File: AccessUtils.swift

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (618 lines) | stat: -rw-r--r-- 23,920 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
//===--- AccessUtils.swift - Utilities for analyzing memory accesses ------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2022 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
// This file provides a set of utilities for analyzing memory accesses.
// It defines the following concepts
// - `AccessBase`: represents the base address of a memory access.
// - `AccessPath`: a pair of an `AccessBase` and `SmallProjectionPath` with the
//   the path describing the specific address (in terms of projections) of the
//   access.
// - Access storage path (which is of type `ProjectedValue`): identifies the
//   reference (or a value which contains a reference) an address originates from.
//
// The snippet below shows the relationship between the access concepts.
// ```
// %ref = struct_extract %value, #f1                                        access storage path
// %base = ref_element_addr %ref, #f2         AccessBase       AccessPath            |
// %scope = begin_access %base                AccessScope          |                 |
// %t = tuple_element_addr %scope, 0                               |                 |
// %s = struct_element_addr %t, #f3                                v                 v
// %l = load %s                               the access
// ```
//===----------------------------------------------------------------------===//

/// AccessBase describes the base address of a memory access (e.g. of a `load` or `store``).
/// The "base address" is defined as the address which is obtained from the access address by
/// looking through all address projections.
/// This means that the base address is either the same as the access address or:
/// the access address is a chain of address projections of the base address.
/// The following snippets show examples of memory accesses and their respective bases.
///
/// ```
/// %base1 = ref_element_addr %ref, #Obj.field // A `class` base
/// %base2 = alloc_stack $S                    // A `stack` base
/// %base3 = global_addr @gaddr                // A `global` base
/// %addr1 = struct_element_addr %base1
/// %access1 = store %v1 to [trivial] %addr1   // accessed address is offset from base
/// %access2 = store %v2 to [trivial] %base2   // accessed address is base itself
/// ```
///
/// The base address is never inside an access scope.
public enum AccessBase : CustomStringConvertible, Hashable {

  /// The address of a boxed variable, i.e. a field of an `alloc_box`.
  case box(ProjectBoxInst)
  
  /// The address of a stack-allocated value, i.e. an `alloc_stack`
  case stack(AllocStackInst)
  
  /// The address of a global variable.
  case global(GlobalVariable)
  
  /// The address of a stored property of a class instance.
  case `class`(RefElementAddrInst)
  
  /// The base address of the tail allocated elements of a class instance.
  case tail(RefTailAddrInst)

  /// An indirect function argument, like `@inout`.
  case argument(FunctionArgument)
  
  /// An indirect result of a `begin_apply`.
  case yield(MultipleValueInstructionResult)

  /// store_borrow is never the base of a formal access, but calling Value.enclosingScope on an arbitrary address will
  /// return it as the accessBase. A store_borrow always stores into an alloc_stack, but it is handled separately
  /// because it may be useful for clients to know which value was stored in the temporary stack location for the
  /// duration of this borrow scope.
  case storeBorrow(StoreBorrowInst)

  /// An address which is derived from a `Builtin.RawPointer`.
  case pointer(PointerToAddressInst)

  /// The access base is some SIL pattern which does not fit into any other case.
  /// This should be a very rare situation.
  case unidentified

  public init(baseAddress: Value) {
    switch baseAddress {
    case let rea as RefElementAddrInst   : self = .class(rea)
    case let rta as RefTailAddrInst      : self = .tail(rta)
    case let pbi as ProjectBoxInst       : self = .box(pbi)
    case let asi as AllocStackInst       : self = .stack(asi)
    case let arg as FunctionArgument     : self = .argument(arg)
    case let ga as GlobalAddrInst        : self = .global(ga.global)
    case let mvr as MultipleValueInstructionResult:
      if mvr.parentInstruction is BeginApplyInst && baseAddress.type.isAddress {
        self = .yield(mvr)
      } else {
        self = .unidentified
      }
    case let sb as StoreBorrowInst:
      self = .storeBorrow(sb)
    default:
      self = .unidentified
    }
  }

  public var description: String {
    switch self {
      case .unidentified:      return "?"
      case .box(let pbi):      return "box - \(pbi)"
      case .stack(let asi):    return "stack - \(asi)"
      case .global(let gl):    return "global - @\(gl.name)"
      case .class(let rea):    return "class  - \(rea)"
      case .tail(let rta):     return "tail - \(rta.instance)"
      case .argument(let arg): return "argument - \(arg)"
      case .yield(let result): return "yield - \(result)"
      case .storeBorrow(let sb): return "storeBorrow - \(sb)"
      case .pointer(let p):    return "pointer - \(p)"
    }
  }

  /// True, if this is an access to a class instance.
  public var isObjectAccess: Bool {
    switch self {
      case .class, .tail:
        return true
      case .box, .stack, .global, .argument, .yield, .storeBorrow, .pointer, .unidentified:
        return false
    }
  }

  /// The reference value if this is an access to a referenced object (class, box, tail).
  public var reference: Value? {
    switch self {
      case .box(let pbi):      return pbi.box
      case .class(let rea):    return rea.instance
      case .tail(let rta):     return rta.instance
      case .stack, .global, .argument, .yield, .storeBorrow, .pointer, .unidentified:
        return nil
    }
  }

  /// True if this access base may be derived from a reference that is only valid within a locally
  /// scoped OSSA lifetime. For example:
  ///
  ///   %reference = begin_borrow %1
  ///   %base = ref_tail_addr %reference     <- %base must not be used outside the borrow scope
  ///   end_borrow %reference
  ///
  /// This is not true for scoped storage such as alloc_stack and @in arguments.
  ///
  public var hasLocalOwnershipLifetime: Bool {
    if let reference = reference {
      // Conservatively assume that everything which is a ref-counted object is within an ownership scope.
      // TODO: we could e.g. exclude guaranteed function arguments.
      return reference.ownership != .none
    }
    return false
  }

  /// True, if the baseAddress is of an immutable property or global variable
  public var isLet: Bool {
    switch self {
      case .class(let rea):    return rea.fieldIsLet
      case .global(let g):     return g.isLet
      case .box, .stack, .tail, .argument, .yield, .storeBorrow, .pointer, .unidentified:
        return false
    }
  }

  /// True, if the address is produced by an allocation in its function.
  public var isLocal: Bool {
    switch self {
    case .box(let pbi):      return pbi.box.referenceRoot is AllocBoxInst
    case .class(let rea):    return rea.instance.referenceRoot is AllocRefInstBase
    case .tail(let rta):     return rta.instance.referenceRoot is AllocRefInstBase
    case .stack, .storeBorrow: return true
    case .global, .argument, .yield, .pointer, .unidentified:
      return false
    }
  }

  /// True, if the kind of storage of the access is known (e.g. a class property, or global variable).
  public var hasKnownStorageKind: Bool {
    switch self {
      case .box, .class, .tail, .stack, .storeBorrow, .global:
        return true
      case .argument, .yield, .pointer, .unidentified:
        return false
    }
  }

  /// Returns true if it's guaranteed that this access has the same base address as the `other` access.
  ///
  /// `isEqual` abstracts away the projection instructions that are included as part of the AccessBase:
  /// multiple `project_box` and `ref_element_addr` instructions are equivalent bases as long as they
  /// refer to the same variable or class property.
  public func isEqual(to other: AccessBase) -> Bool {
    switch (self, other) {
    case (.box(let pb1), .box(let pb2)):
      return pb1.box.referenceRoot == pb2.box.referenceRoot
    case (.class(let rea1), .class(let rea2)):
      return rea1.fieldIndex == rea2.fieldIndex &&
             rea1.instance.referenceRoot == rea2.instance.referenceRoot
    case (.tail(let rta1), .tail(let rta2)):
      return rta1.instance.referenceRoot == rta2.instance.referenceRoot &&
             rta1.type == rta2.type
    case (.stack(let as1), .stack(let as2)):
      return as1 == as2
    case (.global(let gl1), .global(let gl2)):
      return gl1 == gl2
    case (.argument(let arg1), .argument(let arg2)):
      return arg1 == arg2
    case (.yield(let baResult1), .yield(let baResult2)):
      return baResult1 == baResult2
    case (.storeBorrow(let sb1), .storeBorrow(let sb2)):
      return sb1 == sb2
    case (.pointer(let p1), .pointer(let p2)):
      return p1 == p2
    default:
      return false
    }
  }

  /// Returns `true` if the two access bases do not alias.
  public func isDistinct(from other: AccessBase) -> Bool {

    func isDifferentAllocation(_ lhs: Value, _ rhs: Value) -> Bool {
      switch (lhs, rhs) {
      case (is Allocation, is Allocation):
        return lhs != rhs
      case (is Allocation, is FunctionArgument),
           (is FunctionArgument, is Allocation):
        // A local allocation cannot alias with something passed to the function.
        return true
      default:
        return false
      }
    }

    func argIsDistinct(_ arg: FunctionArgument, from other: AccessBase) -> Bool {
      if arg.convention.isExclusiveIndirect {
        // Exclusive indirect arguments cannot alias with an address for which we know that it
        // is not derived from that argument (which might be the case for `pointer` and `yield`).
        return other.hasKnownStorageKind
      }
      // Non-exclusive argument still cannot alias with anything allocated locally in the function.
      return other.isLocal
    }

    switch (self, other) {
    
    // First handle all pairs of the same kind (except `yield` and `pointer`).
    case (.box(let pb), .box(let otherPb)):
      return pb.fieldIndex != otherPb.fieldIndex ||
        isDifferentAllocation(pb.box.referenceRoot, otherPb.box.referenceRoot)
    case (.stack(let asi), .stack(let otherAsi)):
      return asi != otherAsi
    case (.global(let global), .global(let otherGlobal)):
      return global != otherGlobal
    case (.class(let rea), .class(let otherRea)):
      return rea.fieldIndex != otherRea.fieldIndex ||
             isDifferentAllocation(rea.instance, otherRea.instance)
    case (.tail(let rta), .tail(let otherRta)):
      return isDifferentAllocation(rta.instance, otherRta.instance)
    case (.argument(let arg), .argument(let otherArg)):
      return (arg.convention.isExclusiveIndirect || otherArg.convention.isExclusiveIndirect) && arg != otherArg
      
    // Handle arguments vs non-arguments
    case (.argument(let arg), _):
      return argIsDistinct(arg, from: other)
    case (_, .argument(let otherArg)):
      return argIsDistinct(otherArg, from: self)

    case (.storeBorrow(let arg), .storeBorrow(let otherArg)):
      return arg.allocStack != otherArg.allocStack

    // A StoreBorrow location can only be used by other StoreBorrows.
    case (.storeBorrow, _):
      return true
    case (_, .storeBorrow):
      return true

    default:
      // As we already handled pairs of the same kind, here we handle pairs with different kinds.
      // Different storage kinds cannot alias, regardless where the storage comes from.
      // E.g. a class property address cannot alias with a global variable address.
      return hasKnownStorageKind && other.hasKnownStorageKind
    }
  }
}

/// An `AccessPath` is a pair of a `base: AccessBase` and a `projectionPath: Path`
/// which denotes the offset of the access from the base in terms of projections.
public struct AccessPath : CustomStringConvertible {
  public let base: AccessBase

  /// address projections only
  public let projectionPath: SmallProjectionPath

  public static func unidentified() -> AccessPath {
    return AccessPath(base: .unidentified, projectionPath: SmallProjectionPath())
  }

  public var description: String {
    "\(projectionPath): \(base)"
  }

  public func isDistinct(from other: AccessPath) -> Bool {
    if base.isDistinct(from: other.base) {
      // We can already derived from the bases that there is no alias.
      // No need to look at the projection paths.
      return true
    }
    if base == other.base ||
       (base.hasKnownStorageKind && other.base.hasKnownStorageKind) {
      if !projectionPath.mayOverlap(with: other.projectionPath) {
        return true
      }
    }
    return false
  }

  /// Returns true if this access addresses the same memory location as `other` or if `other`
  /// is a sub-field of this access.

  /// Note that this access _contains_ `other` if `other` has a _larger_ projection path than this acccess.
  /// For example:
  ///   `%value.s0` contains `%value.s0.s1`
  public func isEqualOrContains(_ other: AccessPath) -> Bool {
    return getProjection(to: other) != nil
  }

  public var materializableProjectionPath: SmallProjectionPath? {
    if projectionPath.isMaterializable {
      return projectionPath
    }
    return nil
  }

  /// Returns the projection path to `other` if this access path is equal or contains `other`.
  ///
  /// For example,
  ///   `%value.s0`.getProjection(to: `%value.s0.s1`)
  /// yields
  ///   `s1`
  public func getProjection(to other: AccessPath) -> SmallProjectionPath? {
    if !base.isEqual(to: other.base) {
      return nil
    }
    if let resultPath = projectionPath.subtract(from: other.projectionPath),
       // Indexing is not a projection where the base overlaps the projected address.
       !resultPath.pop().kind.isIndexedElement
    {
      return resultPath
    }
    return nil
  }

  /// Like `getProjection`, but also requires that the resulting projection path is materializable.
  public func getMaterializableProjection(to other: AccessPath) -> SmallProjectionPath? {
    if let projectionPath = getProjection(to: other),
       projectionPath.isMaterializable {
      return projectionPath
    }
    return nil
  }
}

private func canBeOperandOfIndexAddr(_ value: Value) -> Bool {
  switch value {
  case is IndexAddrInst, is RefTailAddrInst, is PointerToAddressInst:
    return true
  default:
    return false
  }
}

/// Tries to identify from which address the pointer operand originates from.
/// This is useful to identify patterns like
/// ```
/// %orig_addr = global_addr @...
/// %ptr = address_to_pointer %orig_addr
/// %addr = pointer_to_address %ptr
/// ```
private extension PointerToAddressInst {
  var originatingAddress: Value? {

    struct Walker : ValueUseDefWalker {
      let addrType: Type
      var result: Value?
      var walkUpCache = WalkerCache<Path>()

      mutating func rootDef(value: Value, path: SmallProjectionPath) -> WalkResult {
        if let atp = value as? AddressToPointerInst {
          if let res = result, atp.address != res {
            return .abortWalk
          }

          if addrType != atp.address.type { return .abortWalk }
          if !path.isEmpty { return .abortWalk }

          self.result = atp.address
          return .continueWalk
        }
        return .abortWalk
      }

      mutating func walkUp(value: Value, path: SmallProjectionPath) -> WalkResult {
        switch value {
        case is Argument, is MarkDependenceInst, is CopyValueInst,
             is StructExtractInst, is TupleExtractInst, is StructInst, is TupleInst, is AddressToPointerInst:
          return walkUpDefault(value: value, path: path)
        default:
          return .abortWalk
        }
      }
    }

    var walker = Walker(addrType: type)
    if walker.walkUp(value: pointer, path: SmallProjectionPath()) == .abortWalk {
      return nil
    }
    return walker.result
  }
}

/// The `EnclosingScope` of an access is the innermost `begin_access`
/// instruction that checks for exclusivity of the access.
/// If there is no `begin_access` instruction found, then the scope is
/// the base itself.
///
/// The access scopes for the snippet below are:
///   (l1, .base(%addr)), (l2, .scope(%a2)), (l3, .scope(%a3))
///
/// ````
/// %addr = ... : $*Int64
/// %l1 = load %addr : $*Int64
/// %a1 = begin_access [read] [dynamic] %addr : $*Int64
/// %a2 = begin_access [read] [dynamic] %addr : $*Int64
/// %l2   = load %a2 : $*Int64
/// end_access %a2 : $*Int64
/// end_access %a1 : $*Int64
/// %a3 = begin_access [read] [dynamic] [no_nested_conflict] %addr : $*Int64
/// %l3 = load %a3 : $*Int64
/// end_access %a3 : $*Int64
/// ```
public enum EnclosingScope {
  case scope(BeginAccessInst)
  case base(AccessBase)
}

private struct AccessPathWalker : AddressUseDefWalker {
  var result = AccessPath.unidentified()
  var foundBeginAccess: BeginAccessInst?

  mutating func walk(startAt address: Value, initialPath: SmallProjectionPath = SmallProjectionPath()) {
    if walkUp(address: address, path: Path(projectionPath: initialPath)) == .abortWalk {
      assert(result.base == .unidentified,
             "shouldn't have set an access base in an aborted walk")
    }
  }

  struct Path : SmallProjectionWalkingPath {
    let projectionPath: SmallProjectionPath

    // Tracks whether an `index_addr` instruction was crossed.
    // It should be (FIXME: check if it's enforced) that operands
    // of `index_addr` must be `tail_addr` or other `index_addr` results.
    let indexAddr: Bool

    init(projectionPath: SmallProjectionPath = SmallProjectionPath(), indexAddr: Bool = false) {
      self.projectionPath = projectionPath
      self.indexAddr = indexAddr
    }

    func with(projectionPath: SmallProjectionPath) -> Self {
      return Self(projectionPath: projectionPath, indexAddr: indexAddr)
    }

    func with(indexAddr: Bool) -> Self {
      return Self(projectionPath: projectionPath, indexAddr: indexAddr)
    }

    func merge(with other: Self) -> Self {
      return Self(
        projectionPath: projectionPath.merge(with: other.projectionPath),
        indexAddr: indexAddr || other.indexAddr
      )
    }
  }

  mutating func rootDef(address: Value, path: Path) -> WalkResult {
    assert(result.base == .unidentified, "rootDef should only called once")
    // Try identifying the address a pointer originates from
    if let p2ai = address as? PointerToAddressInst {
      if let originatingAddr = p2ai.originatingAddress {
        return walkUp(address: originatingAddr, path: path)
      } else {
        self.result = AccessPath(base: .pointer(p2ai), projectionPath: path.projectionPath)
        return .continueWalk
      }
    }

    let base = AccessBase(baseAddress: address)
    self.result = AccessPath(base: base, projectionPath: path.projectionPath)
    return .continueWalk
  }

  mutating func walkUp(address: Value, path: Path) -> WalkResult {
    if address is IndexAddrInst {
      // Track that we crossed an `index_addr` during the walk-up
      return walkUpDefault(address: address, path: path.with(indexAddr: true))
    } else if path.indexAddr && !canBeOperandOfIndexAddr(address) {
      // An `index_addr` instruction cannot be derived from an address
      // projection. Bail out
      return .abortWalk
    } else if let ba = address as? BeginAccessInst, foundBeginAccess == nil {
      foundBeginAccess = ba
    }
    return walkUpDefault(address: address, path: path.with(indexAddr: false))
  }
}

extension Value {
  // Convenient properties to avoid instantiating an explicit AccessPathWalker.
  //
  // Although an AccessPathWalker is created for each call of these properties,
  // it's very unlikely that this will end up in memory allocations.
  // Only in the rare case of `pointer_to_address` -> `address_to_pointer` pairs, which
  // go through phi-arguments, the AccessPathWalker will allocate memnory in its cache.

  /// Computes the access base of this address value.
  public var accessBase: AccessBase { accessPath.base }

  /// Computes the access path of this address value.
  public var accessPath: AccessPath {
    var walker = AccessPathWalker()
    walker.walk(startAt: self)
    return walker.result
  }

  public func getAccessPath(fromInitialPath: SmallProjectionPath) -> AccessPath {
    var walker = AccessPathWalker()
    walker.walk(startAt: self, initialPath: fromInitialPath)
    return walker.result
  }

  /// Computes the access path of this address value and also returns the scope.
  public var accessPathWithScope: (AccessPath, scope: BeginAccessInst?) {
    var walker = AccessPathWalker()
    walker.walk(startAt: self)
    return (walker.result, walker.foundBeginAccess)
  }

  /// Computes the enclosing access scope of this address value.
  public var enclosingAccessScope: EnclosingScope {
    var walker = AccessPathWalker()
    walker.walk(startAt: self)
    if let ba = walker.foundBeginAccess {
      return .scope(ba)
    }
    return .base(walker.result.base)
  }

  /// The root definition of a reference, obtained by skipping ownership forwarding and ownership transition.
  public var referenceRoot: Value {
    var value: Value = self
    while true {
      if let forward = value.forwardingInstruction, forward.preservesIdentity,
         let operand = forward.singleForwardedOperand {
        value = operand.value
        continue
      }
      if let transition = value.definingInstruction as? OwnershipTransitionInstruction {
        value = transition.operand.value
        continue
      }
      return value
    }
  }
}

/// A ValueUseDef walker that that visits access storage paths of an address.
///
/// An access storage path is the reference (or a value which contains a reference)
/// an address originates from.
/// In the following example the `storage` is `contains_ref` with `path` `"s0.c0.s0"`
/// ```
///   %ref = struct_extract %contains_ref : $S, #S.l
///   %base = ref_element_addr %ref : $List, #List.x
///   %addr = struct_element_addr %base : $X, #X.e
///   store %v to [trivial] %addr : $*Int
/// ```
///
/// Warning: This does not find the correct storage root of the
/// lifetime of an object projection, such as .box or .class because
/// ValueUseDefWalker ignores ownership and, for example, walks past copies.
extension ValueUseDefWalker where Path == SmallProjectionPath {
  /// The main entry point.
  /// Given an `accessPath` where the access base is a reference (class, tail, box), call
  /// the `visit` function for all storage roots with a the corresponding path.
  /// Returns true on success.
  /// Returns false if not all storage roots could be identified or if `accessPath` has not a "reference" base.
  public mutating func visitAccessStorageRoots(of accessPath: AccessPath) -> Bool {
    walkUpCache.clear()
    let path = accessPath.projectionPath
    switch accessPath.base {
      case .box(let pbi):
        return walkUp(value: pbi.box, path: path.push(.classField, index: pbi.fieldIndex)) != .abortWalk
      case .class(let rea):
        return walkUp(value: rea.instance, path: path.push(.classField, index: rea.fieldIndex)) != .abortWalk
      case .tail(let rta):
        return walkUp(value: rta.instance, path: path.push(.tailElements, index: 0)) != .abortWalk
      case .stack, .global, .argument, .yield, .storeBorrow, .pointer, .unidentified:
        return false
    }
  }
}