1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
//===--- Prims.swift ------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
// The test implements Prim's algorithm for minimum spanning tree building.
// http://en.wikipedia.org/wiki/Prim%27s_algorithm
// This class implements array-based heap (priority queue).
// It is used to store edges from nodes in spanning tree to nodes outside of it.
// We are interested only in the edges with the smallest costs, so if there are
// several edges pointing to the same node, we keep only one from them. Thus,
// it is enough to record this node instead.
// We maintain a map (node index in graph)->(node index in heap) to be able to
// update the heap fast when we add a new node to the tree.
import TestsUtils
class PriorityQueue {
final var heap: Array<EdgeCost>
final var graphIndexToHeapIndexMap: Array<Int?>
// Create heap for graph with NUM nodes.
init(Num: Int) {
heap = Array<EdgeCost>()
graphIndexToHeapIndexMap = Array<Int?>(repeating:nil, count: Num)
}
func isEmpty() -> Bool {
return heap.isEmpty
}
// Insert element N to heap, maintaining the heap property.
func insert(_ n: EdgeCost) {
let ind: Int = heap.count
heap.append(n)
graphIndexToHeapIndexMap[n.to] = heap.count - 1
bubbleUp(ind)
}
// Insert element N if in's not in the heap, or update its cost if the new
// value is less than the existing one.
func insertOrUpdate(_ n: EdgeCost) {
let id = n.to
let c = n.cost
if let ind = graphIndexToHeapIndexMap[id] {
if heap[ind].cost <= c {
// We don't need an edge with a bigger cost
return
}
heap[ind].cost = c
heap[ind].from = n.from
bubbleUp(ind)
} else {
insert(n)
}
}
// Restore heap property by moving element at index IND up.
// This is needed after insertion, and after decreasing an element's cost.
func bubbleUp(_ ind: Int) {
var ind = ind
let c = heap[ind].cost
while (ind != 0) {
let p = getParentIndex(ind)
if heap[p].cost > c {
swap(p, with: ind)
ind = p
} else {
break
}
}
}
// Pop minimum element from heap and restore the heap property after that.
func pop() -> EdgeCost? {
if (heap.isEmpty) {
return nil
}
swap(0, with:heap.count-1)
let r = heap.removeLast()
graphIndexToHeapIndexMap[r.to] = nil
bubbleDown(0)
return r
}
// Restore heap property by moving element at index IND down.
// This is needed after removing an element, and after increasing an
// element's cost.
func bubbleDown(_ ind: Int) {
var ind = ind
let n = heap.count
while (ind < n) {
let l = getLeftChildIndex(ind)
let r = getRightChildIndex(ind)
if (l >= n) {
break
}
var min: Int
if (r < n && heap[r].cost < heap[l].cost) {
min = r
} else {
min = l
}
if (heap[ind].cost <= heap[min].cost) {
break
}
swap(ind, with: min)
ind = min
}
}
// Swaps elements I and J in the heap and correspondingly updates
// graphIndexToHeapIndexMap.
func swap(_ i: Int, with j : Int) {
if (i == j) {
return
}
(heap[i], heap[j]) = (heap[j], heap[i])
let (i2, j2) = (heap[i].to, heap[j].to)
(graphIndexToHeapIndexMap[i2], graphIndexToHeapIndexMap[j2]) =
(graphIndexToHeapIndexMap[j2], graphIndexToHeapIndexMap[i2])
}
// Dumps the heap.
func dump() {
print("QUEUE")
for nodeCost in heap {
let to: Int = nodeCost.to
let from: Int = nodeCost.from
let cost: Double = nodeCost.cost
print("(\(from)->\(to), \(cost))")
}
}
func getLeftChildIndex(_ index : Int) -> Int {
return index*2 + 1
}
func getRightChildIndex(_ index : Int) -> Int {
return (index + 1)*2
}
func getParentIndex(_ childIndex : Int) -> Int {
return (childIndex - 1)/2
}
}
struct GraphNode {
var id: Int
var adjList: Array<Int>
init(i : Int) {
id = i
adjList = Array<Int>()
}
}
struct EdgeCost {
var to: Int
var cost: Double
var from: Int
}
struct Edge : Equatable {
var start: Int
var end: Int
}
func ==(lhs: Edge, rhs: Edge) -> Bool {
return lhs.start == rhs.start && lhs.end == rhs.end
}
extension Edge : Hashable {
func hash(into hasher: inout Hasher) {
hasher.combine(start)
hasher.combine(end)
}
}
func prims(_ graph : Array<GraphNode>, _ fun : (Int, Int) -> Double) -> Array<Int?> {
var treeEdges = Array<Int?>(repeating:nil, count:graph.count)
let queue = PriorityQueue(Num:graph.count)
// Make the minimum spanning tree root its own parent for simplicity.
queue.insert(EdgeCost(to: 0, cost: 0.0, from: 0))
// Take an element with the smallest cost from the queue and add its
// neighbors to the queue if their cost was updated
while !queue.isEmpty() {
// Add an edge with minimum cost to the spanning tree
let e = queue.pop()!
let newnode = e.to
// Add record about the edge newnode->e.from to treeEdges
treeEdges[newnode] = e.from
// Check all adjacent nodes and add edges, ending outside the tree, to the
// queue. If the queue already contains an edge to an adjacent node, we
// replace existing one with the new one in case the new one costs less.
for adjNodeIndex in graph[newnode].adjList {
if treeEdges[adjNodeIndex] != nil {
continue
}
let newcost = fun(newnode, graph[adjNodeIndex].id)
queue.insertOrUpdate(EdgeCost(to: adjNodeIndex, cost: newcost, from: newnode))
}
}
return treeEdges
}
|