1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
|
//===--- AccessRequests.cpp - AccessLevel and AccessScope Requests --------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/Subsystems.h"
#include "swift/AST/AccessRequests.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Decl.h"
#include "swift/AST/DiagnosticsCommon.h"
#include "swift/AST/Module.h"
#include "swift/AST/NameLookupRequests.h"
#include "swift/AST/SourceFile.h"
#include "swift/AST/Types.h"
#include "llvm/ADT/bit.h"
#include <limits>
using namespace swift;
namespace swift {
// Implement the access-control type zone.
#define SWIFT_TYPEID_ZONE AccessControl
#define SWIFT_TYPEID_HEADER "swift/AST/AccessTypeIDZone.def"
#include "swift/Basic/ImplementTypeIDZone.h"
#undef SWIFT_TYPEID_ZONE
#undef SWIFT_TYPEID_HEADER
}
//----------------------------------------------------------------------------//
// AccessLevel computation
//----------------------------------------------------------------------------//
AccessLevel
AccessLevelRequest::evaluate(Evaluator &evaluator, ValueDecl *D) const {
assert(!D->hasAccess());
// Check if the decl has an explicit access control attribute.
if (auto *AA = D->getAttrs().getAttribute<AccessControlAttr>())
return AA->getAccess();
// Special case for accessors, which inherit the access of their storage.
// decl. A setter attribute can also override this.
if (auto accessor = dyn_cast<AccessorDecl>(D)) {
AbstractStorageDecl *storage = accessor->getStorage();
switch (accessor->getAccessorKind()) {
case AccessorKind::Get:
case AccessorKind::DistributedGet:
case AccessorKind::Address:
case AccessorKind::Read:
return storage->getFormalAccess();
case AccessorKind::Set:
case AccessorKind::MutableAddress:
case AccessorKind::Modify:
return storage->getSetterFormalAccess();
case AccessorKind::WillSet:
case AccessorKind::DidSet:
// These are only needed to synthesize the setter.
return AccessLevel::Private;
case AccessorKind::Init:
// These are only called from within the same module.
return AccessLevel::Internal;
}
}
// Special case for opaque type decls, which inherit the access of their
// naming decls.
if (auto *opaqueType = dyn_cast<OpaqueTypeDecl>(D)) {
if (auto *namingDecl = opaqueType->getNamingDecl())
return namingDecl->getFormalAccess();
}
DeclContext *DC = D->getDeclContext();
// Special case for generic parameters; we just give them a dummy
// access level.
if (isa<GenericTypeParamDecl>(D)) {
return AccessLevel::Internal;
}
// Special case for associated types: inherit access from protocol.
if (auto assocType = dyn_cast<AssociatedTypeDecl>(D)) {
auto prot = assocType->getProtocol();
return std::max(prot->getFormalAccess(), AccessLevel::Internal);
}
// Special case for dtors and enum elements: inherit from container
if (D->getKind() == DeclKind::Destructor ||
D->getKind() == DeclKind::EnumElement) {
if (D->hasInterfaceType() && D->isInvalid()) {
return AccessLevel::Private;
} else {
auto container = dyn_cast<NominalTypeDecl>(DC);
if (D->getKind() == DeclKind::Destructor && !container) {
// A destructor in an extension means @_objcImplementation. An
// @_objcImplementation class's deinit is only called by the ObjC thunk,
// if at all, so it is nonpublic.
return AccessLevel::Internal;
}
return std::max(container->getFormalAccess(), AccessLevel::Internal);
}
}
switch (DC->getContextKind()) {
case DeclContextKind::TopLevelCodeDecl:
case DeclContextKind::SerializedTopLevelCodeDecl:
// Variables declared in a top-level 'guard' statement can be accessed in
// later top-level code.
return AccessLevel::FilePrivate;
case DeclContextKind::AbstractClosureExpr:
case DeclContextKind::SerializedAbstractClosure:
if (isa<ParamDecl>(D)) {
// Closure parameters may need to be accessible to the enclosing
// context, for single-expression closures.
return AccessLevel::FilePrivate;
} else {
return AccessLevel::Private;
}
case DeclContextKind::Initializer:
case DeclContextKind::AbstractFunctionDecl:
case DeclContextKind::SubscriptDecl:
case DeclContextKind::EnumElementDecl:
return AccessLevel::Private;
case DeclContextKind::Package:
return AccessLevel::Package;
case DeclContextKind::Module:
case DeclContextKind::FileUnit:
return AccessLevel::Internal;
case DeclContextKind::GenericTypeDecl: {
auto generic = cast<GenericTypeDecl>(DC);
AccessLevel access = AccessLevel::Internal;
if (isa<ProtocolDecl>(generic))
access = std::max(AccessLevel::FilePrivate, generic->getFormalAccess());
return access;
}
case DeclContextKind::ExtensionDecl:
return cast<ExtensionDecl>(DC)->getDefaultAccessLevel();
case DeclContextKind::MacroDecl:
// There are no declarations inside a macro.
return AccessLevel::Private;
}
llvm_unreachable("unhandled kind");
}
std::optional<AccessLevel> AccessLevelRequest::getCachedResult() const {
auto valueDecl = std::get<0>(getStorage());
if (valueDecl->hasAccess())
return valueDecl->TypeAndAccess.getInt().getValue();
return std::nullopt;
}
void AccessLevelRequest::cacheResult(AccessLevel value) const {
auto valueDecl = std::get<0>(getStorage());
valueDecl->setAccess(value);
}
//----------------------------------------------------------------------------//
// SetterAccessLevel computation
//----------------------------------------------------------------------------//
//
// An AbstractStorageDecl has both its own formal access and also a special
// "setter" formal access like "private(set)" that might override (and lower)
// the normal one, when evaluating the accessibility of mutating accessors.
//
// As this value can be computed, stored, synthesized and set independently from
// the cycle of computation associated with formal accesses, we give it its own
// request.
// In a .swiftinterface file, a stored property with an explicit @_hasStorage
// attribute but no setter is assumed to have originally been a private(set).
static bool isStoredWithPrivateSetter(VarDecl *VD) {
auto *HSA = VD->getAttrs().getAttribute<HasStorageAttr>();
if (!HSA || HSA->isImplicit())
return false;
auto *DC = VD->getDeclContext();
auto *SF = DC->getParentSourceFile();
if (!SF || SF->Kind != SourceFileKind::Interface)
return false;
if (VD->isLet() ||
VD->getParsedAccessor(AccessorKind::Set))
return false;
return true;
}
AccessLevel
SetterAccessLevelRequest::evaluate(Evaluator &evaluator,
AbstractStorageDecl *ASD) const {
assert(!ASD->Accessors.getInt().hasValue());
if (auto *SAA = ASD->getAttrs().getAttribute<SetterAccessAttr>())
return SAA->getAccess();
if (auto *VD = dyn_cast<VarDecl>(ASD))
if (isStoredWithPrivateSetter(VD))
return AccessLevel::Private;
return ASD->getFormalAccess();
}
std::optional<AccessLevel> SetterAccessLevelRequest::getCachedResult() const {
auto abstractStorageDecl = std::get<0>(getStorage());
if (abstractStorageDecl->Accessors.getInt().hasValue())
return abstractStorageDecl->Accessors.getInt().getValue();
return std::nullopt;
}
void SetterAccessLevelRequest::cacheResult(AccessLevel value) const {
auto abstractStorageDecl = std::get<0>(getStorage());
// NB: don't call setSetterAccess here because it drives values through to the
// associated accessors' formalAccess, which we might also be in the middle of
// doing a request for. Reserve setSetterAccess for deserialization &
// clangImporter use.
assert(!abstractStorageDecl->Accessors.getInt().hasValue());
abstractStorageDecl->Accessors.setInt(value);
}
//----------------------------------------------------------------------------//
// DefaultAccessLevel computation
//----------------------------------------------------------------------------//
std::pair<AccessLevel, AccessLevel>
DefaultAndMaxAccessLevelRequest::evaluate(Evaluator &evaluator,
ExtensionDecl *ED) const {
auto &Ctx = ED->getASTContext();
assert(!ED->hasDefaultAccessLevel());
AccessLevel maxAccess = AccessLevel::Public;
if (ED->getGenericParams()) {
// Only check the trailing 'where' requirements. Other requirements come
// from the extended type and have already been checked.
DirectlyReferencedTypeDecls typeDecls =
evaluateOrDefault(Ctx.evaluator, TypeDeclsFromWhereClauseRequest{ED}, {});
std::optional<AccessScope> maxScope = AccessScope::getPublic();
// Try to scope the extension's access to the least public type mentioned
// in its where clause.
for (auto *typeDecl : typeDecls.first) {
if (isa<TypeAliasDecl>(typeDecl) || isa<NominalTypeDecl>(typeDecl)) {
auto scope = typeDecl->getFormalAccessScope(ED->getDeclContext());
maxScope = maxScope->intersectWith(scope);
}
}
// Now include the scope of the extended nominal type.
if (NominalTypeDecl *nominal = ED->getExtendedNominal()) {
auto scope = nominal->getFormalAccessScope(ED->getDeclContext());
maxScope = maxScope->intersectWith(scope);
}
if (!maxScope.has_value()) {
// This is an error case and will be diagnosed elsewhere.
maxAccess = AccessLevel::Public;
} else if (maxScope->isPublic()) {
maxAccess = AccessLevel::Public;
} else if (maxScope->isPackage()) {
maxAccess = AccessLevel::Package;
} else if (isa<ModuleDecl>(maxScope->getDeclContext())) {
maxAccess = AccessLevel::Internal;
} else {
// Because extensions are always at top-level, they should never
// reference declarations not at the top level. (And any such references
// should be diagnosed elsewhere.) This code should not crash if that
// occurs, though.
maxAccess = AccessLevel::FilePrivate;
}
}
AccessLevel defaultAccess;
if (auto *AA = ED->getAttrs().getAttribute<AccessControlAttr>())
defaultAccess = std::max(AA->getAccess(), AccessLevel::FilePrivate);
else
defaultAccess = AccessLevel::Internal;
// Don't set the max or default access level to 'open'. This should
// be diagnosed as invalid anyway.
defaultAccess = std::min(defaultAccess, AccessLevel::Public);
maxAccess = std::min(maxAccess, AccessLevel::Public);
// Normally putting a public member in an internal extension is harmless,
// because that member can never be used elsewhere. But if some of the types
// in the signature are public, it could actually end up getting picked in
// overload resolution. Therefore, we only enforce the maximum access if the
// extension has a 'where' clause.
if (ED->getTrailingWhereClause())
defaultAccess = std::min(defaultAccess, maxAccess);
else
maxAccess = AccessLevel::Public;
return std::make_pair(defaultAccess, maxAccess);
}
// Default and Max access levels are stored combined as a 3-bit bitset. The Bits
// are numbered using the 3 middle values of the AccessLevel enumeration, and
// the combined value is just the bitwise-OR of the bits for Default and Max.
//
// For example, if Max=Internal and Default=FilePrivate, we will see:
//
// 0 1 1
// | | |
// | | [FilePrivate]
// | |
// | [Internal]
// |
// [Public]
//
// This is unambiguous to decode because of the following facts:
//
// - At least one of the bits is set (all-zero means "not yet set").
// - At most two of the bits are set.
// - Max >= Default by definition.
//
// So we decode Max as the last (high) bit that is set, and Default as the first
// (low). And add one to each, to map them back into AccessLevels.
std::optional<std::pair<AccessLevel, AccessLevel>>
DefaultAndMaxAccessLevelRequest::getCachedResult() const {
auto extensionDecl = std::get<0>(getStorage());
if (extensionDecl->hasDefaultAccessLevel()) {
uint8_t Bits = extensionDecl->getDefaultAndMaxAccessLevelBits();
assert(Bits != 0x7 && "more than two bits set for Default and Max");
uint8_t lastSet = Bits == 0 ? std::numeric_limits<uint8_t>::max()
: (llvm::countl_zero(Bits) ^
(std::numeric_limits<uint8_t>::digits - 1));
uint8_t firstSet = Bits == 0 ? std::numeric_limits<uint8_t>::max()
: llvm::countr_zero(Bits);
AccessLevel Max = static_cast<AccessLevel>(lastSet + 1);
AccessLevel Default = static_cast<AccessLevel>(firstSet + 1);
assert(Max >= Default);
return std::make_pair(Default, Max);
}
return std::nullopt;
}
void
DefaultAndMaxAccessLevelRequest::cacheResult(
std::pair<AccessLevel, AccessLevel> value) const {
auto extensionDecl = std::get<0>(getStorage());
extensionDecl->setDefaultAndMaxAccessLevelBits(value.first, value.second);
assert(getCachedResult().value().first == value.first);
assert(getCachedResult().value().second == value.second);
}
// Define request evaluation functions for each of the access requests.
static AbstractRequestFunction *accessRequestFunctions[] = {
#define SWIFT_REQUEST(Zone, Name, Sig, Caching, LocOptions) \
reinterpret_cast<AbstractRequestFunction *>(&Name::evaluateRequest),
#include "swift/AST/AccessTypeIDZone.def"
#undef SWIFT_REQUEST
};
void swift::registerAccessRequestFunctions(Evaluator &evaluator) {
evaluator.registerRequestFunctions(Zone::AccessControl,
accessRequestFunctions);
}
|