1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
|
//===--- Availability.cpp - Swift Availability Structures -----------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file defines data structures for API availability.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/Availability.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Attr.h"
#include "swift/AST/Decl.h"
#include "swift/AST/PlatformKind.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/AST/TypeWalker.h"
#include "swift/AST/Types.h"
#include "swift/Basic/Platform.h"
#include "swift/ClangImporter/ClangModule.h"
#include <map>
using namespace swift;
AvailabilityContext AvailabilityContext::forDeploymentTarget(const ASTContext &Ctx) {
return AvailabilityContext(
VersionRange::allGTE(Ctx.LangOpts.getMinPlatformVersion()));
}
AvailabilityContext AvailabilityContext::forInliningTarget(const ASTContext &Ctx) {
return AvailabilityContext(
VersionRange::allGTE(Ctx.LangOpts.MinimumInliningTargetVersion));
}
AvailabilityContext AvailabilityContext::forRuntimeTarget(const ASTContext &Ctx) {
return AvailabilityContext(
VersionRange::allGTE(Ctx.LangOpts.RuntimeVersion));
}
namespace {
/// The inferred availability required to access a group of declarations
/// on a single platform.
struct InferredAvailability {
PlatformAgnosticAvailabilityKind PlatformAgnostic
= PlatformAgnosticAvailabilityKind::None;
std::optional<llvm::VersionTuple> Introduced;
std::optional<llvm::VersionTuple> Deprecated;
std::optional<llvm::VersionTuple> Obsoleted;
bool IsSPI = false;
};
/// The type of a function that merges two version tuples.
typedef const llvm::VersionTuple &(*MergeFunction)(
const llvm::VersionTuple &, const llvm::VersionTuple &);
} // end anonymous namespace
/// Apply a merge function to two optional versions, returning the result
/// in Inferred.
static bool
mergeIntoInferredVersion(const std::optional<llvm::VersionTuple> &Version,
std::optional<llvm::VersionTuple> &Inferred,
MergeFunction Merge) {
if (Version.has_value()) {
if (Inferred.has_value()) {
Inferred = Merge(Inferred.value(), Version.value());
return *Inferred == *Version;
} else {
Inferred = Version;
return true;
}
}
return false;
}
/// Merge an attribute's availability with an existing inferred availability
/// so that the new inferred availability is at least as available as
/// the attribute requires.
static void mergeWithInferredAvailability(const AvailableAttr *Attr,
InferredAvailability &Inferred) {
Inferred.PlatformAgnostic
= static_cast<PlatformAgnosticAvailabilityKind>(
std::max(static_cast<unsigned>(Inferred.PlatformAgnostic),
static_cast<unsigned>(Attr->getPlatformAgnosticAvailability())));
// The merge of two introduction versions is the maximum of the two versions.
if (mergeIntoInferredVersion(Attr->Introduced, Inferred.Introduced, std::max)) {
Inferred.IsSPI = Attr->IsSPI;
}
// The merge of deprecated and obsoleted versions takes the minimum.
mergeIntoInferredVersion(Attr->Deprecated, Inferred.Deprecated, std::min);
mergeIntoInferredVersion(Attr->Obsoleted, Inferred.Obsoleted, std::min);
}
/// Create an implicit availability attribute for the given platform
/// and with the inferred availability.
static AvailableAttr *createAvailableAttr(PlatformKind Platform,
const InferredAvailability &Inferred,
StringRef Message,
StringRef Rename,
ValueDecl *RenameDecl,
ASTContext &Context) {
// If there is no information that would go into the availability attribute,
// don't create one.
if (Inferred.PlatformAgnostic == PlatformAgnosticAvailabilityKind::None &&
!Inferred.Introduced && !Inferred.Deprecated && !Inferred.Obsoleted &&
Message.empty() && Rename.empty() && !RenameDecl)
return nullptr;
llvm::VersionTuple Introduced =
Inferred.Introduced.value_or(llvm::VersionTuple());
llvm::VersionTuple Deprecated =
Inferred.Deprecated.value_or(llvm::VersionTuple());
llvm::VersionTuple Obsoleted =
Inferred.Obsoleted.value_or(llvm::VersionTuple());
return new (Context)
AvailableAttr(SourceLoc(), SourceRange(), Platform,
Message, Rename, RenameDecl,
Introduced, /*IntroducedRange=*/SourceRange(),
Deprecated, /*DeprecatedRange=*/SourceRange(),
Obsoleted, /*ObsoletedRange=*/SourceRange(),
Inferred.PlatformAgnostic, /*Implicit=*/true,
Inferred.IsSPI);
}
void AvailabilityInference::applyInferredAvailableAttrs(
Decl *ToDecl, ArrayRef<const Decl *> InferredFromDecls,
ASTContext &Context) {
// Let the new AvailabilityAttr inherit the message and rename.
// The first encountered message / rename will win; this matches the
// behaviour of diagnostics for 'non-inherited' AvailabilityAttrs.
StringRef Message;
StringRef Rename;
ValueDecl *RenameDecl = nullptr;
// Iterate over the declarations and infer required availability on
// a per-platform basis.
std::map<PlatformKind, InferredAvailability> Inferred;
for (const Decl *D : InferredFromDecls) {
llvm::SmallVector<const AvailableAttr *, 8> MergedAttrs;
do {
llvm::SmallVector<const AvailableAttr *, 8> PendingAttrs;
for (const DeclAttribute *Attr : D->getAttrs()) {
auto *AvAttr = dyn_cast<AvailableAttr>(Attr);
if (!AvAttr || AvAttr->isInvalid())
continue;
// Skip an attribute from an outer declaration if it is for a platform
// that was already handled implicitly by an attribute from an inner
// declaration.
if (llvm::any_of(MergedAttrs,
[&AvAttr](const AvailableAttr *MergedAttr) {
return inheritsAvailabilityFromPlatform(
AvAttr->Platform, MergedAttr->Platform);
}))
continue;
mergeWithInferredAvailability(AvAttr, Inferred[AvAttr->Platform]);
PendingAttrs.push_back(AvAttr);
if (Message.empty() && !AvAttr->Message.empty())
Message = AvAttr->Message;
if (Rename.empty() && !AvAttr->Rename.empty()) {
Rename = AvAttr->Rename;
RenameDecl = AvAttr->RenameDecl;
}
}
MergedAttrs.append(PendingAttrs);
// Walk up the enclosing declaration hierarchy to make sure we aren't
// missing any inherited attributes.
D = AvailabilityInference::parentDeclForInferredAvailability(D);
} while (D);
}
DeclAttributes &Attrs = ToDecl->getAttrs();
// Create an availability attribute for each observed platform and add
// to ToDecl.
for (auto &Pair : Inferred) {
auto *Attr = createAvailableAttr(Pair.first, Pair.second, Message,
Rename, RenameDecl, Context);
if (Attr)
Attrs.add(Attr);
}
}
/// Returns the decl that should be considered the parent decl of the given decl
/// when looking for inherited availability annotations.
const Decl *
AvailabilityInference::parentDeclForInferredAvailability(const Decl *D) {
if (auto *AD = dyn_cast<AccessorDecl>(D))
return AD->getStorage();
if (auto *ED = dyn_cast<ExtensionDecl>(D)) {
if (auto *NTD = ED->getExtendedNominal())
return NTD;
}
if (auto *PBD = dyn_cast<PatternBindingDecl>(D)) {
if (PBD->getNumPatternEntries() < 1)
return nullptr;
return PBD->getAnchoringVarDecl(0);
}
if (auto *OTD = dyn_cast<OpaqueTypeDecl>(D))
return OTD->getNamingDecl();
// Clang decls may be inaccurately parented rdar://53956555
if (D->hasClangNode())
return nullptr;
// Availability is inherited from the enclosing context.
return D->getDeclContext()->getInnermostDeclarationDeclContext();
}
/// Returns true if the introduced version in \p newAttr should be used instead
/// of the introduced version in \p prevAttr when both are attached to the same
/// declaration and refer to the active platform.
static bool isBetterThan(const AvailableAttr *newAttr,
const AvailableAttr *prevAttr) {
assert(newAttr);
// If there is no prevAttr, newAttr of course wins.
if (!prevAttr)
return true;
// If they belong to the same platform, the one that introduces later wins.
if (prevAttr->Platform == newAttr->Platform)
return prevAttr->Introduced.value() < newAttr->Introduced.value();
// If the new attribute's platform inherits from the old one, it wins.
return inheritsAvailabilityFromPlatform(newAttr->Platform,
prevAttr->Platform);
}
static const clang::DarwinSDKInfo::RelatedTargetVersionMapping *
getFallbackVersionMapping(const ASTContext &Ctx,
clang::DarwinSDKInfo::OSEnvPair Kind) {
auto *SDKInfo = Ctx.getDarwinSDKInfo();
if (SDKInfo)
return SDKInfo->getVersionMapping(Kind);
return Ctx.getAuxiliaryDarwinPlatformRemapInfo(Kind);
}
static std::optional<clang::VersionTuple>
getRemappedIntroducedVersionForFallbackPlatform(
const ASTContext &Ctx, const llvm::VersionTuple &Version) {
const auto *Mapping = getFallbackVersionMapping(
Ctx, clang::DarwinSDKInfo::OSEnvPair(
llvm::Triple::IOS, llvm::Triple::UnknownEnvironment,
llvm::Triple::XROS, llvm::Triple::UnknownEnvironment));
if (!Mapping)
return std::nullopt;
return Mapping->mapIntroducedAvailabilityVersion(Version);
}
static std::optional<clang::VersionTuple>
getRemappedDeprecatedObsoletedVersionForFallbackPlatform(
const ASTContext &Ctx, const llvm::VersionTuple &Version) {
const auto *Mapping = getFallbackVersionMapping(
Ctx, clang::DarwinSDKInfo::OSEnvPair(
llvm::Triple::IOS, llvm::Triple::UnknownEnvironment,
llvm::Triple::XROS, llvm::Triple::UnknownEnvironment));
if (!Mapping)
return std::nullopt;
return Mapping->mapDeprecatedObsoletedAvailabilityVersion(Version);
}
bool AvailabilityInference::updateIntroducedPlatformForFallback(
const AvailableAttr *attr, const ASTContext &Ctx, llvm::StringRef &Platform,
llvm::VersionTuple &PlatformVer) {
std::optional<llvm::VersionTuple> IntroducedVersion = attr->Introduced;
if (attr->Platform == PlatformKind::iOS && IntroducedVersion.has_value() &&
isPlatformActive(PlatformKind::visionOS, Ctx.LangOpts)) {
// We re-map the iOS introduced version to the corresponding visionOS version
auto PotentiallyRemappedIntroducedVersion =
getRemappedIntroducedVersionForFallbackPlatform(Ctx,
*IntroducedVersion);
if (PotentiallyRemappedIntroducedVersion.has_value()) {
Platform = swift::prettyPlatformString(PlatformKind::visionOS);
PlatformVer = PotentiallyRemappedIntroducedVersion.value();
return true;
}
}
return false;
}
bool AvailabilityInference::updateDeprecatedPlatformForFallback(
const AvailableAttr *attr, const ASTContext &Ctx, llvm::StringRef &Platform,
llvm::VersionTuple &PlatformVer) {
std::optional<llvm::VersionTuple> DeprecatedVersion = attr->Deprecated;
if (attr->Platform == PlatformKind::iOS && DeprecatedVersion.has_value() &&
isPlatformActive(PlatformKind::visionOS, Ctx.LangOpts)) {
// We re-map the iOS deprecated version to the corresponding visionOS version
auto PotentiallyRemappedDeprecatedVersion =
getRemappedDeprecatedObsoletedVersionForFallbackPlatform(
Ctx, *DeprecatedVersion);
if (PotentiallyRemappedDeprecatedVersion.has_value()) {
Platform = swift::prettyPlatformString(PlatformKind::visionOS);
PlatformVer = PotentiallyRemappedDeprecatedVersion.value();
return true;
}
}
return false;
}
bool AvailabilityInference::updateObsoletedPlatformForFallback(
const AvailableAttr *attr, const ASTContext &Ctx, llvm::StringRef &Platform,
llvm::VersionTuple &PlatformVer) {
std::optional<llvm::VersionTuple> ObsoletedVersion = attr->Obsoleted;
if (attr->Platform == PlatformKind::iOS && ObsoletedVersion.has_value() &&
isPlatformActive(PlatformKind::visionOS, Ctx.LangOpts)) {
// We re-map the iOS obsoleted version to the corresponding visionOS version
auto PotentiallyRemappedObsoletedVersion =
getRemappedDeprecatedObsoletedVersionForFallbackPlatform(
Ctx, *ObsoletedVersion);
if (PotentiallyRemappedObsoletedVersion.has_value()) {
Platform = swift::prettyPlatformString(PlatformKind::visionOS);
PlatformVer = PotentiallyRemappedObsoletedVersion.value();
return true;
}
}
return false;
}
void AvailabilityInference::updatePlatformStringForFallback(
const AvailableAttr *attr, const ASTContext &Ctx, llvm::StringRef &Platform) {
if (attr->Platform == PlatformKind::iOS &&
isPlatformActive(PlatformKind::visionOS, Ctx.LangOpts)) {
Platform = swift::prettyPlatformString(PlatformKind::visionOS);
}
}
bool AvailabilityInference::updateBeforePlatformForFallback(
const BackDeployedAttr *attr, const ASTContext &Ctx,
llvm::StringRef &Platform, llvm::VersionTuple &PlatformVer) {
auto BeforeVersion = attr->Version;
if (attr->Platform == PlatformKind::iOS &&
isPlatformActive(PlatformKind::visionOS, Ctx.LangOpts)) {
// We re-map the iOS before version to the corresponding visionOS version
auto PotentiallyRemappedIntroducedVersion =
getRemappedIntroducedVersionForFallbackPlatform(Ctx, BeforeVersion);
if (PotentiallyRemappedIntroducedVersion.has_value()) {
Platform = swift::prettyPlatformString(PlatformKind::visionOS);
PlatformVer = PotentiallyRemappedIntroducedVersion.value();
return true;
}
}
return false;
}
const AvailableAttr *
AvailabilityInference::attrForAnnotatedAvailableRange(const Decl *D,
ASTContext &Ctx) {
const AvailableAttr *bestAvailAttr = nullptr;
D = abstractSyntaxDeclForAvailableAttribute(D);
for (auto Attr : D->getAttrs()) {
auto *AvailAttr = dyn_cast<AvailableAttr>(Attr);
if (AvailAttr == nullptr || !AvailAttr->Introduced.has_value() ||
!AvailAttr->isActivePlatform(Ctx) ||
AvailAttr->isLanguageVersionSpecific() ||
AvailAttr->isPackageDescriptionVersionSpecific()) {
continue;
}
if (isBetterThan(AvailAttr, bestAvailAttr))
bestAvailAttr = AvailAttr;
}
return bestAvailAttr;
}
std::optional<AvailableAttrDeclPair>
SemanticAvailableRangeAttrRequest::evaluate(Evaluator &evaluator,
const Decl *decl) const {
if (auto attr = AvailabilityInference::attrForAnnotatedAvailableRange(
decl, decl->getASTContext()))
return std::make_pair(attr, decl);
if (auto *parent =
AvailabilityInference::parentDeclForInferredAvailability(decl))
return parent->getSemanticAvailableRangeAttr();
return std::nullopt;
}
std::optional<AvailableAttrDeclPair>
Decl::getSemanticAvailableRangeAttr() const {
auto &eval = getASTContext().evaluator;
return evaluateOrDefault(eval, SemanticAvailableRangeAttrRequest{this},
std::nullopt);
}
std::optional<AvailabilityContext>
AvailabilityInference::annotatedAvailableRange(const Decl *D, ASTContext &Ctx) {
auto bestAvailAttr = attrForAnnotatedAvailableRange(D, Ctx);
if (!bestAvailAttr)
return std::nullopt;
return availableRange(bestAvailAttr, Ctx);
}
bool Decl::isAvailableAsSPI() const {
return AvailabilityInference::availableRange(this, getASTContext())
.isAvailableAsSPI();
}
std::optional<AvailableAttrDeclPair>
SemanticUnavailableAttrRequest::evaluate(Evaluator &evaluator, const Decl *decl,
bool ignoreAppExtensions) const {
// Directly marked unavailable.
if (auto attr = decl->getAttrs().getUnavailable(decl->getASTContext(),
ignoreAppExtensions))
return std::make_pair(attr, decl);
if (auto *parent =
AvailabilityInference::parentDeclForInferredAvailability(decl))
return parent->getSemanticUnavailableAttr(ignoreAppExtensions);
return std::nullopt;
}
std::optional<AvailableAttrDeclPair>
Decl::getSemanticUnavailableAttr(bool ignoreAppExtensions) const {
auto &eval = getASTContext().evaluator;
return evaluateOrDefault(
eval, SemanticUnavailableAttrRequest{this, ignoreAppExtensions},
std::nullopt);
}
bool Decl::isUnreachableAtRuntime() const {
// Don't trust unavailability on declarations from clang modules.
if (isa<ClangModuleUnit>(getDeclContext()->getModuleScopeContext()))
return false;
auto unavailableAttrAndDecl =
getSemanticUnavailableAttr(/*ignoreAppExtensions=*/true);
if (!unavailableAttrAndDecl)
return false;
// getSemanticUnavailableAttr() can return an @available attribute that makes
// its declaration unavailable conditionally due to deployment target. Only
// stub or skip a declaration that is unavailable regardless of deployment
// target.
auto *unavailableAttr = unavailableAttrAndDecl->first;
if (!unavailableAttr->isUnconditionallyUnavailable())
return false;
// Universally unavailable declarations are always unreachable.
if (unavailableAttr->Platform == PlatformKind::none)
return true;
// FIXME: Support zippered frameworks (rdar://125371621)
// If we have a target variant (e.g. we're building a zippered macOS
// framework) then the decl is only unreachable if it is unavailable for both
// the primary target and the target variant.
if (getASTContext().LangOpts.TargetVariant.has_value())
return false;
return true;
}
static UnavailableDeclOptimization
getEffectiveUnavailableDeclOptimization(ASTContext &ctx) {
if (ctx.LangOpts.UnavailableDeclOptimizationMode.has_value())
return *ctx.LangOpts.UnavailableDeclOptimizationMode;
// FIXME: Allow unavailable decl optimization on visionOS.
// visionOS must be ABI compatible with iOS. Enabling unavailable declaration
// optimizations naively would break compatibility since declarations marked
// unavailable on visionOS would be optimized regardless of whether they are
// available on iOS. rdar://116742214
if (ctx.LangOpts.Target.isXROS())
return UnavailableDeclOptimization::None;
return UnavailableDeclOptimization::None;
}
bool Decl::isAvailableDuringLowering() const {
// Unconditionally unavailable declarations should be skipped during lowering
// when -unavailable-decl-optimization=complete is specified.
if (getEffectiveUnavailableDeclOptimization(getASTContext()) !=
UnavailableDeclOptimization::Complete)
return true;
return !isUnreachableAtRuntime();
}
bool Decl::requiresUnavailableDeclABICompatibilityStubs() const {
// Code associated with unavailable declarations should trap at runtime if
// -unavailable-decl-optimization=stub is specified.
if (getEffectiveUnavailableDeclOptimization(getASTContext()) !=
UnavailableDeclOptimization::Stub)
return false;
return isUnreachableAtRuntime();
}
bool UnavailabilityReason::requiresDeploymentTargetOrEarlier(
ASTContext &Ctx) const {
return RequiredDeploymentRange.getLowerEndpoint() <=
AvailabilityContext::forDeploymentTarget(Ctx)
.getOSVersion()
.getLowerEndpoint();
}
AvailabilityContext
AvailabilityInference::annotatedAvailableRangeForAttr(const SpecializeAttr* attr,
ASTContext &ctx) {
const AvailableAttr *bestAvailAttr = nullptr;
for (auto *availAttr : attr->getAvailableAttrs()) {
if (availAttr == nullptr || !availAttr->Introduced.has_value() ||
!availAttr->isActivePlatform(ctx) ||
availAttr->isLanguageVersionSpecific() ||
availAttr->isPackageDescriptionVersionSpecific()) {
continue;
}
if (isBetterThan(availAttr, bestAvailAttr))
bestAvailAttr = availAttr;
}
if (bestAvailAttr)
return availableRange(bestAvailAttr, ctx);
return AvailabilityContext::alwaysAvailable();
}
AvailabilityContext AvailabilityInference::availableRange(const Decl *D,
ASTContext &Ctx) {
std::optional<AvailabilityContext> AnnotatedRange =
annotatedAvailableRange(D, Ctx);
if (AnnotatedRange.has_value()) {
return AnnotatedRange.value();
}
// Unlike other declarations, extensions can be used without referring to them
// by name (they don't have one) in the source. For this reason, when checking
// the available range of a declaration we also need to check to see if it is
// immediately contained in an extension and use the extension's availability
// if the declaration does not have an explicit @available attribute
// itself. This check relies on the fact that we cannot have nested
// extensions.
DeclContext *DC = D->getDeclContext();
if (auto *ED = dyn_cast<ExtensionDecl>(DC)) {
AnnotatedRange = annotatedAvailableRange(ED, Ctx);
if (AnnotatedRange.has_value()) {
return AnnotatedRange.value();
}
}
// Treat unannotated declarations as always available.
return AvailabilityContext::alwaysAvailable();
}
AvailabilityContext
AvailabilityInference::availableRange(const AvailableAttr *attr,
ASTContext &Ctx) {
assert(attr->isActivePlatform(Ctx));
llvm::VersionTuple IntroducedVersion = attr->Introduced.value();
StringRef Platform = attr->prettyPlatformString();
llvm::VersionTuple RemappedIntroducedVersion;
if (AvailabilityInference::updateIntroducedPlatformForFallback(
attr, Ctx, Platform, RemappedIntroducedVersion))
IntroducedVersion = RemappedIntroducedVersion;
return AvailabilityContext{VersionRange::allGTE(IntroducedVersion),
attr->IsSPI};
}
namespace {
/// Infers the availability required to access a type.
class AvailabilityInferenceTypeWalker : public TypeWalker {
public:
ASTContext &AC;
AvailabilityContext AvailabilityInfo = AvailabilityContext::alwaysAvailable();
AvailabilityInferenceTypeWalker(ASTContext &AC) : AC(AC) {}
Action walkToTypePre(Type ty) override {
if (auto *nominalDecl = ty->getAnyNominal()) {
AvailabilityInfo.intersectWith(
AvailabilityInference::availableRange(nominalDecl, AC));
}
return Action::Continue;
}
};
} // end anonymous namespace
AvailabilityContext AvailabilityInference::inferForType(Type t) {
AvailabilityInferenceTypeWalker walker(t->getASTContext());
t.walk(walker);
return walker.AvailabilityInfo;
}
AvailabilityContext ASTContext::getSwiftFutureAvailability() const {
auto target = LangOpts.Target;
if (target.isMacOSX() ) {
return AvailabilityContext(
VersionRange::allGTE(llvm::VersionTuple(99, 99, 0)));
} else if (target.isiOS()) {
return AvailabilityContext(
VersionRange::allGTE(llvm::VersionTuple(99, 99, 0)));
} else if (target.isWatchOS()) {
return AvailabilityContext(
VersionRange::allGTE(llvm::VersionTuple(99, 99, 0)));
} else {
return AvailabilityContext::alwaysAvailable();
}
}
AvailabilityContext
ASTContext::getSwiftAvailability(unsigned major, unsigned minor) const {
auto target = LangOpts.Target;
// Deal with special cases for Swift 5.3 and lower
if (major == 5 && minor <= 3) {
if (target.getArchName() == "arm64e")
return AvailabilityContext::alwaysAvailable();
if (target.isMacOSX() && target.isAArch64())
return AvailabilityContext::alwaysAvailable();
if (target.isiOS() && target.isAArch64()
&& (target.isSimulatorEnvironment()
|| target.isMacCatalystEnvironment()))
return AvailabilityContext::alwaysAvailable();
if (target.isWatchOS() && target.isArch64Bit())
return AvailabilityContext::alwaysAvailable();
}
switch (major) {
#define MAJOR_VERSION(V) case V: switch (minor) {
#define END_MAJOR_VERSION(V) } break;
#define PLATFORM(P, V) \
if (IS_PLATFORM(P)) \
return AvailabilityContext(VersionRange::allGTE(llvm::VersionTuple V));
#define IS_PLATFORM(P) PLATFORM_TEST_##P
#define FUTURE return getSwiftFutureAvailability();
#define PLATFORM_TEST_macOS target.isMacOSX()
#define PLATFORM_TEST_iOS target.isiOS()
#define PLATFORM_TEST_watchOS target.isWatchOS()
#define PLATFORM_TEST_xrOS target.isXROS()
#define _SECOND(A, B) B
#define SECOND(T) _SECOND T
#define RUNTIME_VERSION(V, PLATFORMS) \
case SECOND(V): \
PLATFORMS \
return AvailabilityContext::alwaysAvailable();
#include "swift/AST/RuntimeVersions.def"
#undef PLATFORM_TEST_macOS
#undef PLATFORM_TEST_iOS
#undef PLATFORM_TEST_watchOS
#undef PLATFORM_TEST_xrOS
#undef _SECOND
#undef SECOND
case 99:
if (minor == 99)
return getSwiftFutureAvailability();
break;
}
llvm::report_fatal_error(
Twine("Missing runtime version data for Swift ") +
Twine(major) + Twine('.') + Twine(minor));
}
bool ASTContext::supportsVersionedAvailability() const {
return minimumAvailableOSVersionForTriple(LangOpts.Target).has_value();
}
// FIXME: Rename abstractSyntaxDeclForAvailableAttribute since it's useful
// for more attributes than `@available`.
const Decl *
swift::abstractSyntaxDeclForAvailableAttribute(const Decl *ConcreteSyntaxDecl) {
// This function needs to be kept in sync with its counterpart,
// concreteSyntaxDeclForAvailableAttribute().
if (auto *PBD = dyn_cast<PatternBindingDecl>(ConcreteSyntaxDecl)) {
// Existing @available attributes in the AST are attached to VarDecls
// rather than PatternBindingDecls, so we return the first VarDecl for
// the pattern binding declaration.
// This is safe, even though there may be multiple VarDecls, because
// all parsed attribute that appear in the concrete syntax upon on the
// PatternBindingDecl are added to all of the VarDecls for the pattern
// binding.
for (auto index : range(PBD->getNumPatternEntries())) {
if (auto VD = PBD->getAnchoringVarDecl(index))
return VD;
}
} else if (auto *ECD = dyn_cast<EnumCaseDecl>(ConcreteSyntaxDecl)) {
// Similar to the PatternBindingDecl case above, we return the
// first EnumElementDecl.
if (auto *Elem = ECD->getFirstElement()) {
return Elem;
}
}
return ConcreteSyntaxDecl;
}
|