1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
|
//===--- SmallProjectionPath.swift - a path of projections ----------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
import Basic
// Needed to make some important utility functions in `Basic` available to importers of `SIL`.
// For example, let `Basic.assert` be used in Optimizer module.
@_exported import Basic
/// A small and very efficient representation of a projection path.
///
/// A `SmallProjectionPath` can be parsed and printed in SIL syntax and parsed from Swift
/// source code - the SIL syntax is more compact than the Swift syntax.
/// In the following, we use the SIL syntax for the examples.
///
/// The `SmallProjectionPath` represents a path of value or address projections.
/// For example, the projection path which represents
///
/// %t = struct_extract %s: $Str, #Str.tupleField // first field in Str
/// %c = tuple_extract %f : $(Int, Class), 4
/// %r = ref_element_addr %c $Class, #Class.classField // 3rd field in Class
///
/// is `s0.4.c2`, where `s0` is the first path component and `c2` is the last component.
///
/// A `SmallProjectionPath` can be a concrete path (like the example above): it only
/// contains concrete field elements, e.g. `s0.c2.e1`
/// Or it can be a pattern path, where one or more path components are wild cards, e.g.
/// `v**.c*` means: any number of value projections (struct, enum, tuple) followed by
/// a single class field projection.
///
/// Internally, a `SmallProjectionPath` is represented as a single 64-bit word.
/// This is very efficient, but it also means that a path cannot exceed a certain length.
/// If too many projections are pushed onto a path, the path is converted to a `**` wildcard,
/// which means: it represents any number of any kind of projections.
/// Though, it's very unlikely that the limit will be reached in real world scenarios.
///
public struct SmallProjectionPath : Hashable, CustomStringConvertible, NoReflectionChildren {
/// The physical representation of the path. The path components are stored in
/// reverse order: the first path component is stored in the lowest bits (LSB),
/// the last component is stored in the highest bits (MSB).
/// Each path component consists of zero or more "index-overflow" bytes followed
/// by the "index-kind" main byte (from LSB to MSB).
///
/// index overflow byte: bit-nr: | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
/// +---+---+---+---+---+---+---+---+
/// content: | index high bits | 1 |
///
/// main byte (small kind): bit-nr: | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
/// +---+---+---+---+---+---+---+---+
/// content: | index low bits| kind | 0 |
///
/// "Large" kind values (>= 0x7) don't have an associated index and the main
/// byte looks like:
///
/// main byte (large kind): bit-nr: | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
/// +---+---+---+---+---+---+---+---+
/// content: | kind high bits| 1 | 1 | 1 | 0 |
///
private let bytes: UInt64
// TODO: add better support for tail elements by tracking the
// index of `index_addr` instructions.
public enum FieldKind : Int {
case root = 0x0 // The pseudo component denoting the end of the path.
case structField = 0x1 // A concrete struct field: syntax e.g. `s3`
case tupleField = 0x2 // A concrete tuple element: syntax e.g. `2`
case enumCase = 0x3 // A concrete enum case (with payload): syntax e.g. `e4'
case classField = 0x4 // A concrete class field: syntax e.g. `c1`
case indexedElement = 0x5 // A constant offset into an array of elements: syntax e.g. 'i2'
// The index must be greater than 0 and there must not be two successive element indices in the path.
// "Large" kinds: starting from here the low 3 bits must be 1.
// This and all following kinds (we'll add in the future) cannot have a field index.
case tailElements = 0x07 // (0 << 3) | 0x7 A tail allocated element of a class: syntax `ct`
case existential = 0x0f // (1 << 3) | 0x7 A concrete value projected out of an existential: synatx 'x'
case anyClassField = 0x17 // (2 << 3) | 0x7 Any class field, including tail elements: syntax `c*`
case anyIndexedElement = 0x1f // (3 << 3) | 0x7 An unknown offset into an array of elements.
// There must not be two successive element indices in the path.
case anyValueFields = 0x27 // (4 << 3) | 0x7 Any number of any value fields (struct, tuple, enum): syntax `v**`
case anything = 0x2f // (5 << 3) | 0x7 Any number of any fields: syntax `**`
public var isValueField: Bool {
switch self {
case .anyValueFields, .structField, .tupleField, .enumCase, .indexedElement, .anyIndexedElement, .existential:
return true
case .root, .anything, .anyClassField, .classField, .tailElements:
return false
}
}
public var isClassField: Bool {
switch self {
case .anyClassField, .classField, .tailElements:
return true
case .root, .anything, .anyValueFields, .structField, .tupleField, .enumCase, .indexedElement, .anyIndexedElement, .existential:
return false
}
}
public var isIndexedElement: Bool {
switch self {
case .anyIndexedElement, .indexedElement:
return true
default:
return false
}
}
}
public init() { self.bytes = 0 }
/// Creates a new path with an initial element.
public init(_ kind: FieldKind, index: Int = 0) {
self = Self().push(kind, index: index)
}
private init(bytes: UInt64) { self.bytes = bytes }
public var isEmpty: Bool { bytes == 0 }
public var description: String {
let (kind, idx, sp) = pop()
let subPath = sp
let s: String
switch kind {
case .root: return ""
case .structField: s = "s\(idx)"
case .tupleField: s = "\(idx)"
case .enumCase: s = "e\(idx)"
case .classField: s = "c\(idx)"
case .tailElements: s = "ct"
case .existential: s = "x"
case .indexedElement: s = "i\(idx)"
case .anyIndexedElement: s = "i*"
case .anything: s = "**"
case .anyValueFields: s = "v**"
case .anyClassField: s = "c*"
}
if subPath.isEmpty {
return s
}
return "\(s).\(subPath)"
}
/// Returns the top (= the first) path component and the number of its encoding bits.
private var top: (kind: FieldKind, index: Int, numBits: Int) {
var idx = 0
var b = bytes
var numBits = 0
// Parse any index overflow bytes.
while (b & 1) == 1 {
idx = (idx << 7) | Int((b >> 1) & 0x7f)
b >>= 8
numBits = numBits &+ 8
}
var kindVal = (b >> 1) & 0x7
if kindVal == 0x7 {
// A "large" kind - without any index
kindVal = (b >> 1) & 0x7f
assert(idx == 0)
assert(numBits == 0)
} else {
// A "small" kind with an index
idx = (idx << 4) | Int((b >> 4) & 0xf)
}
let k = FieldKind(rawValue: Int(kindVal))!
if k == .anything {
assert((b >> 8) == 0, "'anything' only allowed in last path component")
numBits = 8
} else {
numBits = numBits &+ 8
}
return (k, idx, numBits)
}
/// Pops \p numBits from the path.
private func pop(numBits: Int) -> SmallProjectionPath {
return Self(bytes: bytes &>> numBits)
}
/// Pops and returns the first path component included the resulting path
/// after popping.
///
/// For example, popping from `s0.c3.e1` returns (`s`, 0, `c3.e1`)
public func pop() -> (kind: FieldKind, index: Int, path: SmallProjectionPath) {
let (k, idx, numBits) = top
return (k, idx, pop(numBits: numBits))
}
/// Pushes a new first component to the path and returns the new path.
///
/// For example, pushing `s0` to `c3.e1` returns `s0.c3.e1`.
public func push(_ kind: FieldKind, index: Int = 0) -> SmallProjectionPath {
assert(kind != .anything || bytes == 0, "'anything' only allowed in last path component")
if (kind.isIndexedElement) {
let (k, i, numBits) = top
if kind == .indexedElement {
if index == 0 {
// Ignore zero indices
return self
}
if k == .indexedElement {
// "Merge" two constant successive indexed elements
return pop(numBits: numBits).push(.indexedElement, index: index + i)
}
}
// "Merge" two successive indexed elements which doesn't have a constant result
if (k.isIndexedElement) {
return pop(numBits: numBits).push(.anyIndexedElement)
}
}
var idx = index
var b = bytes
if (b >> 56) != 0 {
// Overflow
return Self(.anything)
}
b = (b << 8) | UInt64(((idx & 0xf) << 4) | (kind.rawValue << 1))
idx >>= 4
while idx != 0 {
if (b >> 56) != 0 { return Self(.anything) }
b = (b << 8) | UInt64(((idx & 0x7f) << 1) | 1)
idx >>= 7
}
return Self(bytes: b)
}
/// Pops the first path component if it is exactly of kind `kind` - not considering wildcards.
///
/// Returns the index of the component and the new path or - if not matching - returns nil.
public func pop(kind: FieldKind) -> (index: Int, path: SmallProjectionPath)? {
let (k, idx, newPath) = pop()
if k != kind { return nil }
return (idx, newPath)
}
/// Pops the first path component if it matches `kind` and (optionally) `index`.
///
/// For example:
/// popping `s0` from `s0.c3.e1` returns `c3.e1`
/// popping `c2` from `c*.e1` returns `e1`
/// popping `s0` from `v**.c3.e1` return `v**.c3.e1` (because `v**` means _any_ number of value fields)
/// popping `s0` from `c*.e1` returns nil
///
/// Note that if `kind` is a wildcard, also the first path component must be a wildcard to popped.
/// For example:
/// popping `v**` from `s0.c1` returns nil
/// popping `v**` from `v**.c1` returns `v**.c1` (because `v**` means _any_ number of value fields)
/// popping `c*` from `c0.e3` returns nil
/// popping `c*` from `c*.e3` returns `e3`
public func popIfMatches(_ kind: FieldKind, index: Int? = nil) -> SmallProjectionPath? {
let (k, idx, numBits) = top
switch k {
case .anything:
return self
case .anyValueFields:
if kind.isValueField { return self }
return pop(numBits: numBits).popIfMatches(kind, index: index)
case .anyClassField:
if kind.isClassField {
return pop(numBits: numBits)
}
return nil
case .anyIndexedElement:
if kind.isIndexedElement {
return self
}
return pop(numBits: numBits).popIfMatches(kind, index: index)
case kind:
if let i = index {
if i != idx { return nil }
}
return pop(numBits: numBits)
default:
return nil
}
}
/// Returns true if the path has at least one class projection.
/// For example:
/// returns false for `v**`
/// returns true for `v**.c0.s1.v**`
/// returns false for `**` (because '**' can have zero class projections)
public var hasClassProjection: Bool {
var p = self
while true {
let (k, _, numBits) = p.top
if k == .root { return false }
if k.isClassField { return true }
p = p.pop(numBits: numBits)
}
}
/// Returns true if the path may have a class projection.
/// For example:
/// returns false for `v**`
/// returns true for `c0`
/// returns true for `**` (because '**' can have any number of class projections)
public var mayHaveClassProjection: Bool {
return !matches(pattern: Self(.anyValueFields))
}
/// Returns true if the path may have a class projection.
/// For example:
/// returns false for `v**`
/// returns false for `c0`
/// returns true for `c0.c1`
/// returns true for `c0.**` (because '**' can have any number of class projections)
/// returns true for `**` (because '**' can have any number of class projections)
public var mayHaveTwoClassProjections: Bool {
return !matches(pattern: Self(.anyValueFields)) &&
!matches(pattern: Self(.anyValueFields).push(.anyClassField).push(.anyValueFields))
}
/// Pops all value field components from the beginning of the path.
/// For example:
/// `s0.e2.3.c4.s1` -> `c4.s1`
/// `v**.c4.s1` -> `c4.s1`
/// `**` -> `**` (because `**` can also be a class field)
public func popAllValueFields() -> SmallProjectionPath {
var p = self
while true {
let (k, _, numBits) = p.top
if !k.isValueField { return p }
p = p.pop(numBits: numBits)
}
}
public func popIndexedElements() -> SmallProjectionPath {
var p = self
while true {
let (k, _, numBits) = p.top
if !k.isIndexedElement { return p }
p = p.pop(numBits: numBits)
}
}
/// Pops the last class projection and all following value fields from the tail of the path.
/// For example:
/// `s0.e2.3.c4.s1` -> `s0.e2.3`
/// `v**.c1.c4.s1` -> `v**.c1`
/// `c1.**` -> `c1.**` (because it's unknown how many class projections are in `**`)
public func popLastClassAndValuesFromTail() -> SmallProjectionPath {
var p = self
var totalBits = 0
var neededBits = 0
while true {
let (k, _, numBits) = p.top
if k == .root { break }
if k.isClassField {
neededBits = totalBits
totalBits += numBits
} else {
totalBits += numBits
if !k.isValueField {
// k is `anything`
neededBits = totalBits
}
}
p = p.pop(numBits: numBits)
}
if neededBits == 64 { return self }
return SmallProjectionPath(bytes: bytes & ((1 << neededBits) - 1))
}
/// Returns true if this path matches a pattern path.
///
/// Formally speaking:
/// If this path is a concrete path, returns true if it matches the pattern.
/// If this path is a pattern path itself, returns true if all concrete paths which
/// match this path also match the pattern path.
/// For example:
/// `s0.c3.e1` matches `s0.c3.e1`
/// `s0.c3.e1` matches `v**.c*.e1`
/// `v**.c*.e1` does not match `s0.c3.e1`!
/// Note that matching is not reflexive.
public func matches(pattern: SmallProjectionPath) -> Bool {
let (patternKind, patternIdx, subPattern) = pattern.pop()
switch patternKind {
case .root: return isEmpty
case .anything: return true
case .anyValueFields:
return popAllValueFields().matches(pattern: subPattern)
case .anyClassField:
let (kind, _, subPath) = pop()
if !kind.isClassField { return false }
return subPath.matches(pattern: subPattern)
case .anyIndexedElement:
return popIndexedElements().matches(pattern: subPattern)
case .structField, .tupleField, .enumCase, .classField, .tailElements, .indexedElement, .existential:
let (kind, index, subPath) = pop()
if kind != patternKind || index != patternIdx { return false }
return subPath.matches(pattern: subPattern)
}
}
/// Returns the merged path of this path and `rhs`.
///
/// Merging means that all paths which match this path and `rhs` will also match the result.
/// If `rhs` is not equal to this path, the result is computed by replacing
/// mismatching components by wildcards.
/// For example:
/// `s0.c3.e4` merged with `s0.c1.e4` -> `s0.c*.e4`
/// `s0.s1.c3` merged with `e4.c3` -> `v**.c3`
/// `s0.c1.c2` merged with `s0.c3` -> `s0.**`
public func merge(with rhs: SmallProjectionPath) -> SmallProjectionPath {
if self == rhs { return self }
let (lhsKind, lhsIdx, lhsBits) = top
let (rhsKind, rhsIdx, rhsBits) = rhs.top
if lhsKind == rhsKind && lhsIdx == rhsIdx {
assert(lhsBits == rhsBits)
let subPath = pop(numBits: lhsBits).merge(with: rhs.pop(numBits: rhsBits))
if lhsKind == .anyValueFields && subPath.top.kind == .anyValueFields {
return subPath
}
return subPath.push(lhsKind, index: lhsIdx)
}
if lhsKind.isIndexedElement || rhsKind.isIndexedElement {
let subPath = popIndexedElements().merge(with: rhs.popIndexedElements())
let subPathTopKind = subPath.top.kind
assert(!subPathTopKind.isIndexedElement)
if subPathTopKind == .anything || subPathTopKind == .anyValueFields {
return subPath
}
return subPath.push(.anyIndexedElement)
}
if lhsKind.isValueField || rhsKind.isValueField {
let subPath = popAllValueFields().merge(with: rhs.popAllValueFields())
assert(!subPath.top.kind.isValueField)
if subPath.top.kind == .anything {
return subPath
}
return subPath.push(.anyValueFields)
}
if lhsKind.isClassField && rhsKind.isClassField {
let subPath = pop(numBits: lhsBits).merge(with: rhs.pop(numBits: rhsBits))
return subPath.push(.anyClassField)
}
return Self(.anything)
}
/// Returns true if this path may overlap with `rhs`.
///
/// "Overlapping" means that both paths may project the same field.
/// For example:
/// `s0.s1` and `s0.s1` overlap (the paths are identical)
/// `s0.s1` and `s0.s2` don't overlap
/// `s0.s1` and `s0` overlap (the second path is a sub-path of the first one)
/// `s0.v**` and `s0.s1` overlap
public func mayOverlap(with rhs: SmallProjectionPath) -> Bool {
if isEmpty || rhs.isEmpty {
return true
}
let (lhsKind, lhsIdx, lhsBits) = top
let (rhsKind, rhsIdx, rhsBits) = rhs.top
if lhsKind == .anything || rhsKind == .anything {
return true
}
if lhsKind == .anyIndexedElement || rhsKind == .anyIndexedElement {
return popIndexedElements().mayOverlap(with: rhs.popIndexedElements())
}
if lhsKind == .anyValueFields || rhsKind == .anyValueFields {
return popAllValueFields().mayOverlap(with: rhs.popAllValueFields())
}
if (lhsKind == rhsKind && lhsIdx == rhsIdx) ||
(lhsKind == .anyClassField && rhsKind.isClassField) ||
(lhsKind.isClassField && rhsKind == .anyClassField) {
return pop(numBits: lhsBits).mayOverlap(with: rhs.pop(numBits: rhsBits))
}
return false
}
/// Subtracts this path from a larger path if this path is a prefix of the other path.
///
/// For example:
/// subtracting `s0` from `s0.s1` yields `s1`
/// subtracting `s0` from `s1` yields nil, because `s0` is not a prefix of `s1`
/// subtracting `s0.s1` from `s0.s1` yields an empty path
/// subtracting `i*.s1` from `i*.s1` yields nil, because the actual index is unknown on both sides
public func subtract(from rhs: SmallProjectionPath) -> SmallProjectionPath? {
let (lhsKind, lhsIdx, lhsBits) = top
switch lhsKind {
case .root:
return rhs
case .classField, .tailElements, .structField, .tupleField, .enumCase, .existential, .indexedElement:
let (rhsKind, rhsIdx, rhsBits) = rhs.top
if lhsKind == rhsKind && lhsIdx == rhsIdx {
return pop(numBits: lhsBits).subtract(from: rhs.pop(numBits: rhsBits))
}
return nil
case .anything, .anyValueFields, .anyClassField, .anyIndexedElement:
return nil
}
}
/// Returns true if the path only contains projections which can be materialized as
/// SIL struct or tuple projection instructions - for values or addresses.
public var isMaterializable: Bool {
let (kind, _, subPath) = pop()
switch kind {
case .root:
return true
case .structField, .tupleField:
return subPath.isMaterializable
default:
return false
}
}
}
//===----------------------------------------------------------------------===//
// Parsing
//===----------------------------------------------------------------------===//
extension StringParser {
mutating func parseProjectionPathFromSource(for function: Function, type: Type?) throws -> SmallProjectionPath {
var entries: [(SmallProjectionPath.FieldKind, Int)] = []
var currentTy = type
repeat {
if consume("**") {
entries.append((.anything, 0))
currentTy = nil
} else if consume("class*") {
if let ty = currentTy, !ty.isClass {
try throwError("cannot use 'anyClassField' on a non-class type - add 'anyValueFields' first")
}
entries.append((.anyClassField, 0))
currentTy = nil
} else if consume("value**") {
entries.append((.anyValueFields, 0))
currentTy = nil
} else if let tupleElemIdx = consumeInt() {
guard let ty = currentTy, ty.isTuple else {
try throwError("cannot use a tuple index after 'any' field selection")
}
let tupleElements = ty.tupleElements
if tupleElemIdx >= tupleElements.count {
try throwError("tuple element index too large")
}
entries.append((.tupleField, tupleElemIdx))
currentTy = tupleElements[tupleElemIdx]
} else if let name = consumeIdentifier() {
guard let ty = currentTy else {
try throwError("cannot use field name after 'any' field selection")
}
if !ty.isClass && !ty.isStruct {
try throwError("unknown kind of nominal type")
}
guard let nominalFields = ty.getNominalFields(in: function) else {
try throwError("resilient types are not supported")
}
guard let fieldIdx = nominalFields.getIndexOfField(withName: name) else {
try throwError("field not found")
}
if ty.isClass {
entries.append((.classField, fieldIdx))
} else {
assert(ty.isStruct)
entries.append((.structField, fieldIdx))
}
currentTy = nominalFields[fieldIdx]
} else {
try throwError("expected selection path component")
}
} while consume(".")
if let ty = currentTy, !ty.isClass {
try throwError("the select field is not a class - add 'anyValueFields'")
}
return try createPath(from: entries)
}
mutating func parseProjectionPathFromSIL() throws -> SmallProjectionPath {
var entries: [(SmallProjectionPath.FieldKind, Int)] = []
while true {
if consume("**") {
entries.append((.anything, 0))
} else if consume("c*") {
entries.append((.anyClassField, 0))
} else if consume("v**") {
entries.append((.anyValueFields, 0))
} else if consume("i*") {
entries.append((.anyIndexedElement, 0))
} else if consume("ct") {
entries.append((.tailElements, 0))
} else if consume("x") {
entries.append((.existential, 0))
} else if consume("c") {
guard let idx = consumeInt(withWhiteSpace: false) else {
try throwError("expected class field index")
}
entries.append((.classField, idx))
} else if consume("e") {
guard let idx = consumeInt(withWhiteSpace: false) else {
try throwError("expected enum case index")
}
entries.append((.enumCase, idx))
} else if consume("s") {
guard let idx = consumeInt(withWhiteSpace: false) else {
try throwError("expected struct field index")
}
entries.append((.structField, idx))
} else if consume("i") {
guard let idx = consumeInt(withWhiteSpace: false) else {
try throwError("expected index")
}
entries.append((.indexedElement, idx))
} else if let tupleElemIdx = consumeInt() {
entries.append((.tupleField, tupleElemIdx))
} else if !consume(".") {
return try createPath(from: entries)
}
}
}
private func createPath(from entries: [(SmallProjectionPath.FieldKind, Int)]) throws -> SmallProjectionPath {
var path = SmallProjectionPath()
var first = true
for (kind, idx) in entries.reversed() {
if !first && kind == .anything {
try throwError("'**' only allowed in last path component")
}
path = path.push(kind, index: idx)
// Check for overflow
if !first && path == SmallProjectionPath(.anything) {
try throwError("path is too long")
}
first = false
}
return path
}
}
//===----------------------------------------------------------------------===//
// Unit Tests
//===----------------------------------------------------------------------===//
extension SmallProjectionPath {
public static func runUnitTests() {
basicPushPop()
parsing()
merging()
subtracting()
matching()
overlapping()
predicates()
path2path()
func basicPushPop() {
let p1 = SmallProjectionPath(.structField, index: 3)
.push(.classField, index: 12345678)
let (k2, i2, p2) = p1.pop()
assert(k2 == .classField && i2 == 12345678)
let (k3, i3, p3) = p2.pop()
assert(k3 == .structField && i3 == 3)
assert(p3.isEmpty)
let (k4, i4, _) = p2.push(.enumCase, index: 876).pop()
assert(k4 == .enumCase && i4 == 876)
let p5 = SmallProjectionPath(.anything)
assert(p5.pop().path.isEmpty)
let p6 = SmallProjectionPath(.indexedElement, index: 1).push(.indexedElement, index: 2)
let (k6, i6, p7) = p6.pop()
assert(k6 == .indexedElement && i6 == 3 && p7.isEmpty)
let p8 = SmallProjectionPath(.indexedElement, index: 0)
assert(p8.isEmpty)
let p9 = SmallProjectionPath(.indexedElement, index: 1).push(.anyIndexedElement)
let (k9, i9, p10) = p9.pop()
assert(k9 == .anyIndexedElement && i9 == 0 && p10.isEmpty)
let p11 = SmallProjectionPath(.anyIndexedElement).push(.indexedElement, index: 1)
let (k11, i11, p12) = p11.pop()
assert(k11 == .anyIndexedElement && i11 == 0 && p12.isEmpty)
}
func parsing() {
testParse("v**.c*", expect: SmallProjectionPath(.anyClassField)
.push(.anyValueFields))
testParse("s3.c*.v**.s1", expect: SmallProjectionPath(.structField, index: 1)
.push(.anyValueFields)
.push(.anyClassField)
.push(.structField, index: 3))
testParse("2.c*.e6.ct.**", expect: SmallProjectionPath(.anything)
.push(.tailElements)
.push(.enumCase, index: 6)
.push(.anyClassField)
.push(.tupleField, index: 2))
testParse("i3.x.i*", expect: SmallProjectionPath(.anyIndexedElement)
.push(.existential)
.push(.indexedElement, index: 3))
do {
var parser = StringParser("c*.s123.s3.s123.s3.s123.s3.s123.s3.s123.s3.s123.s3.s123.s3.s123.s3.s123.s3.s123.s3.s123.s3.s123.s3.s123.s3.**")
_ = try parser.parseProjectionPathFromSIL()
fatalError("too long path not detected")
} catch {
}
do {
var parser = StringParser("**.s0")
_ = try parser.parseProjectionPathFromSIL()
fatalError("wrong '**' not detected")
} catch {
}
}
func testParse(_ pathStr: String, expect: SmallProjectionPath) {
var parser = StringParser(pathStr)
let path = try! parser.parseProjectionPathFromSIL()
assert(path == expect)
let str = path.description
assert(str == pathStr)
}
func merging() {
testMerge("c1.c0", "c0", expect: "c*.**")
testMerge("c2.c1", "c2", expect: "c2.**")
testMerge("s3.c0", "v**.c0", expect: "v**.c0")
testMerge("c0", "s2.c1", expect: "v**.c*")
testMerge("s1.s1.c2", "s1.c2", expect: "s1.v**.c2")
testMerge("s1.s0", "s2.s0", expect: "v**")
testMerge("ct", "c2", expect: "c*")
testMerge("i1", "i2", expect: "i*")
testMerge("i*", "i2", expect: "i*")
testMerge("s0.i*.e3", "s0.e3", expect: "s0.i*.e3")
testMerge("i*", "v**", expect: "v**")
testMerge("ct.s0.e0.v**.c0", "ct.s0.e0.v**.c0", expect: "ct.s0.e0.v**.c0")
testMerge("ct.s0.s0.c0", "ct.s0.e0.s0.c0", expect: "ct.s0.v**.c0")
}
func testMerge(_ lhsStr: String, _ rhsStr: String,
expect expectStr: String) {
var lhsParser = StringParser(lhsStr)
let lhs = try! lhsParser.parseProjectionPathFromSIL()
var rhsParser = StringParser(rhsStr)
let rhs = try! rhsParser.parseProjectionPathFromSIL()
var expectParser = StringParser(expectStr)
let expect = try! expectParser.parseProjectionPathFromSIL()
let result = lhs.merge(with: rhs)
assert(result == expect)
let result2 = rhs.merge(with: lhs)
assert(result2 == expect)
}
func subtracting() {
testSubtract("s0", "s0.s1", expect: "s1")
testSubtract("s0", "s1", expect: nil)
testSubtract("s0.s1", "s0.s1", expect: "")
testSubtract("i*.s1", "i*.s1", expect: nil)
testSubtract("ct.s1.0.i3.x", "ct.s1.0.i3.x", expect: "")
testSubtract("c0.s1.0.i3", "c0.s1.0.i3.x", expect: "x")
testSubtract("s1.0.i3.x", "s1.0.i3", expect: nil)
testSubtract("v**.s1", "v**.s1", expect: nil)
testSubtract("i*", "i*", expect: nil)
}
func testSubtract(_ lhsStr: String, _ rhsStr: String, expect expectStr: String?) {
var lhsParser = StringParser(lhsStr)
let lhs = try! lhsParser.parseProjectionPathFromSIL()
var rhsParser = StringParser(rhsStr)
let rhs = try! rhsParser.parseProjectionPathFromSIL()
let result = lhs.subtract(from: rhs)
if let expectStr = expectStr {
var expectParser = StringParser(expectStr)
let expect = try! expectParser.parseProjectionPathFromSIL()
assert(result! == expect)
} else {
assert(result == nil)
}
}
func matching() {
testMatch("ct", "c*", expect: true)
testMatch("c1", "c*", expect: true)
testMatch("s2", "v**", expect: true)
testMatch("1", "v**", expect: true)
testMatch("e1", "v**", expect: true)
testMatch("c*", "c1", expect: false)
testMatch("c*", "ct", expect: false)
testMatch("v**", "s0", expect: false)
testMatch("i1", "i1", expect: true)
testMatch("i1", "i*", expect: true)
testMatch("i*", "i1", expect: false)
testMatch("s0.s1", "s0.s1", expect: true)
testMatch("s0.s2", "s0.s1", expect: false)
testMatch("s0", "s0.v**", expect: true)
testMatch("s0.s1", "s0.v**", expect: true)
testMatch("s0.1.e2", "s0.v**", expect: true)
testMatch("s0.v**.x.e2", "v**", expect: true)
testMatch("s0.v**", "s0.s1", expect: false)
testMatch("s0.s1.c*", "s0.v**", expect: false)
testMatch("s0.v**", "s0.**", expect: true)
testMatch("s1.v**", "s0.**", expect: false)
testMatch("s0.**", "s0.v**", expect: false)
testMatch("s0.s1", "s0.i*.s1", expect: true)
}
func testMatch(_ lhsStr: String, _ rhsStr: String, expect: Bool) {
var lhsParser = StringParser(lhsStr)
let lhs = try! lhsParser.parseProjectionPathFromSIL()
var rhsParser = StringParser(rhsStr)
let rhs = try! rhsParser.parseProjectionPathFromSIL()
let result = lhs.matches(pattern: rhs)
assert(result == expect)
}
func overlapping() {
testOverlap("s0.s1.s2", "s0.s1.s2", expect: true)
testOverlap("s0.s1.s2", "s0.s2.s2", expect: false)
testOverlap("s0.s1.s2", "s0.e1.s2", expect: false)
testOverlap("s0.s1.s2", "s0.s1", expect: true)
testOverlap("s0.s1.s2", "s1.s2", expect: false)
testOverlap("s0.c*.s2", "s0.ct.s2", expect: true)
testOverlap("s0.c*.s2", "s0.c1.s2", expect: true)
testOverlap("s0.c*.s2", "s0.c1.c2.s2", expect: false)
testOverlap("s0.c*.s2", "s0.s2", expect: false)
testOverlap("s0.v**.s2", "s0.s3.x", expect: true)
testOverlap("s0.v**.s2.c2", "s0.s3.c1", expect: false)
testOverlap("s0.v**.s2", "s1.s3", expect: false)
testOverlap("s0.v**.s2", "s0.v**.s3", expect: true)
testOverlap("s0.**", "s0.s3.c1", expect: true)
testOverlap("**", "s0.s3.c1", expect: true)
testOverlap("i1", "i*", expect: true)
testOverlap("i1", "v**", expect: true)
testOverlap("s0.i*.s1", "s0.s1", expect: true)
}
func testOverlap(_ lhsStr: String, _ rhsStr: String, expect: Bool) {
var lhsParser = StringParser(lhsStr)
let lhs = try! lhsParser.parseProjectionPathFromSIL()
var rhsParser = StringParser(rhsStr)
let rhs = try! rhsParser.parseProjectionPathFromSIL()
let result = lhs.mayOverlap(with: rhs)
assert(result == expect)
let reversedResult = rhs.mayOverlap(with: lhs)
assert(reversedResult == expect)
}
func predicates() {
testPredicate("v**", \.hasClassProjection, expect: false)
testPredicate("v**.c0.s1.v**", \.hasClassProjection, expect: true)
testPredicate("c0.**", \.hasClassProjection, expect: true)
testPredicate("c0.c1", \.hasClassProjection, expect: true)
testPredicate("ct", \.hasClassProjection, expect: true)
testPredicate("s0", \.hasClassProjection, expect: false)
testPredicate("v**", \.mayHaveClassProjection, expect: false)
testPredicate("c0", \.mayHaveClassProjection, expect: true)
testPredicate("1", \.mayHaveClassProjection, expect: false)
testPredicate("**", \.mayHaveClassProjection, expect: true)
testPredicate("v**", \.mayHaveTwoClassProjections, expect: false)
testPredicate("c0", \.mayHaveTwoClassProjections, expect: false)
testPredicate("**", \.mayHaveTwoClassProjections, expect: true)
testPredicate("v**.c*.s2.1.c0", \.mayHaveTwoClassProjections, expect: true)
testPredicate("c*.s2.1.c0.v**", \.mayHaveTwoClassProjections, expect: true)
testPredicate("v**.c*.**", \.mayHaveTwoClassProjections, expect: true)
}
func testPredicate(_ pathStr: String, _ property: (SmallProjectionPath) -> Bool, expect: Bool) {
var parser = StringParser(pathStr)
let path = try! parser.parseProjectionPathFromSIL()
let result = property(path)
assert(result == expect)
}
func path2path() {
testPath2Path("s0.e2.3.c4.s1", { $0.popAllValueFields() }, expect: "c4.s1")
testPath2Path("v**.c4.s1", { $0.popAllValueFields() }, expect: "c4.s1")
testPath2Path("**", { $0.popAllValueFields() }, expect: "**")
testPath2Path("s0.e2.3.c4.s1.e2.v**.**", { $0.popLastClassAndValuesFromTail() }, expect: "s0.e2.3.c4.s1.e2.v**.**")
testPath2Path("s0.c2.3.c4.s1", { $0.popLastClassAndValuesFromTail() }, expect: "s0.c2.3")
testPath2Path("v**.c*.s1", { $0.popLastClassAndValuesFromTail() }, expect: "v**")
testPath2Path("s1.ct.v**", { $0.popLastClassAndValuesFromTail() }, expect: "s1")
testPath2Path("c0.c1.c2", { $0.popLastClassAndValuesFromTail() }, expect: "c0.c1")
testPath2Path("**", { $0.popLastClassAndValuesFromTail() }, expect: "**")
testPath2Path("v**.c3", { $0.popIfMatches(.anyValueFields) }, expect: "v**.c3")
testPath2Path("**", { $0.popIfMatches(.anyValueFields) }, expect: "**")
testPath2Path("s0.c3", { $0.popIfMatches(.anyValueFields) }, expect: nil)
testPath2Path("c0.s3", { $0.popIfMatches(.anyClassField) }, expect: nil)
testPath2Path("**", { $0.popIfMatches(.anyClassField) }, expect: "**")
testPath2Path("c*.e3", { $0.popIfMatches(.anyClassField) }, expect: "e3")
testPath2Path("i*.e3.s0", { $0.popIfMatches(.enumCase, index: 3) }, expect: "s0")
testPath2Path("i1.e3.s0", { $0.popIfMatches(.enumCase, index: 3) }, expect: nil)
testPath2Path("i*.e3.s0", { $0.popIfMatches(.indexedElement, index: 0) }, expect: "i*.e3.s0")
}
func testPath2Path(_ pathStr: String, _ transform: (SmallProjectionPath) -> SmallProjectionPath?, expect: String?) {
var parser = StringParser(pathStr)
let path = try! parser.parseProjectionPathFromSIL()
let result = transform(path)
if let expect = expect {
var expectParser = StringParser(expect)
let expectPath = try! expectParser.parseProjectionPathFromSIL()
assert(result == expectPath)
} else {
assert(result == nil)
}
}
}
}
|