1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
|
//===--- ConformanceLookup.cpp - Global Conformance Lookup ----------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2024 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements global conformance lookup.
//
// - ModuleDecl::lookupConformance(type, proto) takes a nominal type or an
// archetype and returns the appropriate normal, specialized or abstract
// conformance. It does not check conditional requirements.
//
// - ModuleDecl::checkConformance(type, proto) is like the above, but checks
// conditional requirements. The type must not contain type parameters;
// they must either be substituted with concrete types by applying a
// substitution map, or mapped to archetypes in a generic environment first.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/Module.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Builtins.h"
#include "swift/AST/DistributedDecl.h"
#include "swift/AST/DiagnosticsSema.h"
#include "swift/AST/ExistentialLayout.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/NameLookupRequests.h"
#include "swift/AST/PackConformance.h"
#include "swift/AST/PrettyStackTrace.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/Basic/Compiler.h"
#include "swift/Basic/SourceManager.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/raw_ostream.h"
using namespace swift;
ArrayRef<ProtocolConformanceRef>
ModuleDecl::collectExistentialConformances(CanType fromType,
CanType existential,
bool allowMissing) {
assert(existential.isAnyExistentialType());
auto layout = existential.getExistentialLayout();
auto protocols = layout.getProtocols();
SmallVector<ProtocolConformanceRef, 4> conformances;
for (auto *proto : protocols) {
auto conformance = lookupConformance(fromType, proto, allowMissing);
assert(conformance);
conformances.push_back(conformance);
}
return getASTContext().AllocateCopy(conformances);
}
ProtocolConformanceRef
ModuleDecl::lookupExistentialConformance(Type type, ProtocolDecl *protocol) {
ASTContext &ctx = getASTContext();
assert(type->isExistentialType());
auto getConstraintType = [&type]() {
if (auto *existentialTy = type->getAs<ExistentialType>())
return existentialTy->getConstraintType();
return type;
};
auto lookupSuperclassConformance = [&](Type superclass) {
if (superclass) {
if (auto result =
lookupConformance(superclass, protocol, /*allowMissing=*/false)) {
if (protocol->isSpecificProtocol(KnownProtocolKind::Sendable) &&
result.hasUnavailableConformance())
return ProtocolConformanceRef::forInvalid();
return result;
}
}
return ProtocolConformanceRef::forInvalid();
};
// If the existential type cannot be represented or the protocol does not
// conform to itself, there's no point in looking further.
if (!protocol->existentialConformsToSelf()) {
// If type is a protocol composition with marker protocols
// check whether superclass conforms, and if it does form
// an inherited conformance. This means that types like:
// `KeyPath<String, Int> & Sendable` don't have to be "opened"
// to satisfy conformance to i.e. `Equatable`.
if (getConstraintType()->is<ProtocolCompositionType>()) {
auto layout = type->getExistentialLayout();
if (llvm::all_of(layout.getProtocols(),
[](const auto *P) { return P->isMarkerProtocol(); })) {
if (auto conformance = lookupSuperclassConformance(layout.explicitSuperclass)) {
return ProtocolConformanceRef(
ctx.getInheritedConformance(type, conformance.getConcrete()));
}
}
}
return ProtocolConformanceRef::forInvalid();
}
auto layout = type->getExistentialLayout();
// If the existential contains non-@objc protocols and the protocol we're
// conforming to needs a witness table, the existential must have a
// self-conformance witness table. For now, Swift.Error is the only one.
if (!layout.isObjC() && !protocol->isMarkerProtocol()) {
auto constraint = getConstraintType();
// The existential has to be *exactly* that type.
if (protocol->requiresSelfConformanceWitnessTable() &&
constraint->is<ProtocolType>() &&
constraint->castTo<ProtocolType>()->getDecl() == protocol)
return ProtocolConformanceRef(ctx.getSelfConformance(protocol));
return ProtocolConformanceRef::forInvalid();
}
// The existential might conform abstractly.
for (auto protoDecl : layout.getProtocols()) {
// If we found the protocol we're looking for, return an abstract
// conformance to it.
if (protoDecl == protocol)
return ProtocolConformanceRef(ctx.getSelfConformance(protocol));
// Now check refined protocols.
if (protoDecl->inheritsFrom(protocol))
return ProtocolConformanceRef(ctx.getSelfConformance(protocol));
}
// If the existential is class-constrained, the class might conform
// concretely.
if (auto conformance = lookupSuperclassConformance(layout.getSuperclass()))
return conformance;
// We didn't find our protocol in the existential's list; it doesn't
// conform.
return ProtocolConformanceRef::forInvalid();
}
/// Whether we should create missing conformances to the given protocol.
static bool shouldCreateMissingConformances(Type type, ProtocolDecl *proto) {
// Sendable may be able to be synthesized.
if (proto->isSpecificProtocol(KnownProtocolKind::Sendable)) {
return true;
}
return false;
}
ProtocolConformanceRef ProtocolConformanceRef::forMissingOrInvalid(
Type type, ProtocolDecl *proto) {
// Introduce "missing" conformances when appropriate, so that type checking
// (and even code generation) can continue.
ASTContext &ctx = proto->getASTContext();
if (shouldCreateMissingConformances(type, proto)) {
return ProtocolConformanceRef(
ctx.getBuiltinConformance(
type, proto, BuiltinConformanceKind::Missing));
}
return ProtocolConformanceRef::forInvalid();
}
ProtocolConformanceRef ModuleDecl::lookupConformance(Type type,
ProtocolDecl *protocol,
bool allowMissing) {
// If we are recursively checking for implicit conformance of a nominal
// type to a KnownProtocol, fail without evaluating this request. This
// squashes cycles.
LookupConformanceInModuleRequest request{{this, type, protocol}};
if (auto kp = protocol->getKnownProtocolKind()) {
if (auto nominal = type->getAnyNominal()) {
ImplicitKnownProtocolConformanceRequest icvRequest{nominal, *kp};
if (getASTContext().evaluator.hasActiveRequest(icvRequest) ||
getASTContext().evaluator.hasActiveRequest(request)) {
return ProtocolConformanceRef::forInvalid();
}
}
}
auto result = evaluateOrDefault(
getASTContext().evaluator, request, ProtocolConformanceRef::forInvalid());
// If we aren't supposed to allow missing conformances but we have one,
// replace the result with an "invalid" result.
if (!allowMissing &&
shouldCreateMissingConformances(type, protocol) &&
result.hasMissingConformance())
return ProtocolConformanceRef::forInvalid();
return result;
}
/// Synthesize a builtin tuple type conformance to the given protocol, if
/// appropriate.
static ProtocolConformanceRef getBuiltinTupleTypeConformance(
Type type, const TupleType *tupleType, ProtocolDecl *protocol,
ModuleDecl *module) {
ASTContext &ctx = protocol->getASTContext();
auto *tupleDecl = ctx.getBuiltinTupleDecl();
// Ignore @lvalue's within the tuple.
type = type->getRValueType();
// Find the (unspecialized) conformance.
SmallVector<ProtocolConformance *, 2> conformances;
if (tupleDecl->lookupConformance(protocol, conformances)) {
// If we have multiple conformances, first try to filter out any that are
// unavailable on the current deployment target.
//
// FIXME: Conformance lookup should really depend on source location for
// this to be 100% correct.
if (conformances.size() > 1) {
SmallVector<ProtocolConformance *, 2> availableConformances;
for (auto *conformance : conformances) {
if (conformance->getDeclContext()->isAlwaysAvailableConformanceContext())
availableConformances.push_back(conformance);
}
// Don't filter anything out if all conformances are unavailable.
if (!availableConformances.empty())
std::swap(availableConformances, conformances);
}
auto *conformance = cast<NormalProtocolConformance>(conformances.front());
auto subMap = type->getContextSubstitutionMap(module,
conformance->getDeclContext());
// TODO: labels
auto *specialized = ctx.getSpecializedConformance(type, conformance, subMap);
return ProtocolConformanceRef(specialized);
}
return ProtocolConformanceRef::forMissingOrInvalid(type, protocol);
}
using EitherFunctionType =
llvm::PointerUnion<const SILFunctionType *, const FunctionType *>;
/// Whether the given function type conforms to Sendable.
static bool isSendableFunctionType(EitherFunctionType eitherFnTy) {
FunctionTypeRepresentation representation;
if (auto silFnTy = eitherFnTy.dyn_cast<const SILFunctionType *>()) {
if (silFnTy->isSendable())
return true;
// convert SILFunctionTypeRepresentation -> FunctionTypeRepresentation
auto converted = convertRepresentation(silFnTy->getRepresentation());
if (!converted)
return false;
representation = *converted;
} else {
auto functionType = eitherFnTy.get<const FunctionType *>();
if (functionType->isSendable())
return true;
representation = functionType->getExtInfo().getRepresentation();
}
// C and thin function types have no captures, so they are Sendable.
switch (representation) {
case FunctionTypeRepresentation::Block:
case FunctionTypeRepresentation::Swift:
return false;
case FunctionTypeRepresentation::CFunctionPointer:
case FunctionTypeRepresentation::Thin:
return true;
}
}
/// Whether the given function type conforms to Escapable.
static bool isEscapableFunctionType(EitherFunctionType eitherFnTy) {
// if (auto silFnTy = eitherFnTy.dyn_cast<const SILFunctionType *>()) {
// return !silFnTy->isNoEscape();
// }
//
// auto functionType = eitherFnTy.get<const FunctionType *>();
//
// // TODO: what about autoclosures?
// return !functionType->isNoEscape();
// FIXME: unify TypeBase::isNoEscape with TypeBase::isEscapable
// LazyConformanceEmitter::visitDestroyValueInst chokes on these instructions
// destroy_value %2 : $@convention(block) @noescape () -> ()
//
// Wrongly claim that all functions today conform to Escapable for now:
return true;
}
static bool isBitwiseCopyableFunctionType(EitherFunctionType eitherFnTy) {
SILFunctionTypeRepresentation representation;
if (auto silFnTy = eitherFnTy.dyn_cast<const SILFunctionType *>()) {
representation = silFnTy->getRepresentation();
} else {
auto fnTy = eitherFnTy.get<const FunctionType *>();
representation = convertRepresentation(fnTy->getRepresentation());
}
switch (representation) {
case SILFunctionTypeRepresentation::Thick:
case SILFunctionTypeRepresentation::Block:
return false;
case SILFunctionTypeRepresentation::Thin:
case SILFunctionTypeRepresentation::CXXMethod:
case SILFunctionTypeRepresentation::CFunctionPointer:
case SILFunctionTypeRepresentation::Method:
case SILFunctionTypeRepresentation::ObjCMethod:
case SILFunctionTypeRepresentation::WitnessMethod:
case SILFunctionTypeRepresentation::Closure:
case SILFunctionTypeRepresentation::KeyPathAccessorGetter:
case SILFunctionTypeRepresentation::KeyPathAccessorSetter:
case SILFunctionTypeRepresentation::KeyPathAccessorEquals:
case SILFunctionTypeRepresentation::KeyPathAccessorHash:
return true;
}
}
/// Synthesize a builtin function type conformance to the given protocol, if
/// appropriate.
static ProtocolConformanceRef getBuiltinFunctionTypeConformance(
Type type, EitherFunctionType functionType, ProtocolDecl *protocol) {
ASTContext &ctx = protocol->getASTContext();
auto synthesizeConformance = [&]() -> ProtocolConformanceRef {
return ProtocolConformanceRef(
ctx.getBuiltinConformance(type, protocol,
BuiltinConformanceKind::Synthesized));
};
if (auto kp = protocol->getKnownProtocolKind()) {
switch (*kp) {
case KnownProtocolKind::Escapable:
if (isEscapableFunctionType(functionType))
return synthesizeConformance();
break;
case KnownProtocolKind::Sendable:
// @Sendable function types are Sendable.
if (isSendableFunctionType(functionType))
return synthesizeConformance();
break;
case KnownProtocolKind::Copyable:
// Functions cannot permanently destroy a move-only var/let
// that they capture, so it's safe to copy functions, like classes.
return synthesizeConformance();
case KnownProtocolKind::BitwiseCopyable:
if (isBitwiseCopyableFunctionType(functionType))
return synthesizeConformance();
break;
default:
break;
}
}
return ProtocolConformanceRef::forMissingOrInvalid(type, protocol);
}
/// Synthesize a builtin metatype type conformance to the given protocol, if
/// appropriate.
static ProtocolConformanceRef getBuiltinMetaTypeTypeConformance(
Type type, const AnyMetatypeType *metatypeType, ProtocolDecl *protocol) {
ASTContext &ctx = protocol->getASTContext();
// All metatypes are Sendable, Copyable, Escapable, and BitwiseCopyable.
if (auto kp = protocol->getKnownProtocolKind()) {
switch (*kp) {
case KnownProtocolKind::Sendable:
case KnownProtocolKind::Copyable:
case KnownProtocolKind::Escapable:
case KnownProtocolKind::BitwiseCopyable:
return ProtocolConformanceRef(
ctx.getBuiltinConformance(type, protocol,
BuiltinConformanceKind::Synthesized));
default:
break;
}
}
return ProtocolConformanceRef::forMissingOrInvalid(type, protocol);
}
/// Synthesize a builtin type conformance to the given protocol, if
/// appropriate.
static ProtocolConformanceRef
getBuiltinBuiltinTypeConformance(Type type, const BuiltinType *builtinType,
ProtocolDecl *protocol) {
if (auto kp = protocol->getKnownProtocolKind()) {
switch (*kp) {
// All builtin types are Sendable, Copyable, and Escapable.
case KnownProtocolKind::Sendable:
case KnownProtocolKind::Copyable:
case KnownProtocolKind::Escapable: {
ASTContext &ctx = protocol->getASTContext();
return ProtocolConformanceRef(
ctx.getBuiltinConformance(type, protocol,
BuiltinConformanceKind::Synthesized));
}
// Some builtin types are BitwiseCopyable.
case KnownProtocolKind::BitwiseCopyable: {
if (builtinType->isBitwiseCopyable()) {
ASTContext &ctx = protocol->getASTContext();
return ProtocolConformanceRef(ctx.getBuiltinConformance(
type, protocol, BuiltinConformanceKind::Synthesized));
}
break;
}
default:
break;
}
}
return ProtocolConformanceRef::forMissingOrInvalid(type, protocol);
}
static ProtocolConformanceRef getPackTypeConformance(
PackType *type, ProtocolDecl *protocol, ModuleDecl *mod) {
SmallVector<ProtocolConformanceRef, 2> patternConformances;
for (auto packElement : type->getElementTypes()) {
if (auto *packExpansion = packElement->getAs<PackExpansionType>()) {
auto patternType = packExpansion->getPatternType();
auto patternConformance =
(patternType->isTypeParameter()
? ProtocolConformanceRef(protocol)
: mod->lookupConformance(patternType, protocol,
/*allowMissing=*/true));
patternConformances.push_back(patternConformance);
continue;
}
auto patternConformance =
(packElement->isTypeParameter()
? ProtocolConformanceRef(protocol)
: mod->lookupConformance(packElement, protocol,
/*allowMissing=*/true));
patternConformances.push_back(patternConformance);
}
return ProtocolConformanceRef(
PackConformance::get(type, protocol, patternConformances));
}
ProtocolConformanceRef
LookupConformanceInModuleRequest::evaluate(
Evaluator &evaluator, LookupConformanceDescriptor desc) const {
auto *mod = desc.Mod;
auto type = desc.Ty;
auto *protocol = desc.PD;
ASTContext &ctx = mod->getASTContext();
// Remove SIL reference ownership wrapper, if present.
type = type->getReferenceStorageReferent();
// A dynamic Self type conforms to whatever its underlying type
// conforms to.
if (auto selfType = type->getAs<DynamicSelfType>())
type = selfType->getSelfType();
// A pack element type conforms to whatever its underlying pack type
// conforms to.
if (auto packElement = type->getAs<PackElementType>())
type = packElement->getPackType();
// An archetype conforms to a protocol if the protocol is listed in the
// archetype's list of conformances, or if the archetype has a superclass
// constraint and the superclass conforms to the protocol.
if (auto archetype = type->getAs<ArchetypeType>()) {
// The generic signature builder drops conformance requirements that are made
// redundant by a superclass requirement, so check for a concrete
// conformance first, since an abstract conformance might not be
// able to be resolved by a substitution that makes the archetype
// concrete.
if (auto super = archetype->getSuperclass()) {
auto inheritedConformance = mod->lookupConformance(
super, protocol, /*allowMissing=*/false);
if (protocol->isSpecificProtocol(KnownProtocolKind::Sendable) &&
inheritedConformance.hasUnavailableConformance())
inheritedConformance = ProtocolConformanceRef::forInvalid();
if (inheritedConformance) {
return ProtocolConformanceRef(ctx.getInheritedConformance(
type, inheritedConformance.getConcrete()));
}
}
for (auto ap : archetype->getConformsTo()) {
if (ap == protocol || ap->inheritsFrom(protocol))
return ProtocolConformanceRef(protocol);
}
return ProtocolConformanceRef::forMissingOrInvalid(type, protocol);
}
// An existential conforms to a protocol if the protocol is listed in the
// existential's list of conformances and the existential conforms to
// itself.
if (type->isExistentialType()) {
auto result = mod->lookupExistentialConformance(type, protocol);
if (result.isInvalid())
return ProtocolConformanceRef::forMissingOrInvalid(type, protocol);
return result;
}
// Type variables have trivial conformances.
if (type->isTypeVariableOrMember())
return ProtocolConformanceRef(protocol);
// UnresolvedType is a placeholder for an unknown type used when generating
// diagnostics. We consider it to conform to all protocols, since the
// intended type might have. Same goes for PlaceholderType.
if (type->is<UnresolvedType>() || type->is<PlaceholderType>())
return ProtocolConformanceRef(protocol);
// Pack types can conform to protocols.
if (auto packType = type->getAs<PackType>()) {
return getPackTypeConformance(packType, protocol, mod);
}
// Tuple types can conform to protocols.
if (auto tupleType = type->getAs<TupleType>()) {
return getBuiltinTupleTypeConformance(type, tupleType, protocol, mod);
}
// Function types can conform to protocols.
if (auto functionType = type->getAs<FunctionType>()) {
return getBuiltinFunctionTypeConformance(type, functionType, protocol);
}
// SIL function types in the AST can conform to protocols
if (auto silFn = type->getAs<SILFunctionType>()) {
return getBuiltinFunctionTypeConformance(type, silFn, protocol);
}
// Metatypes can conform to protocols.
if (auto metatypeType = type->getAs<AnyMetatypeType>()) {
return getBuiltinMetaTypeTypeConformance(type, metatypeType, protocol);
}
// Builtin types can conform to protocols.
if (auto builtinType = type->getAs<BuiltinType>()) {
return getBuiltinBuiltinTypeConformance(type, builtinType, protocol);
}
#ifndef NDEBUG
// Ensure we haven't missed queries for the specialty SIL types
// in the AST in conformance to one of the invertible protocols.
if (auto kp = protocol->getKnownProtocolKind()) {
if (getInvertibleProtocolKind(*kp)) {
assert(!(type->is<SILFunctionType,
SILBoxType,
SILMoveOnlyWrappedType,
SILPackType,
SILTokenType>()));
assert(!type->is<ReferenceStorageType>());
}
}
#endif
auto nominal = type->getAnyNominal();
// If we don't have a nominal type, there are no conformances.
if (!nominal || isa<ProtocolDecl>(nominal))
return ProtocolConformanceRef::forMissingOrInvalid(type, protocol);
// Expand conformances added by extension macros.
//
// FIXME: This expansion should only be done if the
// extension macro can generate a conformance to the
// given protocol, but conformance macros do not specify
// that information upfront.
(void)evaluateOrDefault(
ctx.evaluator,
ExpandExtensionMacros{nominal},
{ });
// Find the root conformance in the nominal type declaration's
// conformance lookup table.
SmallVector<ProtocolConformance *, 2> conformances;
// If the conformance lookup table produced nothing, we try to derive the
// conformance for a few special protocol kinds.
if (!nominal->lookupConformance(protocol, conformances)) {
if (protocol->isSpecificProtocol(KnownProtocolKind::Sendable)) {
// Try to infer Sendable conformance.
ImplicitKnownProtocolConformanceRequest
cvRequest{nominal, KnownProtocolKind::Sendable};
if (auto conformance = evaluateOrDefault(
ctx.evaluator, cvRequest, nullptr)) {
conformances.clear();
conformances.push_back(conformance);
} else {
return ProtocolConformanceRef::forMissingOrInvalid(type, protocol);
}
} else if (protocol->isSpecificProtocol(KnownProtocolKind::Encodable) ||
protocol->isSpecificProtocol(KnownProtocolKind::Decodable)) {
// if (nominal->isDistributedActor()) {
if (canSynthesizeDistributedActorCodableConformance(nominal)) {
auto protoKind =
protocol->isSpecificProtocol(KnownProtocolKind::Encodable)
? KnownProtocolKind::Encodable
: KnownProtocolKind::Decodable;
auto request = GetDistributedActorImplicitCodableRequest{
nominal, protoKind};
if (auto conformance =
evaluateOrDefault(ctx.evaluator, request, nullptr)) {
conformances.clear();
conformances.push_back(conformance);
} else {
return ProtocolConformanceRef::forMissingOrInvalid(type, protocol);
}
} else {
return ProtocolConformanceRef::forMissingOrInvalid(type, protocol);
}
} else if (protocol->isSpecificProtocol(
KnownProtocolKind::BitwiseCopyable)) {
// Try to infer BitwiseCopyable conformance.
ImplicitKnownProtocolConformanceRequest request{
nominal, KnownProtocolKind::BitwiseCopyable};
if (auto conformance =
evaluateOrDefault(ctx.evaluator, request, nullptr)) {
conformances.clear();
conformances.push_back(conformance);
} else {
return ProtocolConformanceRef::forMissingOrInvalid(type, protocol);
}
} else {
// Was unable to infer the missing conformance.
return ProtocolConformanceRef::forMissingOrInvalid(type, protocol);
}
}
// We should have at least one conformance by now, or we would have returned
// above.
assert(!conformances.empty());
// If we have multiple conformances, first try to filter out any that are
// unavailable on the current deployment target.
//
// FIXME: Conformance lookup should really depend on source location for
// this to be 100% correct.
if (conformances.size() > 1) {
SmallVector<ProtocolConformance *, 2> availableConformances;
for (auto *conformance : conformances) {
if (conformance->getDeclContext()->isAlwaysAvailableConformanceContext())
availableConformances.push_back(conformance);
}
// Don't filter anything out if all conformances are unavailable.
if (!availableConformances.empty())
std::swap(availableConformances, conformances);
}
// If we still have multiple conformances, just pick the first one.
auto conformance = conformances.front();
// Rebuild inherited conformances based on the root normal conformance.
// FIXME: This is a hack to work around our inability to handle multiple
// levels of substitution through inherited conformances elsewhere in the
// compiler.
if (auto inherited = dyn_cast<InheritedProtocolConformance>(conformance)) {
// Dig out the conforming nominal type.
auto rootConformance = inherited->getRootConformance();
auto conformingClass
= rootConformance->getType()->getClassOrBoundGenericClass();
// Map up to our superclass's type.
auto superclassTy = type->getSuperclassForDecl(conformingClass);
// Compute the conformance for the inherited type.
auto inheritedConformance = mod->lookupConformance(
superclassTy, protocol, /*allowMissing=*/true);
assert(inheritedConformance &&
"We already found the inherited conformance");
// Create the inherited conformance entry.
conformance =
ctx.getInheritedConformance(type, inheritedConformance.getConcrete());
return ProtocolConformanceRef(conformance);
}
// We now have a root conformance for the nominal's declared interface type.
// If our type is specialized, apply a substitution map to the root
// conformance.
if (type->isSpecialized()) {
if (!conformance->getType()->isEqual(type)) {
// We use a builtin conformance for unconditional Copyable and Escapable
// conformances. Avoid building a substitution map and just return the
// correct builtin conformance for the specialized type.
if (auto *builtinConf = dyn_cast<BuiltinProtocolConformance>(conformance)) {
return ProtocolConformanceRef(
ctx.getBuiltinConformance(type, protocol,
builtinConf->getBuiltinConformanceKind()));
}
// Otherwise, we have a normal conformance, so we're going to build a
// specialized conformance from the context substitution map of the
// specialized type.
auto *normalConf = cast<NormalProtocolConformance>(conformance);
auto *conformanceDC = normalConf->getDeclContext();
// In -swift-version 5 mode, a conditional conformance to a protocol can imply
// a Sendable conformance. The implied conformance is unconditional so it uses
// the generic signature of the nominal type and not the generic signature of
// the extension that declared the (implying) conditional conformance.
if (normalConf->getSourceKind() == ConformanceEntryKind::Implied &&
normalConf->getProtocol()->isSpecificProtocol(KnownProtocolKind::Sendable)) {
conformanceDC = conformanceDC->getSelfNominalTypeDecl();
}
auto subMap = type->getContextSubstitutionMap(mod, conformanceDC);
return ProtocolConformanceRef(
ctx.getSpecializedConformance(type, normalConf, subMap));
}
}
// Return the root conformance.
return ProtocolConformanceRef(conformance);
}
ProtocolConformanceRef
ModuleDecl::checkConformance(Type type, ProtocolDecl *proto,
bool allowMissing) {
assert(!type->hasTypeParameter()
&& "must take a contextual type. if you really are ok with an "
"indefinite answer (and usually YOU ARE NOT), then consider whether "
"you really, definitely are ok with an indefinite answer, and "
"use `checkConformanceWithoutContext` instead");
// With no type parameter in the type, we should always get a definite answer
// from the underlying test.
return checkConformanceWithoutContext(type, proto, allowMissing).value();
}
std::optional<ProtocolConformanceRef>
ModuleDecl::checkConformanceWithoutContext(Type type, ProtocolDecl *proto,
bool allowMissing) {
auto lookupResult = lookupConformance(type, proto, allowMissing);
if (lookupResult.isInvalid()) {
return ProtocolConformanceRef::forInvalid();
}
auto condReqs = lookupResult.getConditionalRequirements();
// If we have a conditional requirements that we need to check, do so now.
if (!condReqs.empty()) {
auto reqResult = checkRequirementsWithoutContext(condReqs);
if (!reqResult.has_value()) {
return std::nullopt;
}
switch (*reqResult) {
case CheckRequirementsResult::Success:
break;
case CheckRequirementsResult::RequirementFailure:
case CheckRequirementsResult::SubstitutionFailure:
return ProtocolConformanceRef::forInvalid();
}
}
return lookupResult;
}
///
/// Sendable checking utility
///
bool TypeBase::isSendableType() {
auto proto = getASTContext().getProtocol(KnownProtocolKind::Sendable);
if (!proto)
return true;
// First check if we have a function type. If we do, check if it is
// Sendable. We do this since functions cannot conform to protocols.
if (auto *fas = getAs<SILFunctionType>())
return fas->isSendable();
if (auto *fas = getAs<AnyFunctionType>())
return fas->isSendable();
auto conformance = proto->getParentModule()->checkConformance(
this, proto, false /*allow missing*/);
return conformance && !conformance.hasUnavailableConformance();
}
///
/// Copyable and Escapable checking utilities
///
/// Preprocesses a type before querying whether it conforms to an invertible.
static CanType preprocessTypeForInvertibleQuery(Type orig) {
Type type = orig;
// Strip off any StorageType wrapper.
type = type->getReferenceStorageReferent();
// Pack expansions such as `repeat T` themselves do not have conformances,
// so check its pattern type for conformance.
if (auto *pet = type->getAs<PackExpansionType>()) {
type = pet->getPatternType()->getCanonicalType();
}
// Strip @lvalue and canonicalize.
auto canType = type->getRValueType()->getCanonicalType();
return canType;
}
static bool conformsToInvertible(CanType type, InvertibleProtocolKind ip) {
auto &ctx = type->getASTContext();
auto *proto = ctx.getProtocol(getKnownProtocolKind(ip));
assert(proto && "missing Copyable/Escapable from stdlib!");
// Must not have a type parameter!
assert(!type->hasTypeParameter() && "caller forgot to mapTypeIntoContext!");
assert(!type->hasUnboundGenericType() && "a UGT has no conformances!");
assert(!type->is<PackExpansionType>());
// FIXME: lldb misbehaves by getting here with a SILPackType.
// just pretend it it conforms.
if (type->is<SILPackType>())
return true;
// The SIL types in the AST do not have real conformances, and should have
// been handled in SILType instead.
assert(!(type->is<SILBoxType,
SILMoveOnlyWrappedType,
SILPackType,
SILTokenType>()));
const bool conforms =
(bool) proto->getParentModule()->checkConformance(
type, proto,
/*allowMissing=*/false);
return conforms;
}
/// \returns true iff this type lacks conformance to Copyable.
bool TypeBase::isNoncopyable() {
auto canType = preprocessTypeForInvertibleQuery(this);
return !conformsToInvertible(canType, InvertibleProtocolKind::Copyable);
}
bool TypeBase::isEscapable() {
auto canType = preprocessTypeForInvertibleQuery(this);
return conformsToInvertible(canType, InvertibleProtocolKind::Escapable);
}
|