence(address: FunctionArgument, using: Operand) -> WalkResult
/// yieldedDependence(result: Operand) -> WalkResult
/// Start walking:
/// walkDown(root: Value)
///
/// Note: this may visit values that are not dominated by `root` because of dependent phi operands.
protocol LifetimeDependenceDefUseWalker : ForwardingDefUseWalker,
OwnershipUseVisitor,
AddressUseVisitor {
var function: Function { get }
/// Dependence tracking through local variables.
var localReachabilityCache: LocalVariableReachabilityCache { get }
mutating func leafUse(of operand: Operand) -> WalkResult
mutating func escapingDependence(on operand: Operand) -> WalkResult
mutating func returnedDependence(result: Operand) -> WalkResult
mutating func returnedDependence(address: FunctionArgument, using: Operand) -> WalkResult
mutating func yieldedDependence(result: Operand) -> WalkResult
}
extension LifetimeDependenceDefUseWalker {
// Use a distict context name to avoid rdar://123424566 (Unable to open existential)
var walkerContext: Context { context }
}
// Start a forward walk.
extension LifetimeDependenceDefUseWalker {
mutating func walkDown(root: Value) -> WalkResult {
if root.type.isAddress {
return walkDownAddressUses(of: root)
}
return walkDownUses(of: root, using: nil)
}
}
// Implement ForwardingDefUseWalker
extension LifetimeDependenceDefUseWalker {
// Override ForwardingDefUseWalker.
mutating func walkDownUses(of value: Value, using operand: Operand?)
-> WalkResult {
// Only track ~Escapable and @noescape types.
if value.mayEscape {
return .continueWalk
}
return walkDownUsesDefault(forwarding: value, using: operand)
}
// Override ForwardingDefUseWalker.
mutating func walkDown(operand: Operand) -> WalkResult {
// Initially delegate all usess to OwnershipUseVisitor.
// walkDownDefault will be called for uses that forward ownership.
return classify(operand: operand)
}
// Callback from (a) ForwardingDefUseWalker or (b) ownershipLeafUse.
//
// (a) OwnershipUseVisitor classified this as a forwardingUse(), but
// ForwardingDefUseWalker does not recognize it as a forwarding
// instruction. This includes apply arguments.
//
// (b) OwnershipUseVisitor classified this as a ownershipLeafUse(), but
// it was not a recognized copy, destroy, or instantaneous use.
mutating func nonForwardingUse(of operand: Operand) -> WalkResult {
if let apply = operand.instruction as? FullApplySite {
return visitAppliedUse(of: operand, by: apply)
}
if operand.instruction is ReturnInst, !operand.value.isEscapable {
return returnedDependence(result: operand)
}
if operand.instruction is YieldInst, !operand.value.isEscapable {
return yieldedDependence(result: operand)
}
return escapingDependence(on: operand)
}
}
// Implement OwnershipUseVisitor
extension LifetimeDependenceDefUseWalker {
// Handle uses that do not propagate the OSSA lifetime. They may still
// copy the value, which propagates the dependence.
mutating func ownershipLeafUse(of operand: Operand, isInnerLifetime: Bool)
-> WalkResult {
if operand.ownership == .endBorrow {
// Record the leaf use here because, in some cases, like
// begin_apply, we have skipped the inner uses.
return leafUse(of: operand)
}
switch operand.instruction {
case let transition as OwnershipTransitionInstruction:
return walkDownUses(of: transition.ownershipResult, using: operand)
case let mdi as MarkDependenceInst where mdi.isUnresolved:
// Override mark_dependence [unresolved] to handle them just
// like [nonescaping] even though they are not considered OSSA
// borrows until after resolution.
assert(operand == mdi.baseOperand)
return dependentUse(of: operand, into: mdi)
case is ExistentialMetatypeInst, is FixLifetimeInst, is WitnessMethodInst,
is DynamicMethodBranchInst, is ValueMetatypeInst,
is IsEscapingClosureInst, is ClassMethodInst, is SuperMethodInst,
is ClassifyBridgeObjectInst, is DebugValueInst,
is ObjCMethodInst, is ObjCSuperMethodInst, is UnmanagedRetainValueInst,
is UnmanagedReleaseValueInst, is SelectEnumInst:
// Catch .instantaneousUse operations that are dependence leaf uses.
return leafUse(of: operand)
case is DestroyValueInst, is EndLifetimeInst, is DeallocRefInst,
is DeallocBoxInst, is DeallocExistentialBoxInst,
is BeginCOWMutationInst, is EndCOWMutationInst,
is EndInitLetRefInst, is DeallocPartialRefInst, is BeginDeallocRefInst:
// Catch .destroyingConsume operations that are dependence leaf
// uses.
return leafUse(of: operand)
case let si as StoringInstruction where si.sourceOperand == operand:
return visitStoredUses(of: operand, into: si.destinationOperand.value)
case let tai as TupleAddrConstructorInst:
return visitStoredUses(of: operand, into: tai.destinationOperand.value)
case let bi as BuiltinInst where bi.id == .Copy:
// This must be a non-address-lowered form of Builtin.Copy that
// produces an owned value.
assert(bi.ownership == .owned)
return walkDownUses(of: bi, using: operand)
default:
return nonForwardingUse(of: operand)
}
}
mutating func forwardingUse(of operand: Operand, isInnerLifetime: Bool)
-> WalkResult {
// Delegate ownership forwarding operations to the ForwardingDefUseWalker.
return walkDownDefault(forwarding: operand)
}
mutating func interiorPointerUse(of: Operand, into address: Value)
-> WalkResult {
return walkDownAddressUses(of: address)
}
mutating func pointerEscapingUse(of operand: Operand) -> WalkResult {
return escapingDependence(on: operand)
}
mutating func dependentUse(of operand: Operand, into value: Value)
-> WalkResult {
return walkDownUses(of: value, using: operand)
}
mutating func borrowingUse(of operand: Operand,
by borrowInst: BorrowingInstruction)
-> WalkResult {
return visitAllBorrowUses(of: operand, by: borrowInst)
}
// TODO: Consider supporting lifetime dependence analysis of
// guaranteed phis. See InteriorUseWalker.walkDown(guaranteedPhi: Phi)
mutating func reborrowingUse(of operand: Operand, isInnerLifetime: Bool)
-> WalkResult {
return escapingDependence(on: operand)
}
}
// Implement AddressUseVisitor
extension LifetimeDependenceDefUseWalker {
/// An address projection produces a single address result and does not
/// escape its address operand in any other way.
mutating func projectedAddressUse(of operand: Operand, into value: Value)
-> WalkResult {
return walkDownAddressUses(of: value)
}
mutating func scopedAddressUse(of operand: Operand) -> WalkResult {
switch operand.instruction {
case let ba as BeginAccessInst:
return walkDownAddressUses(of: ba)
case let ba as BeginApplyInst:
// visitAppliedUse only calls scopedAddressUse for ~Escapable
// arguments that are not propagated to a result. Here, we only
// care about the scope of the call.
return ba.token.uses.walk { leafUse(of: $0) }
case is StoreBorrowInst:
return leafUse(of: operand)
case let load as LoadBorrowInst:
return walkDownUses(of: load, using: operand)
default:
fatalError("Unrecognized scoped address use: \(operand.instruction)")
}
}
mutating func scopeEndingAddressUse(of operand: Operand) -> WalkResult {
return leafUse(of: operand)
}
// Includes StoringInstruction.
mutating func leafAddressUse(of operand: Operand) -> WalkResult {
return leafUse(of: operand)
}
mutating func appliedAddressUse(of operand: Operand,
by apply: FullApplySite) -> WalkResult {
return visitAppliedUse(of: operand, by: apply)
}
mutating func loadedAddressUse(of operand: Operand, into value: Value)
-> WalkResult {
// Record the load itself, in case the loaded value is Escapable.
if leafUse(of: operand) == .abortWalk {
return .abortWalk
}
return walkDownUses(of: value, using: operand)
}
mutating func loadedAddressUse(of operand: Operand, into address: Operand)
-> WalkResult {
if leafUse(of: operand) == .abortWalk {
return .abortWalk
}
return visitStoredUses(of: operand, into: address.value)
}
mutating func dependentAddressUse(of operand: Operand, into value: Value)
-> WalkResult {
walkDownUses(of: value, using: operand)
}
mutating func escapingAddressUse(of operand: Operand) -> WalkResult {
if let mdi = operand.instruction as? MarkDependenceInst {
assert(!mdi.isUnresolved && !mdi.isNonEscaping,
"should be handled as a dependence by AddressUseVisitor")
}
if operand.instruction is YieldInst {
if operand.value.isEscapable {
return leafUse(of: operand)
} else {
return yieldedDependence(result: operand)
}
}
// Escaping an address
return escapingDependence(on: operand)
}
mutating func unknownAddressUse(of operand: Operand) -> WalkResult {
return .abortWalk
}
private mutating func walkDownAddressUses(of address: Value) -> WalkResult {
address.uses.ignoreTypeDependence.walk {
return classifyAddress(operand: $0)
}
}
}
// Helpers
extension LifetimeDependenceDefUseWalker {
// Visit uses of borrowing instruction (operandOwnerhip == .borrow).
private mutating func visitAllBorrowUses(
of operand: Operand, by borrowInst: BorrowingInstruction) -> WalkResult {
switch borrowInst {
case let .beginBorrow(bbi):
return walkDownUses(of: bbi, using: operand)
case let .storeBorrow(sbi):
return walkDownAddressUses(of: sbi)
case .beginApply:
// Skip the borrow scope; the type system enforces non-escapable
// arguments.
return visitInnerBorrowUses(of: borrowInst)
case .partialApply, .markDependence:
fatalError("OwnershipUseVisitor should bypass partial_apply [on_stack] "
+ "and mark_dependence [nonescaping]")
case .startAsyncLet:
// TODO: If async-let takes a non-escaping closure, we can
// consider it nonescaping and visit the endAsyncLetLifetime
// uses here.
return escapingDependence(on: operand)
}
}
// Visit stores to a local variable (alloc_box), temporary storage
// (alloc_stack). This handles stores of the entire value and stores
// to a tuple element. Stores to a field within another nominal
// value are considered lifetime dependence leaf uses; the type
// system enforces non-escapability on the aggregate value.
private mutating func visitStoredUses(of operand: Operand,
into address: Value) -> WalkResult {
assert(address.type.isAddress)
var allocation: Value?
switch address.accessBase {
case let .box(projectBox):
allocation = projectBox.box.referenceRoot
case let .stack(allocStack):
allocation = allocStack
case let .argument(arg):
if arg.convention.isIndirectIn || arg.convention.isInout {
allocation = arg
} else if arg.convention.isIndirectOut, !arg.isEscapable {
return returnedDependence(address: arg, using: operand)
}
break
case .global, .class, .tail, .yield, .storeBorrow, .pointer, .unidentified:
// An address produced by .storeBorrow should never be stored into.
break
}
if let allocation = allocation {
if !allocation.isEscapable {
return visitLocalStore(allocation: allocation, storedOperand: operand, storeAddress: address)
}
}
if address.isEscapable {
return .continueWalk
}
return escapingDependence(on: operand)
}
private mutating func visitLocalStore(allocation: Value, storedOperand: Operand, storeAddress: Value) -> WalkResult {
guard let localReachability = localReachabilityCache.reachability(for: allocation, walkerContext) else {
return escapingDependence(on: storedOperand)
}
var accessStack = Stack<LocalVariableAccess>(walkerContext)
defer { accessStack.deinitialize() }
// Get the local variable access that encloses this store.
var storeAccess = storedOperand.instruction
if case let .scope(beginAccess) = storeAddress.enclosingAccessScope {
storeAccess = beginAccess
}
if !localReachability.gatherAllReachableUses(of: storeAccess, in: &accessStack) {
return escapingDependence(on: storedOperand)
}
for localAccess in accessStack {
if visitLocalAccess(allocation: allocation, localAccess: localAccess, initialValue: storedOperand) == .abortWalk {
return .abortWalk
}
}
return .continueWalk
}
private mutating func visitLocalAccess(allocation: Value, localAccess: LocalVariableAccess, initialValue: Operand)
-> WalkResult {
switch localAccess.kind {
case .beginAccess:
return scopedAddressUse(of: localAccess.operand!)
case .load:
switch localAccess.instruction! {
case let load as LoadInst:
return loadedAddressUse(of: localAccess.operand!, into: load)
case let load as LoadBorrowInst:
return loadedAddressUse(of: localAccess.operand!, into: load)
case let copyAddr as SourceDestAddrInstruction:
return loadedAddressUse(of: localAccess.operand!, into: copyAddr.destinationOperand)
default:
return .abortWalk
}
case .store:
let si = localAccess.operand!.instruction as! StoringInstruction
assert(si.sourceOperand == initialValue, "the only reachable store should be the current assignment")
case .apply:
return visitAppliedUse(of: localAccess.operand!, by: localAccess.instruction as! FullApplySite)
case .escape:
log("Local variable: \(allocation)\n escapes at: \(localAccess.instruction!)")
return escapingDependence(on: localAccess.operand!)
case .outgoingArgument:
let arg = allocation as! FunctionArgument
assert(arg.type.isAddress, "returned local must be allocated with an indirect argument")
return returnedDependence(address: arg, using: initialValue)
case .incomingArgument:
fatalError("Incoming arguments are never reachable")
}
return .continueWalk
}
private mutating func visitAppliedUse(of operand: Operand, by apply: FullApplySite) -> WalkResult {
if let conv = apply.convention(of: operand), conv.isIndirectOut {
return leafUse(of: operand)
}
if apply.isCallee(operand: operand) {
return leafUse(of: operand)
}
if let dep = apply.resultDependence(on: operand),
dep == .inherit {
// Operand is nonescapable and passed as a call argument. If the
// result inherits its lifetime, then consider any nonescapable
// result value to be a dependent use.
//
// If the lifetime dependence is scoped, then we can ignore it
// because a mark_dependence [nonescaping] represents the
// dependence.
if let result = apply.singleDirectResult, !result.isEscapable {
if dependentUse(of: operand, into: result) == .abortWalk {
return .abortWalk
}
}
for resultAddr in apply.indirectResultOperands
where !resultAddr.value.isEscapable {
if visitStoredUses(of: operand, into: resultAddr.value) == .abortWalk {
return .abortWalk
}
}
}
// Regardless of lifetime dependencies, consider the operand to be
// use for the duration of the call.
if apply is BeginApplyInst {
return scopedAddressUse(of: operand)
}
return leafUse(of: operand)
}
}
let variableIntroducerTest = FunctionTest("variable_introducer") {
function, arguments, context in
let value = arguments.takeValue()
print("Variable introducers of: \(value)")
print(gatherVariableIntroducers(for: value, context))
}
let lifetimeDependenceScopeTest = FunctionTest("lifetime_dependence_scope") {
function, arguments, context in
let markDep = arguments.takeValue() as! MarkDependenceInst
guard let dependence = LifetimeDependence(markDep, context) else {
print("Trivial Dependence")
return
}
print(dependence)
guard var range = dependence.scope.computeRange(context) else {
print("Caller range")
return
}
defer { range.deinitialize() }
print(range)
}
let lifetimeDependenceRootTest = FunctionTest("lifetime_dependence_root") {
function, arguments, context in
let value = arguments.takeValue()
_ = LifetimeDependence.visitDependenceRoots(enclosing: value, context) {
scope in
print("Scope: \(scope)")
return .continueWalk
}
}
private struct LifetimeDependenceUsePrinter : LifetimeDependenceDefUseWalker {
let context: Context
let function: Function
let localReachabilityCache = LocalVariableReachabilityCache()
var visitedValues: ValueSet
init(function: Function, _ context: Context) {
self.context = context
self.function = function
self.visitedValues = ValueSet(context)
}
mutating func deinitialize() {
visitedValues.deinitialize()
}
mutating func needWalk(for value: Value) -> Bool {
visitedValues.insert(value)
}
mutating func deadValue(_ value: Value, using operand: Operand?)
-> WalkResult {
print("Dead value: \(value)")
return .continueWalk
}
mutating func leafUse(of operand: Operand) -> WalkResult {
print("Leaf use: \(operand)")
return .continueWalk
}
mutating func escapingDependence(on operand: Operand) -> WalkResult {
print("Escaping use: \(operand)")
return .continueWalk
}
mutating func returnedDependence(result: Operand) -> WalkResult {
print("Returned use: \(result)")
return .continueWalk
}
mutating func returnedDependence(address: FunctionArgument,
using operand: Operand) -> WalkResult {
print("Returned use: \(operand) in: \(address)")
return .continueWalk
}
mutating func yieldedDependence(result: Operand) -> WalkResult {
print("Yielded use: \(result)")
return .continueWalk
}
}
let lifetimeDependenceUseTest = FunctionTest("lifetime_dependence_use") {
function, arguments, context in
let value = arguments.takeValue()
print("LifetimeDependence uses of: \(value)")
var printer = LifetimeDependenceUsePrinter(function: function, context)
defer { printer.deinitialize() }
_ = printer.walkDown(root: value)
}
// SIL Unit tests
let argumentConventionsTest = FunctionTest("argument_conventions") {
function, arguments, context in
if arguments.hasUntaken {
let value = arguments.takeValue()
let applySite = value.definingInstruction as! ApplySite
print("Conventions for call: \(applySite)")
print(applySite.calleeArgumentConventions)
} else {
print("Conventions for function: \(function.name)")
print(function.argumentConventions)
}
// TODO: print ~Escapable conformance and lifetime dependencies
}
|