1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
|
//===--- AccessUtils.swift - Utilities for analyzing memory accesses ------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2022 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
// This file provides a set of utilities for analyzing memory accesses.
// It defines the following concepts
// - `AccessBase`: represents the base address of a memory access.
// - `AccessPath`: a pair of an `AccessBase` and `SmallProjectionPath` with the
// the path describing the specific address (in terms of projections) of the
// access.
// - Access storage path (which is of type `ProjectedValue`): identifies the
// reference (or a value which contains a reference) an address originates from.
//
// The snippet below shows the relationship between the access concepts.
// ```
// %ref = struct_extract %value, #f1 access storage path
// %base = ref_element_addr %ref, #f2 AccessBase AccessPath |
// %scope = begin_access %base AccessScope | |
// %t = tuple_element_addr %scope, 0 | |
// %s = struct_element_addr %t, #f3 v v
// %l = load %s the access
// ```
//===----------------------------------------------------------------------===//
/// AccessBase describes the base address of a memory access (e.g. of a `load` or `store``).
/// The "base address" is defined as the address which is obtained from the access address by
/// looking through all address projections.
/// This means that the base address is either the same as the access address or:
/// the access address is a chain of address projections of the base address.
/// The following snippets show examples of memory accesses and their respective bases.
///
/// ```
/// %base1 = ref_element_addr %ref, #Obj.field // A `class` base
/// %base2 = alloc_stack $S // A `stack` base
/// %base3 = global_addr @gaddr // A `global` base
/// %addr1 = struct_element_addr %base1
/// %access1 = store %v1 to [trivial] %addr1 // accessed address is offset from base
/// %access2 = store %v2 to [trivial] %base2 // accessed address is base itself
/// ```
///
/// The base address is never inside an access scope.
public enum AccessBase : CustomStringConvertible, Hashable {
/// The address of a boxed variable, i.e. a field of an `alloc_box`.
case box(ProjectBoxInst)
/// The address of a stack-allocated value, i.e. an `alloc_stack`
case stack(AllocStackInst)
/// The address of a global variable.
case global(GlobalVariable)
/// The address of a stored property of a class instance.
case `class`(RefElementAddrInst)
/// The base address of the tail allocated elements of a class instance.
case tail(RefTailAddrInst)
/// An indirect function argument, like `@inout`.
case argument(FunctionArgument)
/// An indirect result of a `begin_apply`.
case yield(MultipleValueInstructionResult)
/// store_borrow is never the base of a formal access, but calling Value.enclosingScope on an arbitrary address will
/// return it as the accessBase. A store_borrow always stores into an alloc_stack, but it is handled separately
/// because it may be useful for clients to know which value was stored in the temporary stack location for the
/// duration of this borrow scope.
case storeBorrow(StoreBorrowInst)
/// An address which is derived from a `Builtin.RawPointer`.
case pointer(PointerToAddressInst)
/// The access base is some SIL pattern which does not fit into any other case.
/// This should be a very rare situation.
case unidentified
public init(baseAddress: Value) {
switch baseAddress {
case let rea as RefElementAddrInst : self = .class(rea)
case let rta as RefTailAddrInst : self = .tail(rta)
case let pbi as ProjectBoxInst : self = .box(pbi)
case let asi as AllocStackInst : self = .stack(asi)
case let arg as FunctionArgument : self = .argument(arg)
case let ga as GlobalAddrInst : self = .global(ga.global)
case let mvr as MultipleValueInstructionResult:
if mvr.parentInstruction is BeginApplyInst && baseAddress.type.isAddress {
self = .yield(mvr)
} else {
self = .unidentified
}
case let sb as StoreBorrowInst:
self = .storeBorrow(sb)
default:
self = .unidentified
}
}
public var description: String {
switch self {
case .unidentified: return "?"
case .box(let pbi): return "box - \(pbi)"
case .stack(let asi): return "stack - \(asi)"
case .global(let gl): return "global - @\(gl.name)"
case .class(let rea): return "class - \(rea)"
case .tail(let rta): return "tail - \(rta.instance)"
case .argument(let arg): return "argument - \(arg)"
case .yield(let result): return "yield - \(result)"
case .storeBorrow(let sb): return "storeBorrow - \(sb)"
case .pointer(let p): return "pointer - \(p)"
}
}
/// True, if this is an access to a class instance.
public var isObjectAccess: Bool {
switch self {
case .class, .tail:
return true
case .box, .stack, .global, .argument, .yield, .storeBorrow, .pointer, .unidentified:
return false
}
}
/// The reference value if this is an access to a referenced object (class, box, tail).
public var reference: Value? {
switch self {
case .box(let pbi): return pbi.box
case .class(let rea): return rea.instance
case .tail(let rta): return rta.instance
case .stack, .global, .argument, .yield, .storeBorrow, .pointer, .unidentified:
return nil
}
}
/// True if this access base may be derived from a reference that is only valid within a locally
/// scoped OSSA lifetime. For example:
///
/// %reference = begin_borrow %1
/// %base = ref_tail_addr %reference <- %base must not be used outside the borrow scope
/// end_borrow %reference
///
/// This is not true for scoped storage such as alloc_stack and @in arguments.
///
public var hasLocalOwnershipLifetime: Bool {
if let reference = reference {
// Conservatively assume that everything which is a ref-counted object is within an ownership scope.
// TODO: we could e.g. exclude guaranteed function arguments.
return reference.ownership != .none
}
return false
}
/// True, if the baseAddress is of an immutable property or global variable
public var isLet: Bool {
switch self {
case .class(let rea): return rea.fieldIsLet
case .global(let g): return g.isLet
case .box, .stack, .tail, .argument, .yield, .storeBorrow, .pointer, .unidentified:
return false
}
}
/// True, if the address is produced by an allocation in its function.
public var isLocal: Bool {
switch self {
case .box(let pbi): return pbi.box.referenceRoot is AllocBoxInst
case .class(let rea): return rea.instance.referenceRoot is AllocRefInstBase
case .tail(let rta): return rta.instance.referenceRoot is AllocRefInstBase
case .stack, .storeBorrow: return true
case .global, .argument, .yield, .pointer, .unidentified:
return false
}
}
/// True, if the kind of storage of the access is known (e.g. a class property, or global variable).
public var hasKnownStorageKind: Bool {
switch self {
case .box, .class, .tail, .stack, .storeBorrow, .global:
return true
case .argument, .yield, .pointer, .unidentified:
return false
}
}
/// Returns true if it's guaranteed that this access has the same base address as the `other` access.
///
/// `isEqual` abstracts away the projection instructions that are included as part of the AccessBase:
/// multiple `project_box` and `ref_element_addr` instructions are equivalent bases as long as they
/// refer to the same variable or class property.
public func isEqual(to other: AccessBase) -> Bool {
switch (self, other) {
case (.box(let pb1), .box(let pb2)):
return pb1.box.referenceRoot == pb2.box.referenceRoot
case (.class(let rea1), .class(let rea2)):
return rea1.fieldIndex == rea2.fieldIndex &&
rea1.instance.referenceRoot == rea2.instance.referenceRoot
case (.tail(let rta1), .tail(let rta2)):
return rta1.instance.referenceRoot == rta2.instance.referenceRoot &&
rta1.type == rta2.type
case (.stack(let as1), .stack(let as2)):
return as1 == as2
case (.global(let gl1), .global(let gl2)):
return gl1 == gl2
case (.argument(let arg1), .argument(let arg2)):
return arg1 == arg2
case (.yield(let baResult1), .yield(let baResult2)):
return baResult1 == baResult2
case (.storeBorrow(let sb1), .storeBorrow(let sb2)):
return sb1 == sb2
case (.pointer(let p1), .pointer(let p2)):
return p1 == p2
default:
return false
}
}
/// Returns `true` if the two access bases do not alias.
public func isDistinct(from other: AccessBase) -> Bool {
func isDifferentAllocation(_ lhs: Value, _ rhs: Value) -> Bool {
switch (lhs, rhs) {
case (is Allocation, is Allocation):
return lhs != rhs
case (is Allocation, is FunctionArgument),
(is FunctionArgument, is Allocation):
// A local allocation cannot alias with something passed to the function.
return true
default:
return false
}
}
func argIsDistinct(_ arg: FunctionArgument, from other: AccessBase) -> Bool {
if arg.convention.isExclusiveIndirect {
// Exclusive indirect arguments cannot alias with an address for which we know that it
// is not derived from that argument (which might be the case for `pointer` and `yield`).
return other.hasKnownStorageKind
}
// Non-exclusive argument still cannot alias with anything allocated locally in the function.
return other.isLocal
}
switch (self, other) {
// First handle all pairs of the same kind (except `yield` and `pointer`).
case (.box(let pb), .box(let otherPb)):
return pb.fieldIndex != otherPb.fieldIndex ||
isDifferentAllocation(pb.box.referenceRoot, otherPb.box.referenceRoot)
case (.stack(let asi), .stack(let otherAsi)):
return asi != otherAsi
case (.global(let global), .global(let otherGlobal)):
return global != otherGlobal
case (.class(let rea), .class(let otherRea)):
return rea.fieldIndex != otherRea.fieldIndex ||
isDifferentAllocation(rea.instance, otherRea.instance)
case (.tail(let rta), .tail(let otherRta)):
return isDifferentAllocation(rta.instance, otherRta.instance)
case (.argument(let arg), .argument(let otherArg)):
return (arg.convention.isExclusiveIndirect || otherArg.convention.isExclusiveIndirect) && arg != otherArg
// Handle arguments vs non-arguments
case (.argument(let arg), _):
return argIsDistinct(arg, from: other)
case (_, .argument(let otherArg)):
return argIsDistinct(otherArg, from: self)
case (.storeBorrow(let arg), .storeBorrow(let otherArg)):
return arg.allocStack != otherArg.allocStack
// A StoreBorrow location can only be used by other StoreBorrows.
case (.storeBorrow, _):
return true
case (_, .storeBorrow):
return true
default:
// As we already handled pairs of the same kind, here we handle pairs with different kinds.
// Different storage kinds cannot alias, regardless where the storage comes from.
// E.g. a class property address cannot alias with a global variable address.
return hasKnownStorageKind && other.hasKnownStorageKind
}
}
}
/// An `AccessPath` is a pair of a `base: AccessBase` and a `projectionPath: Path`
/// which denotes the offset of the access from the base in terms of projections.
public struct AccessPath : CustomStringConvertible {
public let base: AccessBase
/// address projections only
public let projectionPath: SmallProjectionPath
public static func unidentified() -> AccessPath {
return AccessPath(base: .unidentified, projectionPath: SmallProjectionPath())
}
public var description: String {
"\(projectionPath): \(base)"
}
public func isDistinct(from other: AccessPath) -> Bool {
if base.isDistinct(from: other.base) {
// We can already derived from the bases that there is no alias.
// No need to look at the projection paths.
return true
}
if base == other.base ||
(base.hasKnownStorageKind && other.base.hasKnownStorageKind) {
if !projectionPath.mayOverlap(with: other.projectionPath) {
return true
}
}
return false
}
/// Returns true if this access addresses the same memory location as `other` or if `other`
/// is a sub-field of this access.
/// Note that this access _contains_ `other` if `other` has a _larger_ projection path than this acccess.
/// For example:
/// `%value.s0` contains `%value.s0.s1`
public func isEqualOrContains(_ other: AccessPath) -> Bool {
return getProjection(to: other) != nil
}
public var materializableProjectionPath: SmallProjectionPath? {
if projectionPath.isMaterializable {
return projectionPath
}
return nil
}
/// Returns the projection path to `other` if this access path is equal or contains `other`.
///
/// For example,
/// `%value.s0`.getProjection(to: `%value.s0.s1`)
/// yields
/// `s1`
public func getProjection(to other: AccessPath) -> SmallProjectionPath? {
if !base.isEqual(to: other.base) {
return nil
}
if let resultPath = projectionPath.subtract(from: other.projectionPath),
// Indexing is not a projection where the base overlaps the projected address.
!resultPath.pop().kind.isIndexedElement
{
return resultPath
}
return nil
}
/// Like `getProjection`, but also requires that the resulting projection path is materializable.
public func getMaterializableProjection(to other: AccessPath) -> SmallProjectionPath? {
if let projectionPath = getProjection(to: other),
projectionPath.isMaterializable {
return projectionPath
}
return nil
}
}
private func canBeOperandOfIndexAddr(_ value: Value) -> Bool {
switch value {
case is IndexAddrInst, is RefTailAddrInst, is PointerToAddressInst:
return true
default:
return false
}
}
/// Tries to identify from which address the pointer operand originates from.
/// This is useful to identify patterns like
/// ```
/// %orig_addr = global_addr @...
/// %ptr = address_to_pointer %orig_addr
/// %addr = pointer_to_address %ptr
/// ```
private extension PointerToAddressInst {
var originatingAddress: Value? {
struct Walker : ValueUseDefWalker {
let addrType: Type
var result: Value?
var walkUpCache = WalkerCache<Path>()
mutating func rootDef(value: Value, path: SmallProjectionPath) -> WalkResult {
if let atp = value as? AddressToPointerInst {
if let res = result, atp.address != res {
return .abortWalk
}
if addrType != atp.address.type { return .abortWalk }
if !path.isEmpty { return .abortWalk }
self.result = atp.address
return .continueWalk
}
return .abortWalk
}
mutating func walkUp(value: Value, path: SmallProjectionPath) -> WalkResult {
switch value {
case is Argument, is MarkDependenceInst, is CopyValueInst,
is StructExtractInst, is TupleExtractInst, is StructInst, is TupleInst, is AddressToPointerInst:
return walkUpDefault(value: value, path: path)
default:
return .abortWalk
}
}
}
var walker = Walker(addrType: type)
if walker.walkUp(value: pointer, path: SmallProjectionPath()) == .abortWalk {
return nil
}
return walker.result
}
}
/// The `EnclosingScope` of an access is the innermost `begin_access`
/// instruction that checks for exclusivity of the access.
/// If there is no `begin_access` instruction found, then the scope is
/// the base itself.
///
/// The access scopes for the snippet below are:
/// (l1, .base(%addr)), (l2, .scope(%a2)), (l3, .scope(%a3))
///
/// ````
/// %addr = ... : $*Int64
/// %l1 = load %addr : $*Int64
/// %a1 = begin_access [read] [dynamic] %addr : $*Int64
/// %a2 = begin_access [read] [dynamic] %addr : $*Int64
/// %l2 = load %a2 : $*Int64
/// end_access %a2 : $*Int64
/// end_access %a1 : $*Int64
/// %a3 = begin_access [read] [dynamic] [no_nested_conflict] %addr : $*Int64
/// %l3 = load %a3 : $*Int64
/// end_access %a3 : $*Int64
/// ```
public enum EnclosingScope {
case scope(BeginAccessInst)
case base(AccessBase)
}
private struct AccessPathWalker : AddressUseDefWalker {
var result = AccessPath.unidentified()
var foundBeginAccess: BeginAccessInst?
mutating func walk(startAt address: Value, initialPath: SmallProjectionPath = SmallProjectionPath()) {
if walkUp(address: address, path: Path(projectionPath: initialPath)) == .abortWalk {
assert(result.base == .unidentified,
"shouldn't have set an access base in an aborted walk")
}
}
struct Path : SmallProjectionWalkingPath {
let projectionPath: SmallProjectionPath
// Tracks whether an `index_addr` instruction was crossed.
// It should be (FIXME: check if it's enforced) that operands
// of `index_addr` must be `tail_addr` or other `index_addr` results.
let indexAddr: Bool
init(projectionPath: SmallProjectionPath = SmallProjectionPath(), indexAddr: Bool = false) {
self.projectionPath = projectionPath
self.indexAddr = indexAddr
}
func with(projectionPath: SmallProjectionPath) -> Self {
return Self(projectionPath: projectionPath, indexAddr: indexAddr)
}
func with(indexAddr: Bool) -> Self {
return Self(projectionPath: projectionPath, indexAddr: indexAddr)
}
func merge(with other: Self) -> Self {
return Self(
projectionPath: projectionPath.merge(with: other.projectionPath),
indexAddr: indexAddr || other.indexAddr
)
}
}
mutating func rootDef(address: Value, path: Path) -> WalkResult {
assert(result.base == .unidentified, "rootDef should only called once")
// Try identifying the address a pointer originates from
if let p2ai = address as? PointerToAddressInst {
if let originatingAddr = p2ai.originatingAddress {
return walkUp(address: originatingAddr, path: path)
} else {
self.result = AccessPath(base: .pointer(p2ai), projectionPath: path.projectionPath)
return .continueWalk
}
}
let base = AccessBase(baseAddress: address)
self.result = AccessPath(base: base, projectionPath: path.projectionPath)
return .continueWalk
}
mutating func walkUp(address: Value, path: Path) -> WalkResult {
if address is IndexAddrInst {
// Track that we crossed an `index_addr` during the walk-up
return walkUpDefault(address: address, path: path.with(indexAddr: true))
} else if path.indexAddr && !canBeOperandOfIndexAddr(address) {
// An `index_addr` instruction cannot be derived from an address
// projection. Bail out
return .abortWalk
} else if let ba = address as? BeginAccessInst, foundBeginAccess == nil {
foundBeginAccess = ba
}
return walkUpDefault(address: address, path: path.with(indexAddr: false))
}
}
extension Value {
// Convenient properties to avoid instantiating an explicit AccessPathWalker.
//
// Although an AccessPathWalker is created for each call of these properties,
// it's very unlikely that this will end up in memory allocations.
// Only in the rare case of `pointer_to_address` -> `address_to_pointer` pairs, which
// go through phi-arguments, the AccessPathWalker will allocate memnory in its cache.
/// Computes the access base of this address value.
public var accessBase: AccessBase { accessPath.base }
/// Computes the access path of this address value.
public var accessPath: AccessPath {
var walker = AccessPathWalker()
walker.walk(startAt: self)
return walker.result
}
public func getAccessPath(fromInitialPath: SmallProjectionPath) -> AccessPath {
var walker = AccessPathWalker()
walker.walk(startAt: self, initialPath: fromInitialPath)
return walker.result
}
/// Computes the access path of this address value and also returns the scope.
public var accessPathWithScope: (AccessPath, scope: BeginAccessInst?) {
var walker = AccessPathWalker()
walker.walk(startAt: self)
return (walker.result, walker.foundBeginAccess)
}
/// Computes the enclosing access scope of this address value.
public var enclosingAccessScope: EnclosingScope {
var walker = AccessPathWalker()
walker.walk(startAt: self)
if let ba = walker.foundBeginAccess {
return .scope(ba)
}
return .base(walker.result.base)
}
/// The root definition of a reference, obtained by skipping ownership forwarding and ownership transition.
public var referenceRoot: Value {
var value: Value = self
while true {
if let forward = value.forwardingInstruction, forward.preservesIdentity,
let operand = forward.singleForwardedOperand {
value = operand.value
continue
}
if let transition = value.definingInstruction as? OwnershipTransitionInstruction {
value = transition.operand.value
continue
}
return value
}
}
}
/// A ValueUseDef walker that that visits access storage paths of an address.
///
/// An access storage path is the reference (or a value which contains a reference)
/// an address originates from.
/// In the following example the `storage` is `contains_ref` with `path` `"s0.c0.s0"`
/// ```
/// %ref = struct_extract %contains_ref : $S, #S.l
/// %base = ref_element_addr %ref : $List, #List.x
/// %addr = struct_element_addr %base : $X, #X.e
/// store %v to [trivial] %addr : $*Int
/// ```
///
/// Warning: This does not find the correct storage root of the
/// lifetime of an object projection, such as .box or .class because
/// ValueUseDefWalker ignores ownership and, for example, walks past copies.
extension ValueUseDefWalker where Path == SmallProjectionPath {
/// The main entry point.
/// Given an `accessPath` where the access base is a reference (class, tail, box), call
/// the `visit` function for all storage roots with a the corresponding path.
/// Returns true on success.
/// Returns false if not all storage roots could be identified or if `accessPath` has not a "reference" base.
public mutating func visitAccessStorageRoots(of accessPath: AccessPath) -> Bool {
walkUpCache.clear()
let path = accessPath.projectionPath
switch accessPath.base {
case .box(let pbi):
return walkUp(value: pbi.box, path: path.push(.classField, index: pbi.fieldIndex)) != .abortWalk
case .class(let rea):
return walkUp(value: rea.instance, path: path.push(.classField, index: rea.fieldIndex)) != .abortWalk
case .tail(let rta):
return walkUp(value: rta.instance, path: path.push(.tailElements, index: 0)) != .abortWalk
case .stack, .global, .argument, .yield, .storeBorrow, .pointer, .unidentified:
return false
}
}
}
|