1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
|
//===--- AutoDiff.cpp - Swift automatic differentiation utilities ---------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2019 - 2020 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/AST/AutoDiff.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/ImportCache.h"
#include "swift/AST/Module.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/AST/Types.h"
using namespace swift;
AutoDiffDerivativeFunctionKind::AutoDiffDerivativeFunctionKind(
StringRef string) {
std::optional<innerty> result =
llvm::StringSwitch<std::optional<innerty>>(string)
.Case("jvp", JVP)
.Case("vjp", VJP);
assert(result && "Invalid string");
rawValue = *result;
}
NormalDifferentiableFunctionTypeComponent::
NormalDifferentiableFunctionTypeComponent(
AutoDiffDerivativeFunctionKind kind) {
switch (kind) {
case AutoDiffDerivativeFunctionKind::JVP:
rawValue = JVP;
return;
case AutoDiffDerivativeFunctionKind::VJP:
rawValue = VJP;
return;
}
}
NormalDifferentiableFunctionTypeComponent::
NormalDifferentiableFunctionTypeComponent(StringRef string) {
std::optional<innerty> result =
llvm::StringSwitch<std::optional<innerty>>(string)
.Case("original", Original)
.Case("jvp", JVP)
.Case("vjp", VJP);
assert(result && "Invalid string");
rawValue = *result;
}
std::optional<AutoDiffDerivativeFunctionKind>
NormalDifferentiableFunctionTypeComponent::getAsDerivativeFunctionKind() const {
switch (rawValue) {
case Original:
return std::nullopt;
case JVP:
return {AutoDiffDerivativeFunctionKind::JVP};
case VJP:
return {AutoDiffDerivativeFunctionKind::VJP};
}
llvm_unreachable("invalid derivative kind");
}
LinearDifferentiableFunctionTypeComponent::
LinearDifferentiableFunctionTypeComponent(StringRef string) {
std::optional<innerty> result =
llvm::StringSwitch<std::optional<innerty>>(string)
.Case("original", Original)
.Case("transpose", Transpose);
assert(result && "Invalid string");
rawValue = *result;
}
DifferentiabilityWitnessFunctionKind::DifferentiabilityWitnessFunctionKind(
StringRef string) {
std::optional<innerty> result =
llvm::StringSwitch<std::optional<innerty>>(string)
.Case("jvp", JVP)
.Case("vjp", VJP)
.Case("transpose", Transpose);
assert(result && "Invalid string");
rawValue = *result;
}
std::optional<AutoDiffDerivativeFunctionKind>
DifferentiabilityWitnessFunctionKind::getAsDerivativeFunctionKind() const {
switch (rawValue) {
case JVP:
return {AutoDiffDerivativeFunctionKind::JVP};
case VJP:
return {AutoDiffDerivativeFunctionKind::VJP};
case Transpose:
return std::nullopt;
}
llvm_unreachable("invalid derivative kind");
}
void AutoDiffConfig::print(llvm::raw_ostream &s) const {
s << "(parameters=";
parameterIndices->print(s);
s << " results=";
resultIndices->print(s);
if (derivativeGenericSignature) {
s << " where=";
derivativeGenericSignature->print(s);
}
s << ')';
}
bool swift::isDifferentiableProgrammingEnabled(SourceFile &SF) {
auto &ctx = SF.getASTContext();
// Return true if differentiable programming is explicitly enabled.
if (ctx.LangOpts.hasFeature(Feature::DifferentiableProgramming))
return true;
// Otherwise, return true iff the `_Differentiation` module is imported in
// the given source file.
bool importsDifferentiationModule = false;
for (auto import : namelookup::getAllImports(&SF)) {
if (import.importedModule->getName() == ctx.Id_Differentiation) {
importsDifferentiationModule = true;
break;
}
}
return importsDifferentiationModule;
}
// TODO(TF-874): This helper is inefficient and should be removed. Unwrapping at
// most once (for curried method types) is sufficient.
static void unwrapCurryLevels(AnyFunctionType *fnTy,
SmallVectorImpl<AnyFunctionType *> &results) {
while (fnTy != nullptr) {
results.push_back(fnTy);
fnTy = fnTy->getResult()->getAs<AnyFunctionType>();
}
}
static unsigned countNumFlattenedElementTypes(Type type) {
if (auto *tupleTy = type->getCanonicalType()->getAs<TupleType>())
return accumulate(tupleTy->getElementTypes(), 0,
[&](unsigned num, Type type) {
return num + countNumFlattenedElementTypes(type);
});
return 1;
}
// TODO(TF-874): Simplify this helper and remove the `reverseCurryLevels` flag.
void AnyFunctionType::getSubsetParameters(
IndexSubset *parameterIndices,
SmallVectorImpl<AnyFunctionType::Param> &results, bool reverseCurryLevels) {
SmallVector<AnyFunctionType *, 2> curryLevels;
unwrapCurryLevels(this, curryLevels);
SmallVector<unsigned, 2> curryLevelParameterIndexOffsets(curryLevels.size());
unsigned currentOffset = 0;
for (unsigned curryLevelIndex : llvm::reverse(indices(curryLevels))) {
curryLevelParameterIndexOffsets[curryLevelIndex] = currentOffset;
currentOffset += curryLevels[curryLevelIndex]->getNumParams();
}
// If `reverseCurryLevels` is true, reverse the curry levels and offsets.
if (reverseCurryLevels) {
std::reverse(curryLevels.begin(), curryLevels.end());
std::reverse(curryLevelParameterIndexOffsets.begin(),
curryLevelParameterIndexOffsets.end());
}
for (unsigned curryLevelIndex : indices(curryLevels)) {
auto *curryLevel = curryLevels[curryLevelIndex];
unsigned parameterIndexOffset =
curryLevelParameterIndexOffsets[curryLevelIndex];
for (unsigned paramIndex : range(curryLevel->getNumParams()))
if (parameterIndices->contains(parameterIndexOffset + paramIndex))
results.push_back(curryLevel->getParams()[paramIndex]);
}
}
void autodiff::getFunctionSemanticResults(
const AnyFunctionType *functionType,
const IndexSubset *parameterIndices,
SmallVectorImpl<AutoDiffSemanticFunctionResultType> &resultTypes) {
auto &ctx = functionType->getASTContext();
// Collect formal result type as a semantic result, unless it is
// `Void`.
auto formalResultType = functionType->getResult();
if (auto *resultFunctionType =
functionType->getResult()->getAs<AnyFunctionType>())
formalResultType = resultFunctionType->getResult();
unsigned resultIdx = 0;
if (!formalResultType->isEqual(ctx.TheEmptyTupleType)) {
// Separate tuple elements into individual results.
if (formalResultType->is<TupleType>()) {
for (auto elt : formalResultType->castTo<TupleType>()->getElements()) {
resultTypes.emplace_back(elt.getType(), resultIdx++,
/*isParameter*/ false);
}
} else {
resultTypes.emplace_back(formalResultType, resultIdx++,
/*isParameter*/ false);
}
}
// Collect wrt semantic result (`inout`) parameters as
// semantic results
auto collectSemanticResults = [&](const AnyFunctionType *functionType,
unsigned curryOffset = 0) {
for (auto paramAndIndex : enumerate(functionType->getParams())) {
if (!paramAndIndex.value().isAutoDiffSemanticResult())
continue;
unsigned idx = paramAndIndex.index() + curryOffset;
assert(idx < parameterIndices->getCapacity() &&
"invalid parameter index");
if (parameterIndices->contains(idx))
resultTypes.emplace_back(paramAndIndex.value().getPlainType(),
resultIdx, /*isParameter*/ true);
resultIdx += 1;
}
};
if (auto *resultFnType =
functionType->getResult()->getAs<AnyFunctionType>()) {
// Here we assume that the input is a function type with curried `Self`
assert(functionType->getNumParams() == 1 && "unexpected function type");
collectSemanticResults(resultFnType);
collectSemanticResults(functionType, resultFnType->getNumParams());
} else
collectSemanticResults(functionType);
}
IndexSubset *
autodiff::getFunctionSemanticResultIndices(const AnyFunctionType *functionType,
const IndexSubset *parameterIndices) {
auto &ctx = functionType->getASTContext();
SmallVector<AutoDiffSemanticFunctionResultType, 1> semanticResults;
autodiff::getFunctionSemanticResults(functionType, parameterIndices,
semanticResults);
SmallVector<unsigned> resultIndices;
unsigned cap = 0;
for (const auto& result : semanticResults) {
resultIndices.push_back(result.index);
cap = std::max(cap, result.index + 1U);
}
return IndexSubset::get(ctx, cap, resultIndices);
}
IndexSubset *
autodiff::getFunctionSemanticResultIndices(const AbstractFunctionDecl *AFD,
const IndexSubset *parameterIndices) {
return getFunctionSemanticResultIndices(AFD->getInterfaceType()->castTo<AnyFunctionType>(),
parameterIndices);
}
// TODO(TF-874): Simplify this helper. See TF-874 for WIP.
IndexSubset *
autodiff::getLoweredParameterIndices(IndexSubset *parameterIndices,
AnyFunctionType *functionType) {
SmallVector<AnyFunctionType *, 2> curryLevels;
unwrapCurryLevels(functionType, curryLevels);
// Compute the lowered sizes of all AST parameter types.
SmallVector<unsigned, 8> paramLoweredSizes;
unsigned totalLoweredSize = 0;
auto addLoweredParamInfo = [&](Type type) {
unsigned paramLoweredSize = countNumFlattenedElementTypes(type);
paramLoweredSizes.push_back(paramLoweredSize);
totalLoweredSize += paramLoweredSize;
};
for (auto *curryLevel : llvm::reverse(curryLevels))
for (auto ¶m : curryLevel->getParams())
addLoweredParamInfo(param.getPlainType());
// Build lowered SIL parameter indices by setting the range of bits that
// corresponds to each "set" AST parameter.
llvm::SmallVector<unsigned, 8> loweredSILIndices;
unsigned currentBitIndex = 0;
for (unsigned i : range(parameterIndices->getCapacity())) {
auto paramLoweredSize = paramLoweredSizes[i];
if (parameterIndices->contains(i)) {
auto indices = range(currentBitIndex, currentBitIndex + paramLoweredSize);
loweredSILIndices.append(indices.begin(), indices.end());
}
currentBitIndex += paramLoweredSize;
}
return IndexSubset::get(functionType->getASTContext(), totalLoweredSize,
loweredSILIndices);
}
/// Collects the semantic results of the given function type in
/// `originalResults`. The semantic results are formal results followed by
/// semantic result parameters, in type order.
void
autodiff::getSemanticResults(SILFunctionType *functionType,
IndexSubset *parameterIndices,
SmallVectorImpl<SILResultInfo> &originalResults) {
// Collect original formal results.
originalResults.append(functionType->getResults().begin(),
functionType->getResults().end());
// Collect original semantic result parameters.
for (auto i : range(functionType->getNumParameters())) {
auto param = functionType->getParameters()[i];
if (!param.isAutoDiffSemanticResult())
continue;
if (!param.hasOption(SILParameterInfo::NotDifferentiable))
originalResults.emplace_back(param.getInterfaceType(), ResultConvention::Indirect);
}
}
GenericSignature autodiff::getConstrainedDerivativeGenericSignature(
SILFunctionType *originalFnTy,
IndexSubset *diffParamIndices, IndexSubset *diffResultIndices,
GenericSignature derivativeGenSig, LookupConformanceFn lookupConformance,
bool isTranspose) {
if (!derivativeGenSig)
derivativeGenSig = originalFnTy->getInvocationGenericSignature();
if (!derivativeGenSig)
return nullptr;
auto &ctx = originalFnTy->getASTContext();
auto *diffableProto = ctx.getProtocol(KnownProtocolKind::Differentiable);
SmallVector<Requirement, 4> requirements;
auto addRequirement = [&](CanType type) {
Requirement req(RequirementKind::Conformance, type,
diffableProto->getDeclaredInterfaceType());
requirements.push_back(req);
if (isTranspose) {
// Require linearity parameters to additionally satisfy
// `Self == Self.TangentVector`.
auto tanSpace = type->getAutoDiffTangentSpace(lookupConformance);
auto tanType = tanSpace->getCanonicalType();
Requirement req(RequirementKind::SameType, type, tanType);
requirements.push_back(req);
}
};
// Require differentiability parameters to conform to `Differentiable`.
for (unsigned paramIdx : diffParamIndices->getIndices()) {
auto paramType = originalFnTy->getParameters()[paramIdx].getInterfaceType();
addRequirement(paramType);
}
// Require differentiability results to conform to `Differentiable`.
SmallVector<SILResultInfo, 2> originalResults;
getSemanticResults(originalFnTy, diffParamIndices, originalResults);
for (unsigned resultIdx : diffResultIndices->getIndices()) {
// Handle formal original result.
if (resultIdx < originalFnTy->getNumResults()) {
auto resultType = originalResults[resultIdx].getInterfaceType();
addRequirement(resultType);
continue;
}
// Handle original semantic result parameters.
// FIXME: Constraint generic yields when we will start supporting them
auto resultParamIndex = resultIdx - originalFnTy->getNumResults();
auto resultParamIt = std::next(
originalFnTy->getAutoDiffSemanticResultsParameters().begin(),
resultParamIndex);
auto paramIndex =
std::distance(originalFnTy->getParameters().begin(), &*resultParamIt);
addRequirement(originalFnTy->getParameters()[paramIndex].getInterfaceType());
}
return buildGenericSignature(ctx, derivativeGenSig,
/*addedGenericParams*/ {},
std::move(requirements),
/*allowInverses=*/true);
}
// Given the rest of a `Builtin.applyDerivative_{jvp|vjp}` or
// `Builtin.applyTranspose` operation name, attempts to parse the arity and
// throwing-ness from the operation name. Modifies the operation name argument
// in place as substrings get dropped.
static void parseAutoDiffBuiltinCommonConfig(
StringRef &operationName, unsigned &arity, bool &throws) {
// Parse '_arity'.
constexpr char arityPrefix[] = "_arity";
if (operationName.starts_with(arityPrefix)) {
operationName = operationName.drop_front(sizeof(arityPrefix) - 1);
auto arityStr = operationName.take_while(llvm::isDigit);
operationName = operationName.drop_front(arityStr.size());
auto converted = llvm::to_integer(arityStr, arity);
assert(converted); (void)converted;
assert(arity > 0);
} else {
arity = 1;
}
// Parse '_throws'.
constexpr char throwsPrefix[] = "_throws";
if (operationName.starts_with(throwsPrefix)) {
operationName = operationName.drop_front(sizeof(throwsPrefix) - 1);
throws = true;
} else {
throws = false;
}
}
bool autodiff::getBuiltinApplyDerivativeConfig(
StringRef operationName, AutoDiffDerivativeFunctionKind &kind,
unsigned &arity, bool &throws) {
constexpr char prefix[] = "applyDerivative";
if (!operationName.starts_with(prefix))
return false;
operationName = operationName.drop_front(sizeof(prefix) - 1);
// Parse 'jvp' or 'vjp'.
constexpr char jvpPrefix[] = "_jvp";
constexpr char vjpPrefix[] = "_vjp";
if (operationName.starts_with(jvpPrefix))
kind = AutoDiffDerivativeFunctionKind::JVP;
else if (operationName.starts_with(vjpPrefix))
kind = AutoDiffDerivativeFunctionKind::VJP;
operationName = operationName.drop_front(sizeof(jvpPrefix) - 1);
parseAutoDiffBuiltinCommonConfig(operationName, arity, throws);
return operationName.empty();
}
bool autodiff::getBuiltinApplyTransposeConfig(
StringRef operationName, unsigned &arity, bool &throws) {
constexpr char prefix[] = "applyTranspose";
if (!operationName.starts_with(prefix))
return false;
operationName = operationName.drop_front(sizeof(prefix) - 1);
parseAutoDiffBuiltinCommonConfig(operationName, arity, throws);
return operationName.empty();
}
bool autodiff::getBuiltinDifferentiableOrLinearFunctionConfig(
StringRef operationName, unsigned &arity, bool &throws) {
constexpr char differentiablePrefix[] = "differentiableFunction";
constexpr char linearPrefix[] = "linearFunction";
if (operationName.starts_with(differentiablePrefix))
operationName = operationName.drop_front(sizeof(differentiablePrefix) - 1);
else if (operationName.starts_with(linearPrefix))
operationName = operationName.drop_front(sizeof(linearPrefix) - 1);
else
return false;
parseAutoDiffBuiltinCommonConfig(operationName, arity, throws);
return operationName.empty();
}
GenericSignature autodiff::getDifferentiabilityWitnessGenericSignature(
GenericSignature origGenSig, GenericSignature derivativeGenSig) {
// If there is no derivative generic signature, return the original generic
// signature.
if (!derivativeGenSig)
return origGenSig;
// If derivative generic signature has all concrete generic parameters and is
// equal to the original generic signature, return `nullptr`.
auto derivativeCanGenSig = derivativeGenSig.getCanonicalSignature();
auto origCanGenSig = origGenSig.getCanonicalSignature();
if (origCanGenSig == derivativeCanGenSig &&
derivativeCanGenSig->areAllParamsConcrete())
return GenericSignature();
// Otherwise, return the derivative generic signature.
return derivativeGenSig;
}
Type TangentSpace::getType() const {
switch (kind) {
case Kind::TangentVector:
return value.tangentVectorType;
case Kind::Tuple:
return value.tupleType;
}
llvm_unreachable("invalid tangent space kind");
}
CanType TangentSpace::getCanonicalType() const {
return getType()->getCanonicalType();
}
NominalTypeDecl *TangentSpace::getNominal() const {
assert(isTangentVector());
return getTangentVector()->getNominalOrBoundGenericNominal();
}
const char DerivativeFunctionTypeError::ID = '\0';
void DerivativeFunctionTypeError::log(raw_ostream &OS) const {
OS << "original function type '";
functionType->print(OS);
OS << "' ";
switch (kind) {
case Kind::NoSemanticResults:
OS << "has no semantic results ('Void' result)";
break;
case Kind::NoDifferentiabilityParameters:
OS << "has no differentiability parameters";
break;
case Kind::NonDifferentiableDifferentiabilityParameter: {
auto nonDiffParam = getNonDifferentiableTypeAndIndex();
OS << "has non-differentiable differentiability parameter "
<< nonDiffParam.second << ": " << nonDiffParam.first;
break;
}
case Kind::NonDifferentiableResult: {
auto nonDiffResult = getNonDifferentiableTypeAndIndex();
OS << "has non-differentiable result " << nonDiffResult.second << ": "
<< nonDiffResult.first;
break;
}
}
}
inline llvm::raw_ostream &operator<<(llvm::raw_ostream &os,
const DeclNameRefWithLoc &name) {
os << name.Name;
if (auto accessorKind = name.AccessorKind)
os << '.' << getAccessorLabel(*accessorKind);
return os;
}
bool swift::operator==(const TangentPropertyInfo::Error &lhs,
const TangentPropertyInfo::Error &rhs) {
if (lhs.kind != rhs.kind)
return false;
switch (lhs.kind) {
case TangentPropertyInfo::Error::Kind::NoDerivativeOriginalProperty:
case TangentPropertyInfo::Error::Kind::NominalParentNotDifferentiable:
case TangentPropertyInfo::Error::Kind::OriginalPropertyNotDifferentiable:
case TangentPropertyInfo::Error::Kind::ParentTangentVectorNotStruct:
case TangentPropertyInfo::Error::Kind::TangentPropertyNotFound:
case TangentPropertyInfo::Error::Kind::TangentPropertyNotStored:
return true;
case TangentPropertyInfo::Error::Kind::TangentPropertyWrongType:
return lhs.getType()->isEqual(rhs.getType());
}
llvm_unreachable("unhandled tangent property!");
}
void swift::simple_display(llvm::raw_ostream &os, TangentPropertyInfo info) {
os << "{ ";
os << "tangent property: "
<< (info.tangentProperty ? info.tangentProperty->printRef() : "null");
if (info.error) {
os << ", error: ";
switch (info.error->kind) {
case TangentPropertyInfo::Error::Kind::NoDerivativeOriginalProperty:
os << "'@noDerivative' original property has no tangent property";
break;
case TangentPropertyInfo::Error::Kind::NominalParentNotDifferentiable:
os << "nominal parent does not conform to 'Differentiable'";
break;
case TangentPropertyInfo::Error::Kind::OriginalPropertyNotDifferentiable:
os << "original property type does not conform to 'Differentiable'";
break;
case TangentPropertyInfo::Error::Kind::ParentTangentVectorNotStruct:
os << "'TangentVector' type is not a struct";
break;
case TangentPropertyInfo::Error::Kind::TangentPropertyNotFound:
os << "'TangentVector' struct does not have stored property with the "
"same name as the original property";
break;
case TangentPropertyInfo::Error::Kind::TangentPropertyWrongType:
os << "tangent property's type is not equal to the original property's "
"'TangentVector' type";
break;
case TangentPropertyInfo::Error::Kind::TangentPropertyNotStored:
os << "'TangentVector' property '" << info.tangentProperty->getName()
<< "' is not a stored property";
break;
}
}
os << " }";
}
TangentPropertyInfo TangentStoredPropertyRequest::evaluate(
Evaluator &evaluator, VarDecl *originalField, CanType baseType) const {
assert(((originalField->hasStorage() && originalField->isInstanceMember()) ||
originalField->hasAttachedPropertyWrapper()) &&
"Expected a stored property or a property-wrapped property");
auto *parentDC = originalField->getDeclContext();
assert(parentDC->isTypeContext());
auto *moduleDecl = originalField->getModuleContext();
auto parentTan =
baseType->getAutoDiffTangentSpace(LookUpConformanceInModule(moduleDecl));
// Error if parent nominal type does not conform to `Differentiable`.
if (!parentTan) {
return TangentPropertyInfo(
TangentPropertyInfo::Error::Kind::NominalParentNotDifferentiable);
}
// Error if original stored property is `@noDerivative`.
if (originalField->getAttrs().hasAttribute<NoDerivativeAttr>()) {
return TangentPropertyInfo(
TangentPropertyInfo::Error::Kind::NoDerivativeOriginalProperty);
}
// Error if original property's type does not conform to `Differentiable`.
auto originalFieldType = baseType->getTypeOfMember(
originalField->getModuleContext(), originalField);
auto originalFieldTan = originalFieldType->getAutoDiffTangentSpace(
LookUpConformanceInModule(moduleDecl));
if (!originalFieldTan) {
return TangentPropertyInfo(
TangentPropertyInfo::Error::Kind::OriginalPropertyNotDifferentiable);
}
// Get the parent `TangentVector` type.
auto parentTanType =
baseType->getAutoDiffTangentSpace(LookUpConformanceInModule(moduleDecl))
->getType();
auto *parentTanStruct = parentTanType->getStructOrBoundGenericStruct();
// Error if parent `TangentVector` is not a struct.
if (!parentTanStruct) {
return TangentPropertyInfo(
TangentPropertyInfo::Error::Kind::ParentTangentVectorNotStruct);
}
// Find the corresponding field in the tangent space.
VarDecl *tanField = nullptr;
// If `TangentVector` is the original struct, then the tangent property is the
// original property.
if (parentTanStruct == parentDC->getSelfStructDecl()) {
tanField = originalField;
}
// Otherwise, look up the field by name.
else {
auto tanFieldLookup =
parentTanStruct->lookupDirect(originalField->getName());
llvm::erase_if(tanFieldLookup,
[](ValueDecl *v) { return !isa<VarDecl>(v); });
// Error if tangent property could not be found.
if (tanFieldLookup.empty()) {
return TangentPropertyInfo(
TangentPropertyInfo::Error::Kind::TangentPropertyNotFound);
}
tanField = cast<VarDecl>(tanFieldLookup.front());
}
// Error if tangent property's type is not equal to the original property's
// `TangentVector` type.
auto originalFieldTanType = originalFieldTan->getType();
auto tanFieldType =
parentTanType->getTypeOfMember(tanField->getModuleContext(), tanField);
if (!originalFieldTanType->isEqual(tanFieldType)) {
return TangentPropertyInfo(
TangentPropertyInfo::Error::Kind::TangentPropertyWrongType,
originalFieldTanType);
}
// Error if tangent property is not a stored property.
if (!tanField->hasStorage()) {
return TangentPropertyInfo(
TangentPropertyInfo::Error::Kind::TangentPropertyNotStored);
}
// Otherwise, tangent property is valid.
return TangentPropertyInfo(tanField);
}
void SILDifferentiabilityWitnessKey::print(llvm::raw_ostream &s) const {
s << "(original=@" << originalFunctionName << " kind=";
switch (kind) {
case DifferentiabilityKind::NonDifferentiable:
s << "nondifferentiable";
break;
case DifferentiabilityKind::Forward:
s << "forward";
break;
case DifferentiabilityKind::Reverse:
s << "reverse";
break;
case DifferentiabilityKind::Normal:
s << "normal";
break;
case DifferentiabilityKind::Linear:
s << "linear";
break;
}
s << " config=" << config << ')';
}
Demangle::AutoDiffFunctionKind Demangle::getAutoDiffFunctionKind(
AutoDiffDerivativeFunctionKind kind) {
switch (kind) {
case AutoDiffDerivativeFunctionKind::JVP:
return Demangle::AutoDiffFunctionKind::JVP;
case AutoDiffDerivativeFunctionKind::VJP: return Demangle::AutoDiffFunctionKind::VJP;
}
}
Demangle::AutoDiffFunctionKind Demangle::getAutoDiffFunctionKind(
AutoDiffLinearMapKind kind) {
switch (kind) {
case AutoDiffLinearMapKind::Differential:
return Demangle::AutoDiffFunctionKind::Differential;
case AutoDiffLinearMapKind::Pullback:
return Demangle::AutoDiffFunctionKind::Pullback;
}
}
Demangle::MangledDifferentiabilityKind
Demangle::getMangledDifferentiabilityKind(DifferentiabilityKind kind) {
using namespace Demangle;
switch (kind) {
#define SIMPLE_CASE(CASE) \
case DifferentiabilityKind::CASE: return MangledDifferentiabilityKind::CASE;
SIMPLE_CASE(NonDifferentiable)
SIMPLE_CASE(Forward)
SIMPLE_CASE(Reverse)
SIMPLE_CASE(Normal)
SIMPLE_CASE(Linear)
#undef SIMPLE_CASE
}
}
|