1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
|
//===--- ExistentialGeneralization.cpp - Shape generalization algorithm ---===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file defines the existential type generalization algorithm,
// which is used in the ABI for existential types.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/CanTypeVisitor.h"
#include "swift/AST/Decl.h"
#include "swift/AST/GenericSignature.h"
#include "swift/AST/Requirement.h"
#include "swift/AST/Types.h"
#include "llvm/ADT/DenseMap.h"
using namespace swift;
namespace {
/// A helper type for performing existential type generalization.
class Generalizer : public CanTypeVisitor<Generalizer, Type> {
friend CanTypeVisitor<Generalizer, Type>;
ASTContext &ctx;
llvm::DenseMap<CanType, Type> substTypes;
llvm::DenseMap<std::pair<CanType, ProtocolDecl*>,
ProtocolConformanceRef> substConformances;
SmallVector<GenericTypeParamType *, 2> addedParameters;
SmallVector<Requirement, 2> addedRequirements;
public:
Generalizer(ASTContext &ctx) : ctx(ctx) {}
/// Given that the given type is not itself substitutable in whatever
/// position it appears in, generalize it.
Type generalizeStructure(CanType type) {
return visit(type);
}
SubstitutionMap getGeneralizationSubstitutions() {
// If we never introduced a generalization parameter, we're done.
if (addedParameters.empty() && addedRequirements.empty())
return SubstitutionMap();
// Finish the signature.
auto sig = buildGenericSignature(ctx, GenericSignature(),
addedParameters,
addedRequirements,
/*allowInverses=*/false);
// TODO: minimize the signature by removing redundant generic
// parameters.
auto lookupParameter = [&](SubstitutableType *type) {
auto it = substTypes.find(CanType(type));
assert(it != substTypes.end());
return it->second;
};
auto lookupConformance = [&](CanType dependentType,
Type conformingReplacementType,
ProtocolDecl *conformedProtocol) {
auto it = substConformances.find({dependentType, conformedProtocol});
assert(it != substConformances.end());
return it->second;
};
return SubstitutionMap::get(sig, lookupParameter, lookupConformance);
}
private:
Type visitProtocolType(CanProtocolType type) {
// Simple protocol types have no sub-structure.
assert(!type.getParent());
return type;
}
Type visitParameterizedProtocolType(CanParameterizedProtocolType origType) {
// Generalize the argument types of parameterized protocols,
// but don't generalize the base type.
auto origArgs = origType.getArgs();
SmallVector<Type, 4> newArgs;
newArgs.reserve(origArgs.size());
for (auto origArg: origArgs) {
newArgs.push_back(generalizeComponentType(origArg));
}
return ParameterizedProtocolType::get(ctx, origType->getBaseType(),
newArgs);
}
Type visitProtocolCompositionType(CanProtocolCompositionType origType) {
// The member types of protocol compositions are not substitutable,
// including class constraints. Generalize them individually,
// preserving structure.
auto origMembers = origType.getMembers();
SmallVector<Type, 4> newMembers;
newMembers.reserve(origMembers.size());
for (auto origMember: origMembers) {
newMembers.push_back(generalizeStructure(origMember));
}
return ProtocolCompositionType::get(ctx, newMembers,
origType->getInverses(),
origType->hasExplicitAnyObject());
}
// Generalize the type arguments of nominal types.
Type visitBoundGenericType(CanBoundGenericType origType) {
return generalizeGenericArguments(origType->getDecl(), origType);
}
Type visitNominalType(CanNominalType origType) {
auto decl = origType->getDecl();
if (decl->isGenericContext())
return generalizeGenericArguments(decl, origType);
return origType;
}
// Preserve existential structure.
Type visitExistentialType(CanExistentialType origType) {
return ExistentialType::get(
generalizeStructure(origType.getConstraintType()));
}
Type visitExistentialMetatypeType(CanExistentialMetatypeType origType) {
assert(!origType->hasRepresentation());
return ExistentialMetatypeType::get(
generalizeStructure(origType.getInstanceType()));
}
// These types can be generalized by a recursive transform of
// their component types; we don't need to exclude anything or
// handle conformances.
#define GENERALIZE_COMPONENTS(ID) \
Type visit##ID##Type(Can##ID##Type origType) { \
return generalizeComponentTypes(origType); \
}
GENERALIZE_COMPONENTS(Function)
GENERALIZE_COMPONENTS(Metatype)
GENERALIZE_COMPONENTS(Tuple)
#undef GENERALIZE_COMPONENTS
// These types can never contain component types with abstract
// constraints, so generalizeComponentType should always substitute
// them out.
#define NO_PRESERVABLE_STRUCTURE(ID) \
Type visit##ID##Type(Can##ID##Type origType) { \
llvm_unreachable(#ID "Type has no structure to preserve"); \
}
NO_PRESERVABLE_STRUCTURE(Archetype)
NO_PRESERVABLE_STRUCTURE(Builtin)
NO_PRESERVABLE_STRUCTURE(DependentMember)
NO_PRESERVABLE_STRUCTURE(GenericTypeParam)
NO_PRESERVABLE_STRUCTURE(Module)
NO_PRESERVABLE_STRUCTURE(Pack)
NO_PRESERVABLE_STRUCTURE(PackExpansion)
NO_PRESERVABLE_STRUCTURE(PackElement)
#undef NO_PRESERVABLE_STRUCTURE
// These types simply shouldn't appear in types that we generalize at all.
#define INVALID_TO_GENERALIZE(ID) \
Type visit##ID##Type(Can##ID##Type origType) { \
llvm_unreachable(#ID "type should not be found by generalization"); \
}
INVALID_TO_GENERALIZE(DynamicSelf)
INVALID_TO_GENERALIZE(Error)
INVALID_TO_GENERALIZE(GenericFunction)
INVALID_TO_GENERALIZE(InOut)
INVALID_TO_GENERALIZE(LValue)
INVALID_TO_GENERALIZE(ReferenceStorage)
INVALID_TO_GENERALIZE(SILBlockStorage)
INVALID_TO_GENERALIZE(SILBox)
INVALID_TO_GENERALIZE(SILFunction)
INVALID_TO_GENERALIZE(SILPack)
INVALID_TO_GENERALIZE(SILToken)
INVALID_TO_GENERALIZE(SILMoveOnlyWrapped)
#undef INVALID_TO_GENERALIZE
/// Generalize the generic arguments of the given generic type.s
Type generalizeGenericArguments(NominalTypeDecl *decl, CanType type) {
assert(decl->isGenericContext());
auto origSubs = type->getContextSubstitutionMap(decl->getModuleContext(),
decl);
// Generalize all of the arguments.
auto origArgs = origSubs.getReplacementTypes();
SmallVector<Type, 4> newArgs;
for (auto origArg: origArgs) {
newArgs.push_back(generalizeComponentType(CanType(origArg)));
}
// Generalize all of the conformances.
// TODO: for abstract requirements, we might not generalize all
// arguments, and we may need to leave corresponding conformances
// concrete.
SmallVector<ProtocolConformanceRef, 4> newConformances;
auto origConformances = origSubs.getConformances();
for (auto origConformance: origConformances) {
newConformances.push_back(
ProtocolConformanceRef(origConformance.getRequirement()));
}
auto origSig = origSubs.getGenericSignature();
auto newSubs = SubstitutionMap::get(origSig, newArgs, newConformances);
// Add any conformance requirements to the generic signature and
// remember the conformances we generalized.
if (!origConformances.empty()) {
size_t i = 0;
for (auto &origReq: origSig.getRequirements()) {
if (origReq.getKind() != RequirementKind::Conformance) continue;
auto origConformance = origConformances[i++];
auto newReq = origReq.subst(newSubs);
addedRequirements.push_back(newReq);
substConformances.insert({{newReq.getFirstType()->getCanonicalType(),
newReq.getProtocolDecl()},
origConformance});
}
}
// Build the new type.
return decl->getDeclaredInterfaceType().subst(newSubs);
}
/// Generalize the given type by preserving its top-level structure
/// but generalizing its component types.
Type generalizeComponentTypes(CanType type) {
return type.transformRec(
[&](TypeBase *componentType) -> std::optional<Type> {
// Ignore the top level.
if (componentType == type.getPointer())
return std::nullopt;
return generalizeComponentType(CanType(componentType));
});
}
Type generalizeComponentType(CanType origArg) {
// TODO: Abstract constraints (some P) introduce *existential*
// component types, which are not substitutable. Therefore, types
// containing them must be generalized preserving that structure
// rather than wholly substituted. They can appear in arbitrary
// positions, including within tuple, function, and metatype types,
// so we'll need to add cases for those to generalizeStructure
// above.
// Create a new generalization type parameter and record the
// substitution.
auto newParam = GenericTypeParamType::get(/*sequence*/ false,
/*depth*/ 0,
/*index*/ substTypes.size(),
ctx);
addedParameters.push_back(newParam);
substTypes.insert({CanType(newParam), origArg});
return newParam;
}
};
} // end anonymous namespace
ExistentialTypeGeneralization
ExistentialTypeGeneralization::get(Type rawType) {
assert(rawType->isAnyExistentialType());
// Canonicalize. We need to generalize the canonical shape of the
// type or else generalization parameters won't match up.
//
// TODO: in full generality, do we need to do *contextual*
// canonicalization in order to avoid introducing non-canonical
// parameters? (That is, do we need a contextual generic
// signature if given an interface type?)
CanType type = rawType->getCanonicalType();
Generalizer generalizer(type->getASTContext());
Type shape = generalizer.generalizeStructure(type);
auto subs = generalizer.getGeneralizationSubstitutions();
return {shape, subs};
}
|