1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ===--- compare_perf_tests.py -------------------------------------------===//
#
# This source file is part of the Swift.org open source project
#
# Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
# Licensed under Apache License v2.0 with Runtime Library Exception
#
# See https://swift.org/LICENSE.txt for license information
# See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
#
# ===---------------------------------------------------------------------===//
"""
This script compares performance test logs and issues a formatted report.
Invoke `$ compare_perf_tests.py -h ` for complete list of options.
class `PerformanceTestResult` collects information about a single test
class `LogParser` converts log files into `PerformanceTestResult`s.
class `ResultComparison` compares new and old `PerformanceTestResult`s.
class `TestComparator` analyzes changes between the old and new test results.
class `ReportFormatter` creates the test comparison report in specified format.
"""
import argparse
import functools
import json
import re
import statistics
import sys
class PerformanceTestResult(object):
u"""Result from executing an individual Swift Benchmark Suite benchmark.
Reported by the test driver (Benchmark_O, Benchmark_Onone, Benchmark_Osize
or Benchmark_Driver).
It supports log formats emitted by the test driver.
"""
# TODO: Delete after December 2023
@classmethod
def fromOldFormat(cls, header, line):
"""Original format with statistics for normal distribution (MEAN, SD):
#,TEST,SAMPLES,MIN(μs),MAX(μs),MEAN(μs),SD(μs),MEDIAN(μs),MAX_RSS(B),PAGES,ICS,YIELD
Note that MAX_RSS, PAGES, ICS, YIELD are all optional
"""
csv_row = line.split(",") if "," in line else line.split()
labels = header.split(",") if "," in header else header.split()
# Synthesize a JSON form with the basic values:
num_samples = int(csv_row[2])
json_data = {
"number": int(csv_row[0]),
"name": csv_row[1],
"num_samples": num_samples,
}
# Map remaining columns according to label
field_map = [
("ICS", "ics"),
("MAX_RSS", "max_rss"), # Must precede "MAX"
("MAX", "max"),
("MEAN", "mean"),
("MEDIAN", "median"),
("MIN", "min"),
("PAGES", "pages"),
("SD", "sd"),
("YIELD", "yield")
]
for label, value in zip(labels, csv_row):
for match, json_key in field_map:
if match in label:
json_data[json_key] = float(value)
break
# Heroic: Reconstruct samples if we have enough info
# This is generally a bad idea, but sadly necessary for the
# old format that doesn't provide raw sample data.
if num_samples == 1 and "min" in json_data:
json_data["samples"] = [
json_data["min"]
]
elif num_samples == 2 and "min" in json_data and "max" in json_data:
json_data["samples"] = [
json_data["min"],
json_data["max"]
]
elif (num_samples == 3
and "min" in json_data
and "max" in json_data
and "median" in json_data):
json_data["samples"] = [
json_data["min"],
json_data["median"],
json_data["max"]
]
return PerformanceTestResult(json_data)
# TODO: Delete after December 2023
@classmethod
def fromQuantileFormat(cls, header, line):
"""Quantiles format with variable number of columns depending on the
number of quantiles:
#,TEST,SAMPLES,QMIN(μs),MEDIAN(μs),MAX(μs)
#,TEST,SAMPLES,QMIN(μs),Q1(μs),Q2(μs),Q3(μs),MAX(μs),MAX_RSS(B)
The number of columns between QMIN and MAX depends on the test driver's
`--quantile`parameter. In both cases, the last column, MAX_RSS is optional.
Delta encoding: If a header name includes 𝚫, that column stores the
difference from the previous column. E.g, a header
"#,TEST,SAMPLES,QMIN(μs),MEDIAN(μs),𝚫MAX(μs)" indicates the final "MAX"
column must be computed by adding the value in that column to the value
of the previous "MEDIAN" column.
"""
csv_row = line.split(",") if "," in line else line.split()
labels = header.split(",")
for i in range(1, len(labels)):
if "𝚫" in labels[i] or "Δ" in labels[i]:
prev = int(csv_row[i - 1])
inc = int(csv_row[i]) if csv_row[i] != '' else 0
csv_row[i] = str(prev + inc)
# Synthesize a JSON form and then initialize from that
json_data = {
"number": int(csv_row[0]),
"name": csv_row[1],
"num_samples": int(csv_row[2]),
}
# Process optional trailing fields MAX_RSS, PAGES, ICS, YIELD
i = len(labels) - 1
while True:
if "MAX_RSS" in labels[i]:
json_data["max_rss"] = float(csv_row[i])
elif "PAGES" in labels[i]:
json_data["pages"] = float(csv_row[i])
elif "ICS" in labels[i]:
json_data["ics"] = float(csv_row[i])
elif "YIELD" in labels[i]:
json_data["yield"] = float(csv_row[i])
else:
break
i -= 1
if i < 0:
break
# Rest is the quantiles (includes min/max columns)
quantiles = [float(q) for q in csv_row[3:i + 1]]
# Heroic effort:
# If we have enough quantiles, we can reconstruct the samples
# This is generally a bad idea, but sadly necessary since
# the quantile format doesn't provide raw sample data.
if json_data["num_samples"] == len(quantiles):
json_data["samples"] = sorted(quantiles)
elif json_data["num_samples"] == 2:
json_data["samples"] = [quantiles[0], quantiles[-1]]
elif json_data["num_samples"] == 1:
json_data["samples"] = [quantiles[0]]
else:
json_data["quantiles"] = quantiles
if len(quantiles) > 0:
json_data["min"] = quantiles[0]
json_data["max"] = quantiles[-1]
json_data["median"] = quantiles[(len(quantiles) - 1) // 2]
return PerformanceTestResult(json_data)
@classmethod
def fromJSONFormat(cls, line):
"""JSON format stores a test result as a JSON object on a single line
Compared to the legacy tab-separated/comma-separated formats, this makes
it much easier to add new fields, handle optional fields, and allows us
to include the full set of samples so we can use better statistics
downstream.
The code here includes optional support for min, max,
median, mean, etc. supported by the older formats, though in practice,
you shouldn't rely on those: Just store the full samples and then
compute whatever statistics you need as required.
"""
json_data = json.loads(line)
return PerformanceTestResult(json_data)
def __init__(self, json_data):
# Ugly hack to get the old tests to run
if isinstance(json_data, str):
json_data = json.loads(json_data)
# We always have these
assert (json_data.get("number") is not None)
assert (json_data.get("name") is not None)
self.test_num = json_data["number"]
self.name = json_data["name"]
# We always have either samples or num_samples
assert (json_data.get("num_samples") is not None
or json_data.get("samples") is not None)
self.num_samples = json_data.get("num_samples") or len(json_data["samples"])
self.samples = json_data.get("samples") or []
# Everything else is optional and can be read
# out of the JSON data if needed
# See max_rss() below for an example of this.
self.json_data = dict(json_data)
def __repr__(self):
return "PerformanceTestResult(" + json.dumps(self.json_data) + ")"
def json(self):
"""Return a single-line JSON form of this result
This can be parsed back via fromJSONFormat above.
It can also represent all data stored by the older
formats, so there's no reason to not use it everywhere.
"""
data = dict(self.json_data)
# In case these got modified
data["number"] = self.test_num
data["name"] = self.name
# If we have full sample data, use that and
# drop any lingering pre-computed statistics
# (It's better for downstream consumers to just
# compute whatever statistics they need from scratch.)
# After December 2023, uncomment the next line:
# assert len(self.samples) == self.num_samples
if len(self.samples) == self.num_samples:
data["samples"] = self.samples
data.pop("num_samples", None)
# TODO: Delete min/max/mean/sd/q1/median/q3/quantiles
# after December 2023
data.pop("min", None)
data.pop("max", None)
data.pop("mean", None)
data.pop("sd", None)
data.pop("q1", None)
data.pop("median", None)
data.pop("q3", None)
data.pop("quantiles", None)
else:
# Preserve other pre-existing JSON statistics
data["num_samples"] = self.num_samples
return json.dumps(data)
def __str__(self):
return self.json()
@property
def setup(self):
"""TODO: Implement this
"""
return 0
@property
def max_rss(self):
"""Return max_rss if available
"""
return self.json_data.get("max_rss")
@property
def mem_pages(self):
"""Return pages if available
"""
return self.json_data.get("pages")
@property
def involuntary_cs(self):
"""Return involuntary context switches if available
"""
return self.json_data.get("ics")
@property
def yield_count(self):
"""Return voluntary yield count if available
"""
return self.json_data.get("yield")
@property
def min_value(self):
"""Return the minimum value from all samples
If we have full samples, compute it directly.
In the legacy case, we might not have full samples,
so in that case we'll return a value that was given
to us initially (if any).
Eventually (after December 2023), this can be simplified
to just `return min(self.samples)`, since by then
the legacy forms should no longer be in use.
"""
if self.num_samples == len(self.samples):
return min(self.samples)
return self.json_data.get("min")
@property
def max_value(self):
"""Return the maximum sample value
See min_value comments for details on the legacy behavior."""
if self.num_samples == len(self.samples):
return max(self.samples)
return self.json_data.get("max")
@property
def median(self):
"""Return the median sample value
See min_value comments for details on the legacy behavior."""
if self.num_samples == len(self.samples):
return statistics.median(self.samples)
return self.json_data.get("median")
# TODO: Eliminate q1 and q3. They're kept for now
# to preserve compatibility with older reports. But quantiles
# aren't really useful statistics, so just drop them.
@property
def q1(self):
"""Return the 25% quantile
See min_value comments for details on the legacy behavior."""
if self.num_samples == len(self.samples):
q = statistics.quantiles(self.samples, n=4)
return q[0]
return self.json_data.get("q1")
@property
def q3(self):
"""Return the 75% quantile
See min_value comments for details on the legacy behavior."""
if self.num_samples == len(self.samples):
q = statistics.quantiles(self.samples, n=4)
return q[2]
return self.json_data.get("q3")
@property
def mean(self):
"""Return the average
TODO: delete this; it's not useful"""
if self.num_samples == len(self.samples):
return statistics.mean(self.samples)
return self.json_data.get("mean")
@property
def sd(self):
"""Return the standard deviation
TODO: delete this; it's not useful"""
if self.num_samples == len(self.samples):
if len(self.samples) > 1:
return statistics.stdev(self.samples)
else:
return 0
return self.json_data.get("sd")
def merge(self, other):
"""Merge two results.
This is trivial in the non-legacy case: We just
pool all the samples.
In the legacy case (or the mixed legacy/non-legacy cases),
we try to estimate the min/max/mean/sd/median/etc based
on whatever information is available. After Dec 2023,
we should be able to drop the legacy support.
"""
# The following can be removed after Dec 2023
# (by which time the legacy support should no longer
# be necessary)
if self.num_samples != len(self.samples):
# If we don't have samples, we can't rely on being
# able to compute real statistics from those samples,
# so we make a best-effort attempt to estimate a joined
# statistic from whatever data we actually have.
# If both exist, take the minimum, else take whichever is set
other_min_value = other.min_value
if other_min_value is not None:
self_min_value = self.min_value
if self_min_value is not None:
self.json_data["min"] = min(other_min_value, self_min_value)
else:
self.json_data["min"] = other_min_value
# If both exist, take the maximum, else take whichever is set
other_max_value = other.max_value
if other_max_value is not None:
self_max_value = self.max_value
if self_max_value is not None:
self.json_data["max"] = max(other_max_value, self_max_value)
else:
self.json_data["max"] = other_max_value
# If both exist, take the weighted average, else take whichever is set
other_mean = other.mean
if other_mean is not None:
self_mean = self.mean
if self_mean is not None:
self.json_data["mean"] = (
(other_mean * other.num_samples
+ self_mean * self.num_samples)
/ (self.num_samples + other.num_samples)
)
else:
self.json_data["mean"] = other_mean
self.json_data.pop("median", None) # Remove median
self.json_data.pop("sd", None) # Remove stdev
self.json_data.pop("q1", None) # Remove 25% quantile
self.json_data.pop("q3", None) # Remove 75% quantile
self.json_data.pop("quantiles", None) # Remove quantiles
# Accumulate samples (if present) and num_samples (always)
self.samples += other.samples
self.num_samples += other.num_samples
# Metadata
# Use the smaller if both have a max_rss value
self.json_data["max_rss"] = other.max_rss
other_max_rss = other.max_rss
if other_max_rss is not None:
self_max_rss = self.max_rss
if self_max_rss is not None:
self.json_data["max_rss"] = min(self_max_rss, other_max_rss)
else:
self.json_data["max_rss"] = other_max_rss
class ResultComparison(object):
"""ResultComparison compares MINs from new and old PerformanceTestResult.
It computes speedup ratio and improvement delta (%).
"""
def __init__(self, old, new):
"""Initialize with old and new `PerformanceTestResult`s to compare."""
self.old = old
self.new = new
assert old.name == new.name
self.name = old.name # Test name, convenience accessor
# Speedup ratio
self.ratio = (old.min_value + 0.001) / (new.min_value + 0.001)
# Test runtime improvement in %
ratio = (new.min_value + 0.001) / (old.min_value + 0.001)
self.delta = (ratio - 1) * 100
# If we have full samples for both old and new...
if (
len(old.samples) == old.num_samples
and len(new.samples) == new.num_samples
):
# TODO: Use a T-Test or U-Test to determine whether
# one set of samples should be considered reliably better than
# the other.
None
# If we do not have full samples, we'll use the
# legacy calculation for compatibility.
# TODO: After Dec 2023, we should always be using full samples
# everywhere and can delete the following entirely.
#
# Indication of dubious changes: when result's MIN falls inside the
# (MIN, MAX) interval of result they are being compared with.
self.is_dubious = (
(
old.min_value < new.min_value
and new.min_value < old.max_value
) or (
new.min_value < old.min_value
and old.min_value < new.max_value
)
)
class LogParser(object):
"""Converts log outputs into `PerformanceTestResult`s.
Supports various formats produced by the `Benchmark_Driver` and
`Benchmark_O`('Onone', 'Osize'). It can also merge together the
results from concatenated log files.
"""
def __init__(self):
"""Create instance of `LogParser`."""
self.results = []
def parse_results(self, lines):
"""Parse results from the lines of the log output from Benchmark*.
Returns a list of `PerformanceTestResult`s.
"""
match_json = re.compile(r"\s*({.*)")
match_header = re.compile(r"( *#[, \t]+TEST.*)")
match_legacy = re.compile(r" *(\d+[, \t].*)")
header = ""
for line in lines:
# Current format has a JSON-encoded object on each line
# That format is flexible so should be the only format
# used going forward
if match_json.match(line):
r = PerformanceTestResult.fromJSONFormat(line)
self.results.append(r)
elif match_header.match(line):
# Legacy formats use a header line (which can be
# inspected to determine the presence and order of columns)
header = line
elif match_legacy.match(line):
# Legacy format: lines of space- or tab-separated values
if "QMIN" in header:
r = PerformanceTestResult.fromQuantileFormat(header, line)
else:
r = PerformanceTestResult.fromOldFormat(header, line)
self.results.append(r)
else:
# Ignore unrecognized lines
# print('Skipping: ' + line.rstrip('\n'), file=sys.stderr, flush=True)
continue
return self.results
@staticmethod
def _results_from_lines(lines):
names = dict()
for r in LogParser().parse_results(lines):
if r.name not in names:
names[r.name] = r
else:
names[r.name].merge(r)
return names
@staticmethod
def results_from_string(log_contents):
"""Parse `PerformanceTestResult`s from the supplied string.
Returns dictionary of test names and `PerformanceTestResult`s.
"""
return LogParser._results_from_lines(log_contents.splitlines())
@staticmethod
def results_from_file(log_file):
"""Parse `PerformanceTestResult`s from the log file.
Returns dictionary of test names and `PerformanceTestResult`s.
"""
with open(log_file) as f:
return LogParser._results_from_lines(f.readlines())
class TestComparator(object):
"""Analyzes changes between the old and new test results.
It determines which tests were `added`, `removed` and which can be
compared. It then splits the `ResultComparison`s into 3 groups according to
the `delta_threshold` by the change in performance: `increased`,
`descreased` and `unchanged`. Whole computation is performed during
initialization and results are provided as properties on this object.
The lists of `added`, `removed` and `unchanged` tests are sorted
alphabetically. The `increased` and `decreased` lists are sorted in
descending order by the amount of change.
"""
def __init__(self, old_results, new_results, delta_threshold):
"""Initialize with dictionaries of old and new benchmark results.
Dictionary keys are benchmark names, values are
`PerformanceTestResult`s.
"""
old_tests = set(old_results.keys())
new_tests = set(new_results.keys())
comparable_tests = new_tests.intersection(old_tests)
added_tests = new_tests.difference(old_tests)
removed_tests = old_tests.difference(new_tests)
self.added = sorted([new_results[t] for t in added_tests], key=lambda r: r.name)
self.removed = sorted(
[old_results[t] for t in removed_tests], key=lambda r: r.name
)
def compare(name):
return ResultComparison(old_results[name], new_results[name])
comparisons = list(map(compare, comparable_tests))
def partition(items, p):
return functools.reduce(
lambda x, y: x[not p(y)].append(y) or x, items, ([], [])
)
decreased, not_decreased = partition(
comparisons, lambda c: c.ratio < (1 - delta_threshold)
)
increased, unchanged = partition(
not_decreased, lambda c: c.ratio > (1 + delta_threshold)
)
# sorted partitions
names = [c.name for c in comparisons]
comparisons = dict(zip(names, comparisons))
self.decreased = [
comparisons[c.name] for c in sorted(decreased, key=lambda c: -c.delta)
]
self.increased = [
comparisons[c.name] for c in sorted(increased, key=lambda c: c.delta)
]
self.unchanged = [
comparisons[c.name] for c in sorted(unchanged, key=lambda c: c.name)
]
class ReportFormatter(object):
"""Creates the report from performance test comparison in specified format.
`ReportFormatter` formats the `PerformanceTestResult`s and
`ResultComparison`s provided by `TestComparator` into report table.
Supported formats are: `markdown` (used for displaying benchmark results on
GitHub), `git` and `html`.
"""
def __init__(self, comparator, changes_only, single_table=False):
"""Initialize with `TestComparator` and names of branches."""
self.comparator = comparator
self.changes_only = changes_only
self.single_table = single_table
PERFORMANCE_TEST_RESULT_HEADER = ("TEST", "MIN", "MAX", "MEAN", "MAX_RSS")
RESULT_COMPARISON_HEADER = ("TEST", "OLD", "NEW", "DELTA", "RATIO")
@staticmethod
def header_for(result):
"""Column labels for header row in results table."""
return (
ReportFormatter.PERFORMANCE_TEST_RESULT_HEADER
if isinstance(result, PerformanceTestResult)
else
# isinstance(result, ResultComparison)
ReportFormatter.RESULT_COMPARISON_HEADER
)
@staticmethod
def values(result):
"""Format values from PerformanceTestResult or ResultComparison.
Returns tuple of strings to display in the results table.
"""
return (
(
result.name,
str(result.min_value) if result.min_value is not None else "-",
str(result.max_value) if result.max_value is not None else "-",
str(result.mean) if result.mean is not None else "-",
str(result.max_rss) if result.max_rss is not None else "—",
)
if isinstance(result, PerformanceTestResult)
else
# isinstance(result, ResultComparison)
(
result.name,
str(result.old.min_value) if result.old.min_value is not None else "-",
str(result.new.min_value) if result.new.min_value is not None else "-",
"{0:+.1f}%".format(result.delta),
"{0:.2f}x{1}".format(result.ratio, " (?)" if result.is_dubious else ""),
)
)
def markdown(self):
"""Report results of benchmark comparisons in Markdown format."""
return self._formatted_text(
label_formatter=lambda s: ("**" + s + "**"),
COLUMN_SEPARATOR=" | ",
DELIMITER_ROW=([":---"] + ["---:"] * 4),
SEPARATOR=" | | | | \n",
SECTION="""
<details {3}>
<summary>{0} ({1})</summary>
{2}
</details>
""",
)
def git(self):
"""Report results of benchmark comparisons in 'git' format."""
return self._formatted_text(
label_formatter=lambda s: s.upper(),
COLUMN_SEPARATOR=" ",
DELIMITER_ROW=None,
SEPARATOR="\n",
SECTION="""
{0} ({1}): \n{2}""",
)
def _column_widths(self):
changed = self.comparator.decreased + self.comparator.increased
results = changed if self.changes_only else changed + self.comparator.unchanged
results += self.comparator.added + self.comparator.removed
widths = [
map(len, columns)
for columns in [
ReportFormatter.PERFORMANCE_TEST_RESULT_HEADER,
ReportFormatter.RESULT_COMPARISON_HEADER,
]
+ [ReportFormatter.values(r) for r in results]
]
def max_widths(maximum, widths):
return map(max, zip(maximum, widths))
return list(functools.reduce(max_widths, widths, [0] * 5))
def _formatted_text(
self, label_formatter, COLUMN_SEPARATOR, DELIMITER_ROW, SEPARATOR, SECTION
):
widths = self._column_widths()
self.header_printed = False
def justify_columns(contents):
return [c.ljust(w) for w, c in zip(widths, contents)]
def row(contents):
return (
""
if not contents
else COLUMN_SEPARATOR.join(justify_columns(contents)) + "\n"
)
def header(title, column_labels):
labels = (
column_labels
if not self.single_table
else map(label_formatter, (title,) + column_labels[1:])
)
h = (
("" if not self.header_printed else SEPARATOR)
+ row(labels)
+ (row(DELIMITER_ROW) if not self.header_printed else "")
)
if self.single_table and not self.header_printed:
self.header_printed = True
return h
def format_columns(r, is_strong):
return r if not is_strong else r[:-1] + ("**" + r[-1] + "**",)
def table(title, results, is_strong=False, is_open=False):
if not results:
return ""
rows = [
row(format_columns(ReportFormatter.values(r), is_strong))
for r in results
]
table = header(
title if self.single_table else "",
ReportFormatter.header_for(results[0]),
) + "".join(rows)
return (
table
if self.single_table
else SECTION.format(
title, len(results), table, "open" if is_open else ""
)
)
return "\n" + "".join(
[
table("Regression", self.comparator.decreased, True, True),
table("Improvement", self.comparator.increased, True),
(
""
if self.changes_only
else table("No Changes", self.comparator.unchanged)
),
table("Added", self.comparator.added, is_open=True),
table("Removed", self.comparator.removed, is_open=True),
]
)
HTML = """
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<style>
body {{ font-family: -apple-system, sans-serif; font-size: 14px; }}
table {{ border-spacing: 2px; border-color: gray; border-spacing: 0;
border-collapse: collapse; }}
table tr {{ background-color: #fff; border-top: 1px solid #c6cbd1; }}
table th, table td {{ padding: 6px 13px; border: 1px solid #dfe2e5; }}
th {{ text-align: center; padding-top: 130px; }}
td {{ text-align: right; }}
table td:first-child {{ text-align: left; }}
tr:nth-child(even) {{ background-color: #000000; }}
tr:nth-child(2n) {{ background-color: #f6f8fa; }}
</style>
</head>
<body>
<table>
{0}
</table>
</body>
</html>"""
HTML_HEADER_ROW = """
<tr>
<th align='left'>{0} ({1})</th>
<th align='left'>{2}</th>
<th align='left'>{3}</th>
<th align='left'>{4}</th>
<th align='left'>{5}</th>
</tr>
"""
HTML_ROW = """
<tr>
<td align='left'>{0}</td>
<td align='left'>{1}</td>
<td align='left'>{2}</td>
<td align='left'>{3}</td>
<td align='left'><font color='{4}'>{5}</font></td>
</tr>
"""
def html(self):
"""Report results of benchmark comparisons in HTML format."""
def row(name, old, new, delta, speedup, speedup_color):
return self.HTML_ROW.format(name, old, new, delta, speedup_color, speedup)
def header(contents):
return self.HTML_HEADER_ROW.format(*contents)
def table(title, results, speedup_color):
rows = [
row(*(ReportFormatter.values(r) + (speedup_color,))) for r in results
]
return (
""
if not rows
else header(
(title, len(results)) + ReportFormatter.header_for(results[0])[1:]
)
+ "".join(rows)
)
return self.HTML.format(
"".join(
[
table("Regression", self.comparator.decreased, "red"),
table("Improvement", self.comparator.increased, "green"),
(
""
if self.changes_only
else table("No Changes", self.comparator.unchanged, "black")
),
table("Added", self.comparator.added, ""),
table("Removed", self.comparator.removed, ""),
]
)
)
def parse_args(args):
"""Parse command line arguments and set default values."""
parser = argparse.ArgumentParser(description="Compare Performance tests.")
parser.add_argument(
"--old-file", help="Baseline performance test suite (csv file)", required=True
)
parser.add_argument(
"--new-file", help="New performance test suite (csv file)", required=True
)
parser.add_argument(
"--format",
choices=["markdown", "git", "html"],
help="Output format. Default is markdown.",
default="markdown",
)
parser.add_argument("--output", help="Output file name")
parser.add_argument(
"--changes-only", help="Output only affected tests", action="store_true"
)
parser.add_argument(
"--single-table",
help="Combine data in a single table in git and markdown formats",
action="store_true",
)
parser.add_argument(
"--delta-threshold",
help="Delta threshold. Default 0.05.",
type=float,
default=0.05,
)
return parser.parse_args(args)
def create_report(
old_results,
new_results,
delta_threshold,
format,
changes_only=True,
single_table=True,
):
comparator = TestComparator(old_results, new_results, delta_threshold)
formatter = ReportFormatter(comparator, changes_only, single_table)
formats = {
"markdown": formatter.markdown,
"git": formatter.git,
"html": formatter.html,
}
report = formats[format]()
return report
def main():
"""Compare benchmarks for changes in a formatted report."""
args = parse_args(sys.argv[1:])
report = create_report(
LogParser.results_from_file(args.old_file),
LogParser.results_from_file(args.new_file),
args.delta_threshold,
args.format,
args.changes_only,
args.single_table,
)
print(report)
if args.output:
with open(args.output, "w") as f:
f.write(report)
if __name__ == "__main__":
sys.exit(main())
|