1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
|
//===--- WalkUtils.swift - Utilities for use-def def-use walks ------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2022 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file provides utilities for SSA def-use and use-def walking.
// There are four walker protocols:
// * for both directions: down (= def-use) and up (= use-def)
// * for values and addresses
// ```
// protocol ValueDefUseWalker
// protocol AddressDefUseWalker
// protocol ValueUseDefWalker
// protocol AddressUseDefWalker
// ```
//
// To use a walker, just conform to one (or multiple) of those protocols.
// There are several ways to configure the walker by providing implementations of
// their protocol functions. For details see the protocol definitions.
// The value-walkers also require to provide a "cache" property - see `WalkerCache`.
//
// The walkers maintain a "path" during the walk, which in it's simplest form can
// just be a SmallProjectionPath. For details see `WalkingPath`.
//===----------------------------------------------------------------------===//
/// Result returned by the walker functions
public enum WalkResult {
/// Continue the walk
case continueWalk
/// Stop the walks of all uses, a sufficient condition has been found
case abortWalk
}
extension Sequence {
public func walk(
_ predicate: (Element) throws -> WalkResult
) rethrows -> WalkResult {
return try contains { try predicate($0) == .abortWalk } ? .abortWalk : .continueWalk
}
}
/// The path which is updated throughout a walk.
///
/// Usually this is just a SmallProjectionPath, but clients can implement their own path, e.g.
/// to maintain additional data throughout the walk.
public protocol WalkingPath : Equatable {
typealias FieldKind = SmallProjectionPath.FieldKind
/// Returns the merged path of this path and `with`.
func merge(with: Self) -> Self
/// Pops the first path component if it is exactly of kind `kind` - not considering wildcards.
///
/// Returns the index of the component and the new path or - if not matching - returns nil.
/// Called for destructure instructions during down-walking and for aggregate instructions during up-walking.
func pop(kind: FieldKind) -> (index: Int, path: Self)?
/// Pops the first path component if it matches `kind` and (optionally) `index`.
///
/// Called for projection instructions during down-walking and for aggregate instructions during up-walking.
func popIfMatches(_ kind: FieldKind, index: Int?) -> Self?
/// Pushes a new first component to the path and returns the new path.
///
/// Called for aggregate instructions during down-walking and for projection instructions during up-walking.
func push(_ kind: FieldKind, index: Int) -> Self
}
extension SmallProjectionPath : WalkingPath { }
/// A `WalkingPath` where `push` and `pop` instructions
/// are forwarded to an underlying `projectionPath`.
public protocol SmallProjectionWalkingPath : WalkingPath {
/// During the walk, a projection path indicates where the initial value is
/// contained in an aggregate.
/// Example for a walk-down:
/// \code
/// %1 = alloc_ref // 1. initial value, path = empty
/// %2 = struct $S (%1) // 2. path = s0
/// %3 = tuple (%other, %1) // 3. path = t1.s0
/// %4 = tuple_extract %3, 1 // 4. path = s0
/// %5 = struct_extract %4, #field // 5. path = empty
/// \endcode
///
var projectionPath: SmallProjectionPath { get }
func with(projectionPath: SmallProjectionPath) -> Self
}
extension SmallProjectionWalkingPath {
public func pop(kind: FieldKind) -> (index: Int, path: Self)? {
if let (idx, p) = projectionPath.pop(kind: kind) {
return (idx, with(projectionPath: p))
}
return nil
}
public func popIfMatches(_ kind: FieldKind, index: Int?) -> Self? {
if let p = projectionPath.popIfMatches(kind, index: index) {
return with(projectionPath: p)
}
return nil
}
public func push(_ kind: FieldKind, index: Int) -> Self {
return with(projectionPath: projectionPath.push(kind, index: index))
}
}
/// A walking path which matches everything.
///
/// Useful for walkers which don't care about the path and unconditionally walk to all defs/uses.
public struct UnusedWalkingPath : WalkingPath {
public init() {}
public func merge(with: Self) -> Self { self }
public func pop(kind: FieldKind) -> (index: Int, path: Self)? { nil }
public func popIfMatches(_ kind: FieldKind, index: Int?) -> Self? { self }
public func push(_ kind: FieldKind, index: Int) -> Self { self }
}
/// Caches the state of a walk.
///
/// A client must provide this cache in a `walkUpCache` or `walkDownCache` property.
public struct WalkerCache<Path : WalkingPath> {
public init() {}
public mutating func needWalk(for value: Value, path: Path) -> Path? {
// Handle the first inline entry.
guard let e = inlineEntry0 else {
inlineEntry0 = (value, path)
return path
}
if e.value == value {
let newPath = e.path.merge(with: path)
if newPath != e.path {
inlineEntry0 = (value, newPath)
return newPath
}
return nil
}
// Handle the second inline entry.
guard let e = inlineEntry1 else {
inlineEntry1 = (value, path)
return path
}
if e.value == value {
let newPath = e.path.merge(with: path)
if newPath != e.path {
inlineEntry1 = (value, newPath)
return newPath
}
return nil
}
// If there are more than two elements, it goes into the `cache` Dictionary.
return cache[value.hashable, default: CacheEntry()].needWalk(path: path)
}
mutating func clear() {
inlineEntry0 = nil
inlineEntry1 = nil
cache.removeAll(keepingCapacity: true)
}
private struct CacheEntry {
var cachedPath: Path?
mutating func needWalk(path: Path) -> Path? {
guard let previousPath = cachedPath else {
self.cachedPath = path
return path
}
let newPath = previousPath.merge(with: path)
if newPath != previousPath {
self.cachedPath = newPath
return newPath
}
return nil
}
}
// If there are no more than 2 elements in the cache, we can avoid using the `cache` Dictionary,
// which avoids memory allocations.
// Fortunately this is the common case by far (about 97% of all walker invocations).
private var inlineEntry0: (value: Value, path: Path)?
private var inlineEntry1: (value: Value, path: Path)?
// All elements, which don't fit into the inline entries.
private var cache = Dictionary<HashableValue, CacheEntry>()
}
/// - A `DefUseWalker` finds all uses of a target value.
///
/// - A target value is described by an "initial" value and a projection path.
/// 1. If the projection path is empty (`""`) then the target value is the initial value itself.
/// 2. If the projection path is non-empty (`"s0.1.e3"`), then the target value is the one
/// reachable from the initial value through the series of projections described by the path.
/// - A path can also contain a pattern such as `"v**"` which means any series of "value"
/// projections (excluding `ref_element_addr` and similar, i.e. `c*`) from any field.
/// In the `v**` case, the target value*s* are many, i.e. all the ones reachable from
/// the initial value through _any of the fields_ through _any number_ of value projections.
/// `c*` means values reachable through a _single_ projection of _any_ of the fields of the class.
///
/// - A walk is started with a call to `walkDownUses(initial, path: path)`.
/// - This function will call `walkDown(operand, path: path)`
/// for every use of `initial` as `operand` in an instruction.
/// - For each use, then the walk can continue with initial value the result if the result of the using
/// instruction might still reach the target value with a new projection path.
/// 1. If the use is a construction such as a
/// `%res = struct $S (%f0)` (or `%res = tuple (%unk, %1)`) instruction and the path is `p`
/// then the `%res` result value reaches the target value through the new projection`s0.p` (respectively `1.p`).
/// 2. If the use is a projection such as `%res = struct_extract %s : $S, #S.field0` and the
/// path is `s0.s1` then the target value is reachable from `%res` with path `s1`.
/// If the path doesn't match `unmatchedPath` is called.
/// 3. If the use is a "forwarding instruction", such as a cast, the walk continues with the same path.
/// 4. If the use is an unhandled instruction then `leafUse` is called to denote that the client has to
/// handle this use.
///
/// There are two types of DefUseWalkers, one for values (`ValueDefUseWalker`) and one for
/// addresses (`AddressDefUseWalker`)
/// A `ValueDefUseWalker` can only handle "value" initial values, which correspond
/// to types that are not addresses, i.e. _do not have_ an asterisk (`*`) in the textual
/// representation of their SIL type (`$T`).
/// These can be values of reference type, or struct/tuple etc.
/// A `ValueDefUseWalker.walkDownDefault` called on a use of a initial "value" which
/// yields an "address" value (such as `ref_element_addr %initial_value`) will call `leafUse`
/// since the walk can't proceed.
///
/// Example call `walkDownUses(%str, path: "s0.s1")`
/// ```
/// %fa = struct_extract %str : $S1, #S1.fa // 1. field 0, walkDownUses(%fa, "s1")
/// %fb = struct_extract %str : $S1, #S1.fb // 5. field 1, unmatchedPath(%str, "s0.s1")
/// %fa.ga = struct_extract %fa : $S2, #S2.ga // 2. field 1, walkDownUses(%fa.ga, "")
/// ... = struct_extract %fa.ga: $S3, #S3.ha // 3. empty path, unmatchedPath(%fa.ga, "")
/// ... = <instruction> %fa.ga: // 4. unknown instruction, leafUse(%fa.ga, "")
/// ... = <instruction> %str: // 6. unknown instruction, leafUse(%str, "s0.s1")
/// ```
public protocol ValueDefUseWalker {
associatedtype Path: WalkingPath
/// Called on each use. The implementor can decide to continue the walk by calling
/// `walkDownDefault(value: value, path: path)` or
/// do nothing.
mutating func walkDown(value: Operand, path: Path) -> WalkResult
/// Walks down all results of the multi-value instruction `inst`.
///
/// This is called if the path doesn't filter a specific result, but contains a wildcard which matches all results.
/// Clients can but don't need to customize this function.
mutating func walkDownAllResults(of inst: MultipleValueInstruction, path: Path) -> WalkResult
/// `leafUse` is called from `walkDownDefault` when the walk can't continue for this use since
/// this is an instruction unknown to the default walker which _might_ be a "transitive use"
/// of the target value (such as `destroy_value %initial` or a `builtin ... %initial` instruction)
mutating func leafUse(value: Operand, path: Path) -> WalkResult
/// `unmatchedPath` is called from `walkDownDefault` when this is a use
/// of the initial value in an instruction recognized by the walker
/// but for which the requested `path` does not allow the walk to continue.
mutating func unmatchedPath(value: Operand, path: Path) -> WalkResult
/// A client must implement this function to cache walking results.
/// The function returns `nil` if the walk doesn't need to continue because
/// the `def` was already handled before.
/// In case the walk needs to be continued, this function returns the path for continuing the walk.
///
/// This method is called for two cases:
/// 1. To avoid exponential complexity during a walk down with a wildcard path `v**` or `**`
/// ```
/// (%1, %2, %3, %4) = destructure_tuple %t1
/// %t2 = tuple (%1, %2, %3, %4)
/// (%5, %6, %7, %8) = destructure_tuple %t2
/// %t3 = tuple (%5, %6, %7, %8)
/// ```
/// 2. To handle "phi webs" of `br` instructions which would lead to an infinite
/// walk down. In this case the implementor must ensure that eventually
/// `shouldRecomputeDown` returns `nil`, i.e. a fixpoint has been reached.
/// - If the implementor doesn't need for the walk to cross phi webs,
/// it can intercept `BranchInst`/`CondBranchInst` in `walkDown` and
/// not call `walkDownDefault` for these cases.
/// - Phi webs arise only for "value"s.
var walkDownCache: WalkerCache<Path> { get set }
}
extension ValueDefUseWalker {
public mutating func walkDown(value operand: Operand, path: Path) -> WalkResult {
return walkDownDefault(value: operand, path: path)
}
public mutating func unmatchedPath(value: Operand, path: Path) -> WalkResult {
return .continueWalk
}
/// Given an operand to an instruction, tries to continue the walk with the uses of
/// instruction's result if the target value is reachable from it (i.e. matches the `path`) .
/// If the walk can't continue, it calls `leafUse` or `unmatchedPath`
public mutating func walkDownDefault(value operand: Operand, path: Path) -> WalkResult {
let instruction = operand.instruction
switch instruction {
case let str as StructInst:
return walkDownUses(ofValue: str,
path: path.push(.structField, index: operand.index))
case let t as TupleInst:
return walkDownUses(ofValue: t,
path: path.push(.tupleField, index: operand.index))
case let e as EnumInst:
return walkDownUses(ofValue: e,
path: path.push(.enumCase, index: e.caseIndex))
case let se as StructExtractInst:
if let path = path.popIfMatches(.structField, index: se.fieldIndex) {
return walkDownUses(ofValue: se, path: path)
} else {
return unmatchedPath(value: operand, path: path)
}
case let te as TupleExtractInst:
if let path = path.popIfMatches(.tupleField, index: te.fieldIndex) {
return walkDownUses(ofValue: te, path: path)
} else {
return unmatchedPath(value: operand, path: path)
}
case let ued as UncheckedEnumDataInst:
if let path = path.popIfMatches(.enumCase, index: ued.caseIndex) {
return walkDownUses(ofValue: ued, path: path)
} else {
return unmatchedPath(value: operand, path: path)
}
case let ds as DestructureStructInst:
if let (index, path) = path.pop(kind: .structField) {
return walkDownUses(ofValue: ds.results[index], path: path)
} else if path.popIfMatches(.anyValueFields, index: nil) != nil {
return walkDownAllResults(of: ds, path: path)
} else {
return unmatchedPath(value: operand, path: path)
}
case let dt as DestructureTupleInst:
if let (index, path) = path.pop(kind: .tupleField) {
return walkDownUses(ofValue: dt.results[index], path: path)
} else if path.popIfMatches(.anyValueFields, index: nil) != nil {
return walkDownAllResults(of: dt, path: path)
} else {
return unmatchedPath(value: operand, path: path)
}
case let ier as InitExistentialRefInst:
return walkDownUses(ofValue: ier, path: path.push(.existential, index: 0))
case let oer as OpenExistentialRefInst:
if let path = path.popIfMatches(.existential, index: 0) {
return walkDownUses(ofValue: oer, path: path)
} else {
return unmatchedPath(value: operand, path: path)
}
case is BeginBorrowInst, is CopyValueInst, is MoveValueInst,
is UpcastInst, is EndCOWMutationInst, is EndInitLetRefInst,
is RefToBridgeObjectInst, is BridgeObjectToRefInst, is MarkUnresolvedNonCopyableValueInst:
return walkDownUses(ofValue: (instruction as! SingleValueInstruction), path: path)
case let urc as UncheckedRefCastInst:
if urc.type.isClassExistential || urc.fromInstance.type.isClassExistential {
// Sometimes `unchecked_ref_cast` is misused to cast between AnyObject and a class (instead of
// init_existential_ref and open_existential_ref).
// We need to ignore this because otherwise the path wouldn't contain the right `existential` field kind.
return leafUse(value: operand, path: path)
}
return walkDownUses(ofValue: urc, path: path)
case let beginDealloc as BeginDeallocRefInst:
if operand.index == 0 {
return walkDownUses(ofValue: beginDealloc, path: path)
}
return .continueWalk
case let mdi as MarkDependenceInst:
if operand.index == 0 {
return walkDownUses(ofValue: mdi, path: path)
} else {
return unmatchedPath(value: operand, path: path)
}
case let br as BranchInst:
let val = br.getArgument(for: operand)
if let path = walkDownCache.needWalk(for: val, path: path) {
return walkDownUses(ofValue: val, path: path)
} else {
return .continueWalk
}
case let cbr as CondBranchInst:
if let val = cbr.getArgument(for: operand) {
if let path = walkDownCache.needWalk(for: val, path: path) {
return walkDownUses(ofValue: val, path: path)
} else {
return .continueWalk
}
} else {
return leafUse(value: operand, path: path)
}
case let se as SwitchEnumInst:
if let (caseIdx, path) = path.pop(kind: .enumCase),
let succBlock = se.getUniqueSuccessor(forCaseIndex: caseIdx),
let payload = succBlock.arguments.first {
return walkDownUses(ofValue: payload, path: path)
} else if path.popIfMatches(.anyValueFields, index: nil) != nil {
for succBlock in se.parentBlock.successors {
if let payload = succBlock.arguments.first,
walkDownUses(ofValue: payload, path: path) == .abortWalk {
return .abortWalk
}
}
return .continueWalk
} else {
return unmatchedPath(value: operand, path: path)
}
case let bcm as BeginCOWMutationInst:
return walkDownUses(ofValue: bcm.instanceResult, path: path)
default:
return leafUse(value: operand, path: path)
}
}
/// Starts the walk
public mutating func walkDownUses(ofValue: Value, path: Path) -> WalkResult {
for operand in ofValue.uses where !operand.isTypeDependent {
if walkDown(value: operand, path: path) == .abortWalk {
return .abortWalk
}
}
return .continueWalk
}
public mutating func walkDownAllResults(of inst: MultipleValueInstruction, path: Path) -> WalkResult {
for result in inst.results {
if let path = walkDownCache.needWalk(for: result, path: path) {
if walkDownUses(ofValue: result, path: path) == .abortWalk {
return .abortWalk
}
}
}
return .continueWalk
}
}
/// An `AddressDefUseWalker` can only handle initial "addresses", which correspond
/// to types that are addresses (`$*T`).
/// An `AddressDefUseWalker.walkDownDefault` called on a use of an initial "address"
/// which results in a "value" (such as `load %initial_addr`) will call `leafUse` since the walk
/// can't proceed.
/// All functions return a boolean flag which, if true, can stop the walk of the other uses
/// and the whole walk.
public protocol AddressDefUseWalker {
associatedtype Path: WalkingPath
/// Called on each use. The implementor can decide to continue the walk by calling
/// `walkDownDefault(address: address, path: path)` or
/// do nothing.
mutating func walkDown(address: Operand, path: Path) -> WalkResult
/// `leafUse` is called from `walkDownDefault` when the walk can't continue for this use since
/// this is an instruction unknown to the default walker which might be a "transitive use"
/// of the target value (such as `destroy_addr %initial_addr` or a `builtin ... %initial_addr` instruction).
mutating func leafUse(address: Operand, path: Path) -> WalkResult
/// `unmatchedPath` is called from `walkDownDefault` when this is a use
/// of the initial address in an instruction recognized by the walker
/// but for which the requested `path` does not allow the walk to continue.
mutating func unmatchedPath(address: Operand, path: Path) -> WalkResult
}
extension AddressDefUseWalker {
public mutating func walkDown(address operand: Operand, path: Path) -> WalkResult {
return walkDownDefault(address: operand, path: path)
}
public mutating func unmatchedPath(address: Operand, path: Path) -> WalkResult {
return .continueWalk
}
public mutating func walkDownDefault(address operand: Operand, path: Path) -> WalkResult {
let instruction = operand.instruction
switch instruction {
case let sea as StructElementAddrInst:
if let path = path.popIfMatches(.structField, index: sea.fieldIndex) {
return walkDownUses(ofAddress: sea, path: path)
} else {
return unmatchedPath(address: operand, path: path)
}
case let tea as TupleElementAddrInst:
if let path = path.popIfMatches(.tupleField, index: tea.fieldIndex) {
return walkDownUses(ofAddress: tea, path: path)
} else {
return unmatchedPath(address: operand, path: path)
}
case is InitEnumDataAddrInst, is UncheckedTakeEnumDataAddrInst:
let ei = instruction as! SingleValueInstruction
if let path = path.popIfMatches(.enumCase, index: (instruction as! EnumInstruction).caseIndex) {
return walkDownUses(ofAddress: ei, path: path)
} else {
return unmatchedPath(address: operand, path: path)
}
case is InitExistentialAddrInst, is OpenExistentialAddrInst:
if let path = path.popIfMatches(.existential, index: 0) {
return walkDownUses(ofAddress: instruction as! SingleValueInstruction, path: path)
} else {
return unmatchedPath(address: operand, path: path)
}
case let ia as IndexAddrInst:
if let (pathIdx, subPath) = path.pop(kind: .indexedElement) {
if let idx = ia.constantIndex,
idx == pathIdx {
return walkDownUses(ofAddress: ia, path: subPath)
}
return walkDownUses(ofAddress: ia, path: subPath.push(.anyIndexedElement, index: 0))
}
return walkDownUses(ofAddress: ia, path: path)
case let mmc as MarkUnresolvedNonCopyableValueInst:
return walkDownUses(ofAddress: mmc, path: path)
case let ba as BeginAccessInst:
// Don't treat `end_access` as leaf-use. Just ignore it.
return walkDownNonEndAccessUses(of: ba, path: path)
case let mdi as MarkDependenceInst:
if operand.index == 0 {
return walkDownUses(ofAddress: mdi, path: path)
} else {
return unmatchedPath(address: operand, path: path)
}
default:
return leafUse(address: operand, path: path)
}
}
public mutating func walkDownUses(ofAddress: Value, path: Path) -> WalkResult {
for operand in ofAddress.uses where !operand.isTypeDependent {
if walkDown(address: operand, path: path) == .abortWalk {
return .abortWalk
}
}
return .continueWalk
}
private mutating func walkDownNonEndAccessUses(of beginAccess: BeginAccessInst, path: Path) -> WalkResult {
for operand in beginAccess.uses where !operand.isTypeDependent {
if !(operand.instruction is EndAccessInst),
walkDown(address: operand, path: path) == .abortWalk {
return .abortWalk
}
}
return .continueWalk
}
}
/// - A `UseDefWalker` can be used to find all "generating" definitions of
/// a target value.
/// - A target value is described by an "initial" value and a projection path as in a `DefUseWalker.`
/// 1. If the projection path is empty (`""`) then the target value is the initial value itself.
/// 2. If the projection path is non-empty (`"s0.1.e3"`), then the target value is the one
/// reachable through the series of projections described by the path, applied to the initial value.
/// - The same notes about wildcard paths in `DefUseWalker` apply here.
///
/// - A walk is started with a call to `walkUp(initial, path: path)`.
///
/// - The implementor of `walkUp` can then track the definition if needed and
/// continue the walk by calling `walkUpDefault`.
/// `walkUpDefault` will do the following:
/// 1. If the instruction of the definition is a projection, then it will continue
/// the walk by calling `walkUp` on the operand definition and an adjusted (pushed) path
/// to reflect that a further projection is needed to reach the value of interest from the new initial value.
/// 2. If the instruction of the definition is a value construction such as `struct` and
/// the head of the path matches the instruction type then the walk continues
/// with a call to `walkUp` with initial value the operand defintion denoted by the path
/// and the suffix path as path since the target value can now be reached with fewer projections.
/// If the defining instruction of the value does not match the head of the path as in
/// `%t = tuple ...` and `"s0.t1"` then `unmatchedPath(%t, ...)` is called.
/// 3. If the instruction is a forwarding instruction, such as a cast, the walk continues with `walkUp`
/// with the operand definition as initial value and same path.
/// 4. If the instruction is not handled by this walker or the path is empty, then `rootDef` is called to
/// denote that the walk can't continue and that the definition of the target has been reached.
public protocol ValueUseDefWalker {
associatedtype Path: WalkingPath
/// Starting point of the walk. The implementor can decide to continue the walk by calling
/// `walkUpDefault(value: value, path: path)` or
/// do nothing.
mutating func walkUp(value: Value, path: Path) -> WalkResult
/// Walks up all operands of `def`. This is called if the path doesn't filter a specific operand,
/// but contains a wildcard which matches all operands.
/// Clients can but don't need to customize this function.
mutating func walkUpAllOperands(of def: Instruction, path: Path) -> WalkResult
/// `rootDef` is called from `walkUpDefault` when the walk can't continue for this use since
/// either
/// * the defining instruction is unknown to the default walker
/// * the `path` is empty (`""`) and therefore this is the definition of the target value.
mutating func rootDef(value: Value, path: Path) -> WalkResult
/// `unmatchedPath` is called from `walkUpDefault` when the defining instruction
/// is unrelated to the `path` the walk should follow.
mutating func unmatchedPath(value: Value, path: Path) -> WalkResult
/// A client must implement this function to cache walking results.
/// The function returns nil if the walk doesn't need to continue because
/// the `def` was already handled before.
/// In case the walk needs to be continued, this function returns the path
/// for continuing the walk.
var walkUpCache: WalkerCache<Path> { get set }
}
extension ValueUseDefWalker {
public mutating func walkUp(value: Value, path: Path) -> WalkResult {
return walkUpDefault(value: value, path: path)
}
public mutating func unmatchedPath(value: Value, path: Path) -> WalkResult {
return .continueWalk
}
public mutating func walkUpDefault(value def: Value, path: Path) -> WalkResult {
switch def {
case let str as StructInst:
if let (index, path) = path.pop(kind: .structField) {
if index >= str.operands.count {
// This can happen if there is a type mismatch, e.g. two different concrete types of an existential
// are visited for the same path.
return unmatchedPath(value: str, path: path)
}
return walkUp(value: str.operands[index].value, path: path)
} else if path.popIfMatches(.anyValueFields, index: nil) != nil {
return walkUpAllOperands(of: str, path: path)
} else {
return unmatchedPath(value: str, path: path)
}
case let t as TupleInst:
if let (index, path) = path.pop(kind: .tupleField) {
if index >= t.operands.count {
// This can happen if there is a type mismatch, e.g. two different concrete types of an existential
// are visited for the same path.
return unmatchedPath(value: t, path: path)
}
return walkUp(value: t.operands[index].value, path: path)
} else if path.popIfMatches(.anyValueFields, index: nil) != nil {
return walkUpAllOperands(of: t, path: path)
} else {
return unmatchedPath(value: t, path: path)
}
case let e as EnumInst:
if let path = path.popIfMatches(.enumCase, index: e.caseIndex),
let payload = e.payload {
return walkUp(value: payload, path: path)
} else if path.popIfMatches(.anyValueFields, index: nil) != nil {
if let payload = e.payload {
return walkUp(value: payload, path: path)
} else {
// without a payload, this enum is itself a definition root.
return rootDef(value: e, path: path)
}
} else {
return unmatchedPath(value: e, path: path)
}
case let se as StructExtractInst:
return walkUp(value: se.struct, path: path.push(.structField, index: se.fieldIndex))
case let te as TupleExtractInst:
return walkUp(value: te.tuple, path: path.push(.tupleField, index: te.fieldIndex))
case let ued as UncheckedEnumDataInst:
return walkUp(value: ued.enum, path: path.push(.enumCase, index: ued.caseIndex))
case let mvr as MultipleValueInstructionResult:
let instruction = mvr.parentInstruction
if let ds = instruction as? DestructureStructInst {
return walkUp(value: ds.struct, path: path.push(.structField, index: mvr.index))
} else if let dt = instruction as? DestructureTupleInst {
return walkUp(value: dt.tuple, path: path.push(.tupleField, index: mvr.index))
} else if let bcm = instruction as? BeginCOWMutationInst {
return walkUp(value: bcm.instance, path: path)
} else {
return rootDef(value: mvr, path: path)
}
case let ier as InitExistentialRefInst:
if let path = path.popIfMatches(.existential, index: 0) {
return walkUp(value: ier.instance, path: path)
} else {
return unmatchedPath(value: ier, path: path)
}
case let oer as OpenExistentialRefInst:
return walkUp(value: oer.existential, path: path.push(.existential, index: 0))
case is BeginBorrowInst, is CopyValueInst, is MoveValueInst,
is UpcastInst, is EndCOWMutationInst, is EndInitLetRefInst,
is BeginDeallocRefInst,
is RefToBridgeObjectInst, is BridgeObjectToRefInst, is MarkUnresolvedNonCopyableValueInst:
return walkUp(value: (def as! Instruction).operands[0].value, path: path)
case let urc as UncheckedRefCastInst:
if urc.type.isClassExistential || urc.fromInstance.type.isClassExistential {
// Sometimes `unchecked_ref_cast` is misused to cast between AnyObject and a class (instead of
// init_existential_ref and open_existential_ref).
// We need to ignore this because otherwise the path wouldn't contain the right `existential` field kind.
return rootDef(value: urc, path: path)
}
return walkUp(value: urc.fromInstance, path: path)
case let arg as Argument:
if let phi = Phi(arg) {
for incoming in phi.incomingValues {
// Check the cache to avoid cycles in the walk
if let path = walkUpCache.needWalk(for: incoming, path: path) {
if walkUp(value: incoming, path: path) == .abortWalk {
return .abortWalk
}
}
}
return .continueWalk
}
if let termResult = TerminatorResult(arg) {
let pred = termResult.predecessor
if let se = pred.terminator as? SwitchEnumInst,
let caseIdx = se.getUniqueCase(forSuccessor: termResult.successor) {
return walkUp(value: se.enumOp, path: path.push(.enumCase, index: caseIdx))
}
}
return rootDef(value: def, path: path)
default:
return rootDef(value: def, path: path)
}
}
public mutating func walkUpAllOperands(of def: Instruction, path: Path) -> WalkResult {
for operand in def.operands {
// `shouldRecompute` is called to avoid exponential complexity in
// programs like
//
// (%1, %2) = destructure_struct %0
// %3 = struct $Struct %1 %2
// (%4, %5) = destructure_struct %3
// %6 = struct $Struct %4 %5
if let path = walkUpCache.needWalk(for: operand.value, path: path) {
if walkUp(value: operand.value, path: path) == .abortWalk {
return .abortWalk
}
}
}
return .continueWalk
}
}
public protocol AddressUseDefWalker {
associatedtype Path: WalkingPath
/// Starting point of the walk. The implementor can decide to continue the walk by calling
/// `walkUpDefault(address: address, path: path)` or
/// do nothing.
mutating func walkUp(address: Value, path: Path) -> WalkResult
/// `rootDef` is called from `walkUpDefault` when the walk can't continue for this use since
/// either
/// * the defining instruction is unknown to the default walker
/// * the `path` is empty (`""`) and therefore this is the definition of the target value.
mutating func rootDef(address: Value, path: Path) -> WalkResult
/// `unmatchedPath` is called from `walkUpDefault` when the defining instruction
/// is unrelated to the `path` the walk should follow.
mutating func unmatchedPath(address: Value, path: Path) -> WalkResult
}
extension AddressUseDefWalker {
public mutating func walkUp(address: Value, path: Path) -> WalkResult {
return walkUpDefault(address: address, path: path)
}
public mutating func unmatchedPath(address: Value, path: Path) -> WalkResult {
return .continueWalk
}
public mutating func walkUpDefault(address def: Value, path: Path) -> WalkResult {
switch def {
case let sea as StructElementAddrInst:
return walkUp(address: sea.struct, path: path.push(.structField, index: sea.fieldIndex))
case let tea as TupleElementAddrInst:
return walkUp(address: tea.tuple, path: path.push(.tupleField, index: tea.fieldIndex))
case let ida as InitEnumDataAddrInst:
return walkUp(address: ida.operand.value, path: path.push(.enumCase, index: ida.caseIndex))
case let uteda as UncheckedTakeEnumDataAddrInst:
return walkUp(address: uteda.operand.value, path: path.push(.enumCase, index: uteda.caseIndex))
case is InitExistentialAddrInst, is OpenExistentialAddrInst:
return walkUp(address: (def as! Instruction).operands[0].value, path: path.push(.existential, index: 0))
case is BeginAccessInst, is MarkUnresolvedNonCopyableValueInst:
return walkUp(address: (def as! Instruction).operands[0].value, path: path)
case let ia as IndexAddrInst:
if let idx = ia.constantIndex {
return walkUp(address: ia.base, path: path.push(.indexedElement, index: idx))
} else {
return walkUp(address: ia.base, path: path.push(.anyIndexedElement, index: 0))
}
case let mdi as MarkDependenceInst:
return walkUp(address: mdi.operands[0].value, path: path)
case is MoveOnlyWrapperToCopyableAddrInst,
is CopyableToMoveOnlyWrapperAddrInst:
return walkUp(address: (def as! Instruction).operands[0].value, path: path)
default:
return rootDef(address: def, path: path)
}
}
}
private extension IndexAddrInst {
var constantIndex: Int? {
if let literal = index as? IntegerLiteralInst,
let indexValue = literal.value
{
return indexValue
}
return nil
}
}
|