1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095
|
//===--- NameLookup.cpp - Swift Name Lookup Routines ----------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements interfaces for performing name lookup.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/NameLookup.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/ASTVisitor.h"
#include "swift/AST/ASTWalker.h"
#include "swift/AST/ClangModuleLoader.h"
#include "swift/AST/DebuggerClient.h"
#include "swift/AST/ExistentialLayout.h"
#include "swift/AST/GenericParamList.h"
#include "swift/AST/GenericSignature.h"
#include "swift/AST/ImportCache.h"
#include "swift/AST/Initializer.h"
#include "swift/AST/LazyResolver.h"
#include "swift/AST/MacroDeclaration.h"
#include "swift/AST/ModuleNameLookup.h"
#include "swift/AST/NameLookupRequests.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/PotentialMacroExpansions.h"
#include "swift/AST/PropertyWrappers.h"
#include "swift/AST/SourceFile.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/Basic/Debug.h"
#include "swift/Basic/STLExtras.h"
#include "swift/Basic/SourceManager.h"
#include "swift/Basic/Statistic.h"
#include "swift/ClangImporter/ClangImporterRequests.h"
#include "swift/Parse/Lexer.h"
#include "swift/Strings.h"
#include "clang/AST/DeclObjC.h"
#include "clang/Basic/Specifiers.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "namelookup"
using namespace swift;
using namespace swift::namelookup;
void VisibleDeclConsumer::anchor() {}
void VectorDeclConsumer::anchor() {}
ValueDecl *LookupResultEntry::getBaseDecl() const {
if (BaseDC == nullptr)
return nullptr;
return BaseDecl;
}
void LookupResult::filter(
llvm::function_ref<bool(LookupResultEntry, bool)> pred) {
size_t index = 0;
size_t originalFirstOuter = IndexOfFirstOuterResult;
Results.erase(std::remove_if(Results.begin(), Results.end(),
[&](LookupResultEntry result) -> bool {
auto isInner = index < originalFirstOuter;
++index;
if (pred(result, !isInner))
return false;
// Need to remove this, which means, if it is
// an inner result, the outer results need to
// shift down.
if (isInner)
--IndexOfFirstOuterResult;
return true;
}),
Results.end());
}
void LookupResult::shiftDownResults() {
// Remove inner results.
Results.erase(Results.begin(), Results.begin() + IndexOfFirstOuterResult);
IndexOfFirstOuterResult = 0;
if (Results.empty())
return;
// Compute IndexOfFirstOuterResult.
const DeclContext *dcInner = Results.front().getValueDecl()->getDeclContext();
for (auto &&result : Results) {
const DeclContext *dc = result.getValueDecl()->getDeclContext();
if (dc == dcInner ||
(dc->isModuleScopeContext() && dcInner->isModuleScopeContext()))
++IndexOfFirstOuterResult;
else
break;
}
}
void swift::simple_display(llvm::raw_ostream &out,
UnqualifiedLookupOptions options) {
using Flag = std::pair<UnqualifiedLookupFlags, StringRef>;
Flag possibleFlags[] = {
{UnqualifiedLookupFlags::AllowProtocolMembers, "AllowProtocolMembers"},
{UnqualifiedLookupFlags::IgnoreAccessControl, "IgnoreAccessControl"},
{UnqualifiedLookupFlags::IncludeOuterResults, "IncludeOuterResults"},
{UnqualifiedLookupFlags::TypeLookup, "TypeLookup"},
{UnqualifiedLookupFlags::MacroLookup, "MacroLookup"},
{UnqualifiedLookupFlags::ModuleLookup, "ModuleLookup"},
};
auto flagsToPrint = llvm::make_filter_range(
possibleFlags, [&](Flag flag) { return options.contains(flag.first); });
out << "{ ";
interleave(
flagsToPrint, [&](Flag flag) { out << flag.second; },
[&] { out << ", "; });
out << " }";
}
void DebuggerClient::anchor() {}
void AccessFilteringDeclConsumer::foundDecl(
ValueDecl *D, DeclVisibilityKind reason,
DynamicLookupInfo dynamicLookupInfo) {
if (!D->isAccessibleFrom(DC))
return;
ChainedConsumer.foundDecl(D, reason, dynamicLookupInfo);
}
void UsableFilteringDeclConsumer::foundDecl(
ValueDecl *D, DeclVisibilityKind reason,
DynamicLookupInfo dynamicLookupInfo) {
switch (reason) {
case DeclVisibilityKind::LocalDecl:
case DeclVisibilityKind::FunctionParameter:
// A type context cannot close over variables defined in outer type
// contexts.
if (isa<VarDecl>(D) &&
D->getDeclContext()->getInnermostTypeContext() != typeContext) {
return;
}
break;
case DeclVisibilityKind::MemberOfOutsideNominal:
case DeclVisibilityKind::MemberOfCurrentNominal:
case DeclVisibilityKind::MemberOfSuper:
case DeclVisibilityKind::MemberOfProtocolConformedToByCurrentNominal:
case DeclVisibilityKind::MemberOfProtocolDerivedByCurrentNominal:
case DeclVisibilityKind::DynamicLookup:
// Members on 'Self' including inherited/derived ones are always usable.
break;
case DeclVisibilityKind::GenericParameter:
// Generic params are type decls and are always usable from nested context.
break;
case DeclVisibilityKind::VisibleAtTopLevel: {
// Skip when Loc is within the decl's own initializer. We only need to do
// this for top-level decls since local decls are already excluded from
// their own initializer by virtue of the ASTScope lookup.
if (auto *VD = dyn_cast<VarDecl>(D)) {
// Only check if the VarDecl has the same (or parent) context to avoid
// grabbing the end location for every decl with an initializer
if (auto *init = VD->getParentInitializer()) {
auto *varContext = VD->getDeclContext();
if (DC == varContext || DC->isChildContextOf(varContext)) {
auto initRange = Lexer::getCharSourceRangeFromSourceRange(
SM, init->getSourceRange());
if (initRange.isValid() && initRange.contains(Loc))
return;
}
}
}
break;
}
}
// Filter out shadowed decls. Do this for only usable values even though
// unusable values actually can shadow outer values, because compilers might
// be able to diagnose it with fix-it to add the qualification. E.g.
// func foo(global: T) {}
// struct Outer {
// func foo(outer: T) {}
// func test() {
// struct Inner {
// func test() {
// <HERE>
// }
// }
// }
// }
// In this case 'foo(global:)' is shadowed by 'foo(outer:)', but 'foo(outer:)'
// is _not_ usable because it's outside the current type context, whereas
// 'foo(global:)' is still usable with 'ModuleName.' qualification.
// FIXME: (for code completion,) If a global value or a static type member is
// shadowd, we should suggest it with prefix (e.g. 'ModuleName.value').
auto inserted = SeenNames.insert({D->getBaseName(), {D, reason}});
if (!inserted.second) {
auto shadowingReason = inserted.first->second.second;
auto *shadowingD = inserted.first->second.first;
// A type decl cannot have overloads, and shadows everything outside the
// scope.
if (isa<TypeDecl>(shadowingD))
return;
switch (shadowingReason) {
case DeclVisibilityKind::LocalDecl:
case DeclVisibilityKind::FunctionParameter:
// Local func and var/let with a conflicting name.
// func foo() {
// func value(arg: Int) {}
// var value = ""
// }
// In this case, 'var value' wins, regardless of their source order.
// So, for confilicting local values in the same decl context, even if the
// 'var value' is reported after 'func value', don't shadow it, but we
// shadow everything with the name after that.
if (reason == DeclVisibilityKind::LocalDecl &&
isa<VarDecl>(D) && !isa<VarDecl>(shadowingD) &&
shadowingD->getDeclContext() == D->getDeclContext()) {
// Replace the shadowing decl so we shadow subsequent conflicting decls.
inserted.first->second = {D, reason};
break;
}
// Otherwise, a local value shadows everything outside the scope.
return;
case DeclVisibilityKind::GenericParameter:
// A Generic parameter is a type name. It shadows everything outside the
// generic context.
return;
case DeclVisibilityKind::MemberOfCurrentNominal:
case DeclVisibilityKind::MemberOfSuper:
case DeclVisibilityKind::MemberOfProtocolConformedToByCurrentNominal:
case DeclVisibilityKind::MemberOfProtocolDerivedByCurrentNominal:
case DeclVisibilityKind::DynamicLookup:
switch (reason) {
case DeclVisibilityKind::MemberOfCurrentNominal:
case DeclVisibilityKind::MemberOfSuper:
case DeclVisibilityKind::MemberOfProtocolConformedToByCurrentNominal:
case DeclVisibilityKind::MemberOfProtocolDerivedByCurrentNominal:
case DeclVisibilityKind::DynamicLookup:
// Members on the current type context don't shadow members with the
// same base name on the current type contxt. They are overloads.
break;
default:
// Members of a type context shadows values/types outside.
return;
}
break;
case DeclVisibilityKind::MemberOfOutsideNominal:
// For static values, it's unclear _which_ type context (i.e. this type,
// super classes, conforming protocols) this decl was found in. For now,
// consider all the outer nominals are the same.
if (reason == DeclVisibilityKind::MemberOfOutsideNominal)
break;
// Values outside the nominal are shadowed.
return;
case DeclVisibilityKind::VisibleAtTopLevel:
// Top level decls don't shadow anything.
// Well, that's not true. Decls in the current module shadows decls in
// the imported modules. But we don't care them here.
break;
}
}
ChainedConsumer.foundDecl(D, reason, dynamicLookupInfo);
}
void LookupResultEntry::print(llvm::raw_ostream& out) const {
getValueDecl()->print(out);
if (auto dc = getBaseDecl()) {
out << "\nbase: ";
dc->print(out);
out << "\n";
} else
out << "\n(no-base)\n";
}
bool swift::removeOverriddenDecls(SmallVectorImpl<ValueDecl*> &decls) {
if (decls.size() < 2)
return false;
llvm::SmallPtrSet<ValueDecl*, 8> overridden;
for (auto decl : decls) {
// Don't look at the overrides of operators in protocols. The global
// lookup of operators means that we can find overriding operators that
// aren't relevant to the types in hand, and will fail to type check.
if (isa<ProtocolDecl>(decl->getDeclContext())) {
if (auto func = dyn_cast<FuncDecl>(decl))
if (func->isOperator())
continue;
}
while (auto overrides = decl->getOverriddenDecl()) {
overridden.insert(overrides);
// Because initializers from Objective-C base classes have greater
// visibility than initializers written in Swift classes, we can
// have a "break" in the set of declarations we found, where
// C.init overrides B.init overrides A.init, but only C.init and
// A.init are in the chain. Make sure we still remove A.init from the
// set in this case.
if (decl->getBaseName().isConstructor()) {
/// FIXME: Avoid the possibility of an infinite loop by fixing the root
/// cause instead (incomplete circularity detection).
assert(decl != overrides && "Circular class inheritance?");
decl = overrides;
continue;
}
break;
}
}
// If no methods were overridden, we're done.
if (overridden.empty()) return false;
// Erase any overridden declarations
bool anyOverridden = false;
decls.erase(std::remove_if(decls.begin(), decls.end(),
[&](ValueDecl *decl) -> bool {
if (overridden.count(decl) > 0) {
anyOverridden = true;
return true;
}
return false;
}),
decls.end());
return anyOverridden;
}
enum class ConstructorComparison {
Worse,
Same,
Better,
};
/// Determines whether \p ctor1 is a "better" initializer than \p ctor2.
static ConstructorComparison compareConstructors(ConstructorDecl *ctor1,
ConstructorDecl *ctor2,
const swift::ASTContext &ctx) {
bool available1 = !ctor1->getAttrs().isUnavailable(ctx);
bool available2 = !ctor2->getAttrs().isUnavailable(ctx);
// An unavailable initializer is always worse than an available initializer.
if (available1 < available2)
return ConstructorComparison::Worse;
if (available1 > available2)
return ConstructorComparison::Better;
CtorInitializerKind kind1 = ctor1->getInitKind();
CtorInitializerKind kind2 = ctor2->getInitKind();
if (kind1 > kind2)
return ConstructorComparison::Worse;
if (kind1 < kind2)
return ConstructorComparison::Better;
return ConstructorComparison::Same;
}
/// Given a set of declarations whose names and interface types have matched,
/// figure out which of these declarations have been shadowed by others.
template <typename T>
static void recordShadowedDeclsAfterTypeMatch(
ArrayRef<T> decls,
const DeclContext *dc,
llvm::SmallPtrSetImpl<T> &shadowed) {
assert(decls.size() > 1 && "Nothing collided");
// Compare each declaration to every other declaration. This is
// unavoidably O(n^2) in the number of declarations, but because they
// all have the same signature, we expect n to remain small.
auto *curModule = dc->getParentModule();
ASTContext &ctx = curModule->getASTContext();
auto &imports = ctx.getImportCache();
for (unsigned firstIdx : indices(decls)) {
auto firstDecl = decls[firstIdx];
auto firstModule = firstDecl->getModuleContext();
bool firstTopLevel = firstDecl->getDeclContext()->isModuleScopeContext();
auto name = firstDecl->getBaseName();
auto isShadowed = [&](ArrayRef<ImportPath::Access> paths) {
for (auto path : paths) {
if (path.matches(name))
return false;
}
return true;
};
auto isScopedImport = [&](ArrayRef<ImportPath::Access> paths) {
for (auto path : paths) {
if (path.empty())
continue;
if (path.matches(name))
return true;
}
return false;
};
auto isPrivateImport = [&](ModuleDecl *module) {
auto file = dc->getParentSourceFile();
if (!file) return false;
for (const auto &import : file->getImports()) {
if (import.options.contains(ImportFlags::PrivateImport)
&& import.module.importedModule == module
&& import.module.accessPath.matches(name))
return true;
}
return false;
};
bool firstPrivate = isPrivateImport(firstModule);
for (unsigned secondIdx : range(firstIdx + 1, decls.size())) {
// Determine whether one module takes precedence over another.
auto secondDecl = decls[secondIdx];
auto secondModule = secondDecl->getModuleContext();
bool secondTopLevel = secondDecl->getDeclContext()->isModuleScopeContext();
bool secondPrivate = isPrivateImport(secondModule);
// For member types, we skip most of the below rules. Instead, we allow
// member types defined in a subclass to shadow member types defined in
// a superclass.
if (isa<TypeDecl>(firstDecl) &&
isa<TypeDecl>(secondDecl) &&
!firstTopLevel &&
!secondTopLevel) {
auto *firstClass = firstDecl->getDeclContext()->getSelfClassDecl();
auto *secondClass = secondDecl->getDeclContext()->getSelfClassDecl();
if (firstClass && secondClass && firstClass != secondClass) {
if (firstClass->isSuperclassOf(secondClass)) {
shadowed.insert(firstDecl);
continue;
} else if (secondClass->isSuperclassOf(firstClass)) {
shadowed.insert(secondDecl);
continue;
}
}
// If one declaration is in a protocol or extension thereof and the
// other is not, prefer the one that is not.
if ((bool)firstDecl->getDeclContext()->getSelfProtocolDecl() !=
(bool)secondDecl->getDeclContext()->getSelfProtocolDecl()) {
if (firstDecl->getDeclContext()->getSelfProtocolDecl()) {
shadowed.insert(firstDecl);
break;
} else {
shadowed.insert(secondDecl);
continue;
}
}
continue;
}
// Top-level type declarations in a module shadow other declarations
// visible through the module's imports.
//
// [Backward compatibility] Note that members of types have the same
// shadowing check, but we do it after dropping unavailable members.
if (firstModule != secondModule &&
firstTopLevel && secondTopLevel) {
auto firstPaths = imports.getAllAccessPathsNotShadowedBy(
firstModule, secondModule, dc);
auto secondPaths = imports.getAllAccessPathsNotShadowedBy(
secondModule, firstModule, dc);
// Check if one module shadows the other.
if (isShadowed(firstPaths)) {
shadowed.insert(firstDecl);
break;
} else if (isShadowed(secondPaths)) {
shadowed.insert(secondDecl);
continue;
}
// If neither module shadows the other, but one was imported with
// '@_private import' in dc, we want to favor that module. This makes
// name lookup in this file behave more like name lookup in the file we
// imported from, avoiding headaches for source-transforming tools.
if (!firstPrivate && secondPrivate) {
shadowed.insert(firstDecl);
break;
} else if (firstPrivate && !secondPrivate) {
shadowed.insert(secondDecl);
continue;
}
// We might be in a situation where neither module shadows the
// other, but one declaration is visible via a scoped import.
bool firstScoped = isScopedImport(firstPaths);
bool secondScoped = isScopedImport(secondPaths);
if (!firstScoped && secondScoped) {
shadowed.insert(firstDecl);
break;
} else if (firstScoped && !secondScoped) {
shadowed.insert(secondDecl);
continue;
}
}
// Swift 4 compatibility hack: Don't shadow properties defined in
// extensions of generic types with properties defined elsewhere.
// This is due to the fact that in Swift 4, we only gave custom overload
// types to properties in extensions of generic types, otherwise we
// used the null type.
if (!ctx.isSwiftVersionAtLeast(5) && isa<ValueDecl>(firstDecl)) {
auto secondSig = cast<ValueDecl>(secondDecl)->getOverloadSignature();
auto firstSig = cast<ValueDecl>(firstDecl)->getOverloadSignature();
if (firstSig.IsVariable && secondSig.IsVariable)
if (firstSig.InExtensionOfGenericType !=
secondSig.InExtensionOfGenericType)
continue;
}
// If one declaration is in a protocol or extension thereof and the
// other is not, prefer the one that is not.
if ((bool)firstDecl->getDeclContext()->getSelfProtocolDecl() !=
(bool)secondDecl->getDeclContext()->getSelfProtocolDecl()) {
if (firstDecl->getDeclContext()->getSelfProtocolDecl()) {
shadowed.insert(firstDecl);
break;
} else {
shadowed.insert(secondDecl);
continue;
}
}
// If one declaration is available and the other is not, prefer the
// available one.
if (firstDecl->getAttrs().isUnavailable(ctx) !=
secondDecl->getAttrs().isUnavailable(ctx)) {
if (firstDecl->getAttrs().isUnavailable(ctx)) {
shadowed.insert(firstDecl);
break;
} else {
shadowed.insert(secondDecl);
continue;
}
}
// Don't apply module-shadowing rules to members of protocol types.
if (isa<ProtocolDecl>(firstDecl->getDeclContext()) ||
isa<ProtocolDecl>(secondDecl->getDeclContext()))
continue;
// [Backward compatibility] For members of types, the general module
// shadowing check is performed after unavailable candidates have
// already been dropped.
if (firstModule != secondModule &&
!firstTopLevel && !secondTopLevel) {
auto firstPaths = imports.getAllAccessPathsNotShadowedBy(
firstModule, secondModule, dc);
auto secondPaths = imports.getAllAccessPathsNotShadowedBy(
secondModule, firstModule, dc);
// Check if one module shadows the other.
if (isShadowed(firstPaths)) {
shadowed.insert(firstDecl);
break;
} else if (isShadowed(secondPaths)) {
shadowed.insert(secondDecl);
continue;
}
}
// Prefer declarations in the any module over those in the standard
// library module.
if (auto swiftModule = ctx.getStdlibModule()) {
if ((firstModule == swiftModule) != (secondModule == swiftModule)) {
// If the second module is the standard library module, the second
// declaration is shadowed by the first.
if (secondModule == swiftModule) {
shadowed.insert(secondDecl);
continue;
}
// Otherwise, the first declaration is shadowed by the second. There is
// no point in continuing to compare the first declaration to others.
shadowed.insert(firstDecl);
break;
}
}
// Next, prefer any other module over the _Concurrency module.
if (auto concurModule = ctx.getLoadedModule(ctx.Id_Concurrency)) {
if ((firstModule == concurModule) != (secondModule == concurModule)) {
// If second module is _Concurrency, then it is shadowed by first.
if (secondModule == concurModule) {
shadowed.insert(secondDecl);
continue;
}
// Otherwise, the first declaration is shadowed by the second.
shadowed.insert(firstDecl);
break;
}
}
// Next, prefer any other module over the _StringProcessing module.
if (auto spModule = ctx.getLoadedModule(ctx.Id_StringProcessing)) {
if ((firstModule == spModule) != (secondModule == spModule)) {
// If second module is _StringProcessing, then it is shadowed by
// first.
if (secondModule == spModule) {
shadowed.insert(secondDecl);
continue;
}
// Otherwise, the first declaration is shadowed by the second.
shadowed.insert(firstDecl);
break;
}
}
// Next, prefer any other module over the _Backtracing module.
if (auto spModule = ctx.getLoadedModule(ctx.Id_Backtracing)) {
if ((firstModule == spModule) != (secondModule == spModule)) {
// If second module is _StringProcessing, then it is shadowed by
// first.
if (secondModule == spModule) {
shadowed.insert(secondDecl);
continue;
}
// Otherwise, the first declaration is shadowed by the second.
shadowed.insert(firstDecl);
break;
}
}
// Next, prefer any other module over the Observation module.
if (auto obsModule = ctx.getLoadedModule(ctx.Id_Observation)) {
if ((firstModule == obsModule) != (secondModule == obsModule)) {
// If second module is (_)Observation, then it is shadowed by
// first.
if (secondModule == obsModule) {
shadowed.insert(secondDecl);
continue;
}
// Otherwise, the first declaration is shadowed by the second.
shadowed.insert(firstDecl);
break;
}
}
// The Foundation overlay introduced Data.withUnsafeBytes, which is
// treated as being ambiguous with SwiftNIO's Data.withUnsafeBytes
// extension. Apply a special-case name shadowing rule to use the
// latter rather than the former, which be the consequence of a more
// significant change to name shadowing in the future.
if (auto owningStruct1
= firstDecl->getDeclContext()->getSelfStructDecl()) {
if (auto owningStruct2
= secondDecl->getDeclContext()->getSelfStructDecl()) {
if (owningStruct1 == owningStruct2 &&
owningStruct1->getName().is("Data") &&
isa<FuncDecl>(firstDecl) && isa<FuncDecl>(secondDecl) &&
firstDecl->getName() == secondDecl->getName() &&
firstDecl->getBaseName().userFacingName() == "withUnsafeBytes") {
// If the second module is the Foundation module and the first
// is the NIOFoundationCompat module, the second is shadowed by the
// first.
if (firstDecl->getModuleContext()->getName()
.is("NIOFoundationCompat") &&
secondDecl->getModuleContext()->getName().is("Foundation")) {
shadowed.insert(secondDecl);
continue;
}
// If it's the other way around, the first declaration is shadowed
// by the second.
if (secondDecl->getModuleContext()->getName()
.is("NIOFoundationCompat") &&
firstDecl->getModuleContext()->getName().is("Foundation")) {
shadowed.insert(firstDecl);
break;
}
}
}
}
// Prefer declarations in an overlay to similar declarations in
// the Clang module it customizes.
if (firstDecl->hasClangNode() != secondDecl->hasClangNode()) {
auto clangLoader = ctx.getClangModuleLoader();
if (!clangLoader) continue;
if (clangLoader->isInOverlayModuleForImportedModule(
firstDecl->getDeclContext(),
secondDecl->getDeclContext())) {
shadowed.insert(secondDecl);
continue;
}
if (clangLoader->isInOverlayModuleForImportedModule(
secondDecl->getDeclContext(),
firstDecl->getDeclContext())) {
shadowed.insert(firstDecl);
break;
}
}
}
}
}
/// Return an extended info for a function types that removes the use of
/// the thrown error type, if present.
///
/// Returns \c None when no adjustment is needed.
static std::optional<ASTExtInfo>
extInfoRemovingThrownError(AnyFunctionType *fnType) {
if (!fnType->hasExtInfo())
return std::nullopt;
auto extInfo = fnType->getExtInfo();
if (!extInfo.isThrowing() || !extInfo.getThrownError())
return std::nullopt;
return extInfo.withThrows(true, Type());
}
/// Remove the thrown error type.
static CanType removeThrownError(Type type) {
return type.transformRec([](TypeBase *type) -> std::optional<Type> {
if (auto funcTy = dyn_cast<FunctionType>(type)) {
if (auto newExtInfo = extInfoRemovingThrownError(funcTy)) {
return FunctionType::get(
funcTy->getParams(), funcTy->getResult(), *newExtInfo)
->getCanonicalType();
}
return std::nullopt;
}
if (auto genericFuncTy = dyn_cast<GenericFunctionType>(type)) {
if (auto newExtInfo = extInfoRemovingThrownError(genericFuncTy)) {
return GenericFunctionType::get(
genericFuncTy->getGenericSignature(),
genericFuncTy->getParams(), genericFuncTy->getResult(),
*newExtInfo)
->getCanonicalType();
}
return std::nullopt;
}
return std::nullopt;
})->getCanonicalType();
}
/// Given a set of declarations whose names and generic signatures have matched,
/// figure out which of these declarations have been shadowed by others.
static void recordShadowedDeclsAfterSignatureMatch(
ArrayRef<ValueDecl *> decls,
const DeclContext *dc,
llvm::SmallPtrSetImpl<ValueDecl *> &shadowed) {
assert(decls.size() > 1 && "Nothing collided");
// Categorize all of the declarations based on their overload types.
llvm::SmallDenseMap<CanType, llvm::TinyPtrVector<ValueDecl *>> collisions;
llvm::SmallVector<CanType, 2> collisionTypes;
for (auto decl : decls) {
assert(!isa<TypeDecl>(decl));
CanType type;
// FIXME: The type of a variable or subscript doesn't include
// enough context to distinguish entities from different
// constrained extensions, so use the overload signature's
// type. This is layering a partial fix upon a total hack.
if (auto asd = dyn_cast<AbstractStorageDecl>(decl))
type = asd->getOverloadSignatureType();
else
type = removeThrownError(decl->getInterfaceType()->getCanonicalType());
// Record this declaration based on its signature.
auto &known = collisions[type];
if (known.size() == 1) {
collisionTypes.push_back(type);
}
known.push_back(decl);
}
// Check whether we have shadowing for signature collisions.
for (auto type : collisionTypes) {
ArrayRef<ValueDecl *> collidingDecls = collisions[type];
recordShadowedDeclsAfterTypeMatch(collidingDecls, dc,
shadowed);
}
}
/// Look through the given set of declarations (that all have the same name),
/// recording those that are shadowed by another declaration in the
/// \c shadowed set.
static void recordShadowedDeclsForImportedInits(
ArrayRef<ConstructorDecl *> ctors,
llvm::SmallPtrSetImpl<ValueDecl *> &shadowed) {
assert(ctors.size() > 1 && "No collisions");
ASTContext &ctx = ctors.front()->getASTContext();
// Find the "best" constructor with this signature.
ConstructorDecl *bestCtor = ctors[0];
for (auto ctor : ctors.slice(1)) {
auto comparison = compareConstructors(ctor, bestCtor, ctx);
if (comparison == ConstructorComparison::Better)
bestCtor = ctor;
}
// Shadow any initializers that are worse.
for (auto ctor : ctors) {
auto comparison = compareConstructors(ctor, bestCtor, ctx);
if (comparison == ConstructorComparison::Worse)
shadowed.insert(ctor);
}
}
/// Look through the given set of declarations (that all have the same name),
/// recording those that are shadowed by another declaration in the
/// \c shadowed set.
static void recordShadowedDecls(ArrayRef<ValueDecl *> decls,
const DeclContext *dc,
llvm::SmallPtrSetImpl<ValueDecl *> &shadowed) {
if (decls.size() < 2)
return;
llvm::TinyPtrVector<ValueDecl *> typeDecls;
// Categorize all of the declarations based on their overload signatures.
llvm::SmallDenseMap<const GenericSignatureImpl *,
llvm::TinyPtrVector<ValueDecl *>> collisions;
llvm::SmallVector<const GenericSignatureImpl *, 2> collisionSignatures;
llvm::SmallDenseMap<NominalTypeDecl *,
llvm::TinyPtrVector<ConstructorDecl *>>
importedInitializerCollisions;
llvm::TinyPtrVector<NominalTypeDecl *> importedInitializerCollisionTypes;
for (auto decl : decls) {
if (auto *typeDecl = dyn_cast<TypeDecl>(decl)) {
typeDecls.push_back(typeDecl);
continue;
}
// Specifically keep track of imported initializers, which can come from
// Objective-C init methods, Objective-C factory methods, renamed C
// functions, or be synthesized by the importer.
if (decl->hasClangNode() ||
(isa<NominalTypeDecl>(decl->getDeclContext()) &&
cast<NominalTypeDecl>(decl->getDeclContext())->hasClangNode())) {
if (auto ctor = dyn_cast<ConstructorDecl>(decl)) {
auto nominal = ctor->getDeclContext()->getSelfNominalTypeDecl();
auto &knownInits = importedInitializerCollisions[nominal];
if (knownInits.size() == 1) {
importedInitializerCollisionTypes.push_back(nominal);
}
knownInits.push_back(ctor);
}
}
// If the decl is currently being validated, this is likely a recursive
// reference and we'll want to skip ahead so as to avoid having its type
// attempt to desugar itself.
if (decl->isRecursiveValidation())
continue;
// Record this declaration based on its signature.
auto *dc = decl->getInnermostDeclContext();
auto signature = dc->getGenericSignatureOfContext().getCanonicalSignature();
auto &known = collisions[signature.getPointer()];
if (known.size() == 1) {
collisionSignatures.push_back(signature.getPointer());
}
known.push_back(decl);
}
// Check whether we have shadowing for type declarations.
if (typeDecls.size() > 1) {
ArrayRef<ValueDecl *> collidingDecls = typeDecls;
recordShadowedDeclsAfterTypeMatch(collidingDecls, dc, shadowed);
}
// Check whether we have shadowing for signature collisions.
for (auto signature : collisionSignatures) {
ArrayRef<ValueDecl *> collidingDecls = collisions[signature];
recordShadowedDeclsAfterSignatureMatch(collidingDecls, dc, shadowed);
}
// Check whether we have shadowing for imported initializer collisions.
for (auto nominal : importedInitializerCollisionTypes) {
recordShadowedDeclsForImportedInits(importedInitializerCollisions[nominal],
shadowed);
}
}
static void
recordShadowedDecls(ArrayRef<OperatorDecl *> decls, const DeclContext *dc,
llvm::SmallPtrSetImpl<OperatorDecl *> &shadowed) {
// Always considered to have the same signature.
recordShadowedDeclsAfterTypeMatch(decls, dc, shadowed);
}
static void
recordShadowedDecls(ArrayRef<PrecedenceGroupDecl *> decls,
const DeclContext *dc,
llvm::SmallPtrSetImpl<PrecedenceGroupDecl *> &shadowed) {
// Always considered to have the same type.
recordShadowedDeclsAfterTypeMatch(decls, dc, shadowed);
}
template <typename T, typename Container>
static bool removeShadowedDeclsImpl(Container &decls, const DeclContext *dc) {
// Collect declarations with the same (full) name.
llvm::SmallDenseMap<DeclName, llvm::TinyPtrVector<T>> collidingDeclGroups;
bool anyCollisions = false;
for (auto decl : decls) {
// Record this declaration based on its full name.
auto &knownDecls = collidingDeclGroups[decl->getName()];
if (!knownDecls.empty())
anyCollisions = true;
knownDecls.push_back(decl);
}
// If nothing collided, we're done.
if (!anyCollisions)
return false;
// Walk through the declarations again, marking any declarations that shadow.
llvm::SmallPtrSet<T, 4> shadowed;
for (auto decl : decls) {
auto known = collidingDeclGroups.find(decl->getName());
if (known == collidingDeclGroups.end()) {
// We already handled this group.
continue;
}
recordShadowedDecls(known->second, dc, shadowed);
collidingDeclGroups.erase(known);
}
// If no declarations were shadowed, we're done.
if (shadowed.empty())
return false;
// Remove shadowed declarations from the list of declarations.
bool anyRemoved = false;
decls.erase(std::remove_if(decls.begin(), decls.end(),
[&](T decl) {
if (shadowed.count(decl) > 0) {
anyRemoved = true;
return true;
}
return false;
}),
decls.end());
return anyRemoved;
}
bool swift::removeShadowedDecls(SmallVectorImpl<ValueDecl *> &decls,
const DeclContext *dc) {
return removeShadowedDeclsImpl<ValueDecl *>(decls, dc);
}
bool swift::removeShadowedDecls(TinyPtrVector<OperatorDecl *> &decls,
const DeclContext *dc) {
#ifndef NDEBUG
// Make sure all the operators have the same fixity.
if (decls.size() > 1) {
for (auto *op : decls)
assert(op->getFixity() == decls[0]->getFixity());
}
#endif
return removeShadowedDeclsImpl<OperatorDecl *>(decls, dc);
}
bool swift::removeShadowedDecls(TinyPtrVector<PrecedenceGroupDecl *> &decls,
const DeclContext *dc) {
return removeShadowedDeclsImpl<PrecedenceGroupDecl *>(decls, dc);
}
namespace {
enum class DiscriminatorMatch {
NoDiscriminator,
Matches,
Different
};
} // end anonymous namespace
static DiscriminatorMatch matchDiscriminator(Identifier discriminator,
const ValueDecl *value) {
if (value->getFormalAccess() > AccessLevel::FilePrivate)
return DiscriminatorMatch::NoDiscriminator;
auto containingFile =
dyn_cast<FileUnit>(value->getDeclContext()->getModuleScopeContext());
if (!containingFile)
return DiscriminatorMatch::Different;
if (discriminator == containingFile->getDiscriminatorForPrivateDecl(value))
return DiscriminatorMatch::Matches;
return DiscriminatorMatch::Different;
}
static DiscriminatorMatch
matchDiscriminator(Identifier discriminator,
LookupResultEntry lookupResult) {
return matchDiscriminator(discriminator, lookupResult.getValueDecl());
}
template <typename Result>
void namelookup::filterForDiscriminator(SmallVectorImpl<Result> &results,
DebuggerClient *debugClient) {
if (debugClient == nullptr)
return;
Identifier discriminator = debugClient->getPreferredPrivateDiscriminator();
if (discriminator.empty())
return;
auto lastMatchIter = std::find_if(results.rbegin(), results.rend(),
[discriminator](Result next) -> bool {
return
matchDiscriminator(discriminator, next) == DiscriminatorMatch::Matches;
});
if (lastMatchIter == results.rend())
return;
Result lastMatch = *lastMatchIter;
auto newEnd = std::remove_if(results.begin(), lastMatchIter.base()-1,
[discriminator](Result next) -> bool {
return
matchDiscriminator(discriminator, next) == DiscriminatorMatch::Different;
});
results.erase(newEnd, results.end());
results.push_back(lastMatch);
}
template void namelookup::filterForDiscriminator<LookupResultEntry>(
SmallVectorImpl<LookupResultEntry> &results, DebuggerClient *debugClient);
namespace {
/// Whether we're looking up outer results or not.
enum class LookupOuterResults {
Excluded,
Included
};
}
/// Retrieve the set of type declarations that are directly referenced from
/// the given parsed type representation.
static DirectlyReferencedTypeDecls
directReferencesForTypeRepr(Evaluator &evaluator, ASTContext &ctx,
TypeRepr *typeRepr, DeclContext *dc,
bool allowUsableFromInline,
bool rhsOfSelfRequirement,
bool allowProtocolMembers);
/// Retrieve the set of type declarations that are directly referenced from
/// the given type.
static DirectlyReferencedTypeDecls directReferencesForType(Type type);
enum class ResolveToNominalFlags : uint8_t {
AllowTupleType = 0x1
};
using ResolveToNominalOptions = OptionSet<ResolveToNominalFlags>;
/// Given a set of type declarations, find all of the nominal type declarations
/// that they reference, looking through typealiases as appropriate.
static TinyPtrVector<NominalTypeDecl *>
resolveTypeDeclsToNominal(Evaluator &evaluator,
ASTContext &ctx,
ArrayRef<TypeDecl *> typeDecls,
ResolveToNominalOptions options,
SmallVectorImpl<ModuleDecl *> &modulesFound,
bool &anyObject);
SelfBounds SelfBoundsFromWhereClauseRequest::evaluate(
Evaluator &evaluator,
llvm::PointerUnion<const TypeDecl *, const ExtensionDecl *> decl) const {
auto *typeDecl = decl.dyn_cast<const TypeDecl *>();
auto *protoDecl = dyn_cast_or_null<const ProtocolDecl>(typeDecl);
auto *extDecl = decl.dyn_cast<const ExtensionDecl *>();
const DeclContext *dc =
protoDecl ? (const DeclContext *)protoDecl : (const DeclContext *)extDecl;
auto requirements = protoDecl ? protoDecl->getTrailingWhereClause()
: extDecl->getTrailingWhereClause();
ASTContext &ctx = dc->getASTContext();
SelfBounds result;
if (requirements == nullptr)
return result;
for (const auto &req : requirements->getRequirements()) {
// We only care about type constraints.
if (req.getKind() != RequirementReprKind::TypeConstraint)
continue;
// The left-hand side of the type constraint must be 'Self'.
bool isSelfLHS = false;
if (auto typeRepr = req.getSubjectRepr()) {
isSelfLHS = typeRepr->isSimpleUnqualifiedIdentifier(ctx.Id_Self);
}
if (!isSelfLHS)
continue;
// Resolve the right-hand side.
DirectlyReferencedTypeDecls rhsDecls;
if (auto typeRepr = req.getConstraintRepr()) {
rhsDecls = directReferencesForTypeRepr(evaluator, ctx, typeRepr,
const_cast<DeclContext *>(dc),
/*allowUsableFromInline=*/false,
/*rhsOfSelfRequirement=*/true,
/*allowProtocolMembers=*/true);
}
SmallVector<ModuleDecl *, 2> modulesFound;
auto rhsNominals = resolveTypeDeclsToNominal(evaluator, ctx, rhsDecls.first,
ResolveToNominalOptions(),
modulesFound,
result.anyObject);
result.decls.insert(result.decls.end(),
rhsNominals.begin(),
rhsNominals.end());
// Collect inverse markings on 'Self'.
result.inverses.insertAll(rhsDecls.second);
}
return result;
}
SelfBounds swift::getSelfBoundsFromWhereClause(
llvm::PointerUnion<const TypeDecl *, const ExtensionDecl *> decl) {
auto *typeDecl = decl.dyn_cast<const TypeDecl *>();
auto *extDecl = decl.dyn_cast<const ExtensionDecl *>();
auto &ctx = typeDecl ? typeDecl->getASTContext()
: extDecl->getASTContext();
return evaluateOrDefault(ctx.evaluator,
SelfBoundsFromWhereClauseRequest{decl}, {});
}
SelfBounds SelfBoundsFromGenericSignatureRequest::evaluate(
Evaluator &evaluator, const ExtensionDecl *extDecl) const {
SelfBounds result;
auto selfType = extDecl->getSelfInterfaceType();
for (const auto &req : extDecl->getGenericRequirements()) {
auto kind = req.getKind();
if (kind != RequirementKind::Conformance &&
kind != RequirementKind::Superclass)
continue;
// The left-hand side of the type constraint must be 'Self'.
if (!selfType->isEqual(req.getFirstType()))
continue;
result.decls.push_back(req.getSecondType()->getAnyNominal());
}
return result;
}
SelfBounds
swift::getSelfBoundsFromGenericSignature(const ExtensionDecl *extDecl) {
auto &ctx = extDecl->getASTContext();
return evaluateOrDefault(ctx.evaluator,
SelfBoundsFromGenericSignatureRequest{extDecl}, {});
}
DirectlyReferencedTypeDecls
TypeDeclsFromWhereClauseRequest::evaluate(Evaluator &evaluator,
ExtensionDecl *ext) const {
ASTContext &ctx = ext->getASTContext();
DirectlyReferencedTypeDecls result;
auto resolve = [&](TypeRepr *typeRepr) {
auto decls = directReferencesForTypeRepr(evaluator, ctx, typeRepr, ext,
/*allowUsableFromInline=*/false,
/*rhsOfSelfRequirement=*/false,
/*allowProtocolMembers=*/true);
result.first.insert(result.first.end(),
decls.first.begin(),
decls.first.end());
result.second.insertAll(decls.second);
};
if (auto *whereClause = ext->getTrailingWhereClause()) {
for (const auto &req : whereClause->getRequirements()) {
switch (req.getKind()) {
case RequirementReprKind::TypeConstraint:
resolve(req.getSubjectRepr());
resolve(req.getConstraintRepr());
break;
case RequirementReprKind::SameType:
resolve(req.getFirstTypeRepr());
resolve(req.getSecondTypeRepr());
break;
case RequirementReprKind::LayoutConstraint:
resolve(req.getSubjectRepr());
break;
}
}
}
return result;
}
#pragma mark Member lookup table
void LazyMemberLoader::anchor() {}
void LazyConformanceLoader::anchor() {}
/// Lookup table used to store members of a nominal type (and its extensions)
/// for fast retrieval.
class swift::MemberLookupTable : public ASTAllocated<swift::MemberLookupTable> {
/// The type of the internal lookup table.
typedef llvm::DenseMap<DeclName, llvm::TinyPtrVector<ValueDecl *>>
LookupTable;
/// Lookup table mapping names to the set of declarations with that name.
LookupTable Lookup;
/// List of containers that have lazily-loaded members
llvm::SmallVector<ExtensionDecl *, 2> ExtensionsWithLazyMembers;
/// The set of names of lazily-loaded members that the lookup table has a
/// complete accounting of with respect to all known extensions of its
/// parent nominal type.
llvm::DenseSet<DeclBaseName> LazilyCompleteNames;
struct {
/// Whether we have computed the `containersWithMacroExpansions`.
bool ComputedContainersWithMacroExpansions = false;
/// The nominal type and any extensions that have macro expansions, which
/// is used to restrict the set of places one will lookup for a member
/// produced by a macro expansion.
llvm::SmallVector<TypeOrExtensionDecl, 2> ContainersWithMacroExpansions;
/// The set of names for which we have expanded relevant macros for in the
/// parent nominal type.
llvm::DenseSet<DeclName> LazilyCompleteNames;
} LazyMacroExpansionState;
public:
/// Create a new member lookup table.
explicit MemberLookupTable(ASTContext &ctx);
/// Add the given member to the lookup table.
void addMember(Decl *members);
/// Add the given members to the lookup table.
void addMembers(DeclRange members);
/// Add the members of the extension to the lookup table, if necessary
/// registering it for future lazy member loading.
void addExtension(ExtensionDecl *ext);
void addExtensionWithLazyMembers(ExtensionDecl *ext) {
ExtensionsWithLazyMembers.push_back(ext);
}
ArrayRef<ExtensionDecl *> getExtensionsWithLazyMembers() const {
return ExtensionsWithLazyMembers;
}
/// Returns \c true if the lookup table has a complete accounting of the
/// given name.
bool isLazilyComplete(DeclBaseName name) const {
return LazilyCompleteNames.contains(name);
}
/// Mark a given lazily-loaded name as being complete.
void markLazilyComplete(DeclBaseName name) {
LazilyCompleteNames.insert(name);
}
/// Clears the cache of lazily-complete names. This _must_ be called when
/// new extensions with lazy members are added to the type, or direct lookup
/// will return inconsistent or stale results.
void clearLazilyCompleteCache() {
LazilyCompleteNames.clear();
}
/// Retrieve an array containing the set of containers for this type (
/// i.e., the nominal type and any extensions) that can produce members via
/// macro expansion.
ArrayRef<TypeOrExtensionDecl> getContainersWithMacroExpansions(
NominalTypeDecl *nominal) {
if (LazyMacroExpansionState.ComputedContainersWithMacroExpansions)
return LazyMacroExpansionState.ContainersWithMacroExpansions;
LazyMacroExpansionState.ComputedContainersWithMacroExpansions = true;
// Does the type have macro expansions?
addContainerWithMacroExpansions(nominal);
// Check each extension for macro expansions.
for (auto ext : nominal->getExtensions())
addContainerWithMacroExpansions(ext);
return LazyMacroExpansionState.ContainersWithMacroExpansions;
}
void addContainerWithMacroExpansions(TypeOrExtensionDecl container){
if (LazyMacroExpansionState.ComputedContainersWithMacroExpansions &&
evaluateOrDefault(
container.getAsDecl()->getASTContext().evaluator,
PotentialMacroExpansionsInContextRequest{container}, {}))
LazyMacroExpansionState.ContainersWithMacroExpansions.push_back(
container);
}
/// Determine whether the given container has any macro-introduced names that
/// match the given declaration.
bool hasAnyMacroNamesMatching(TypeOrExtensionDecl container, DeclName name);
bool isLazilyCompleteForMacroExpansion(DeclName name) const {
assert(!MacroDecl::isUniqueMacroName(name.getBaseName()));
// If we've already expanded macros for a simple name, we must have expanded
// all macros that produce names with the same base identifier.
bool isBaseNameComplete = name.isCompoundName() &&
isLazilyCompleteForMacroExpansion(DeclName(name.getBaseName()));
return isBaseNameComplete ||
LazyMacroExpansionState.LazilyCompleteNames.contains(name);
}
void markLazilyCompleteForMacroExpansion(DeclName name) {
assert(!MacroDecl::isUniqueMacroName(name.getBaseName()));
LazyMacroExpansionState.LazilyCompleteNames.insert(name);
}
void clearLazilyCompleteForMacroExpansionCache() {
LazyMacroExpansionState.LazilyCompleteNames.clear();
}
/// Iterator into the lookup table.
typedef LookupTable::iterator iterator;
iterator begin() { return Lookup.begin(); }
iterator end() { return Lookup.end(); }
iterator find(DeclName name) {
return Lookup.find(name);
}
void dump(llvm::raw_ostream &os) const {
os << "Lookup:\n ";
for (auto &pair : Lookup) {
pair.getFirst().print(os);
if (isLazilyComplete(pair.getFirst().getBaseName())) {
os << " (lazily complete)";
}
os << ":\n ";
for (auto &decl : pair.getSecond()) {
os << "- ";
decl->dumpRef(os);
os << "\n ";
}
}
os << "\n";
}
SWIFT_DEBUG_DUMP {
dump(llvm::errs());
}
};
namespace {
/// Stores the set of Objective-C methods with a given selector within the
/// Objective-C method lookup table.
struct StoredObjCMethods {
/// The generation count at which this list was last updated.
unsigned Generation = 0;
/// The set of methods with the given selector.
llvm::TinyPtrVector<AbstractFunctionDecl *> Methods;
};
} // end anonymous namespace
/// Class member lookup table, which is a member lookup table with a second
/// table for lookup based on Objective-C selector.
class swift::ObjCMethodLookupTable
: public llvm::DenseMap<std::pair<ObjCSelector, char>,
StoredObjCMethods>,
public ASTAllocated<ObjCMethodLookupTable>
{
SWIFT_DEBUG_DUMP {
llvm::errs() << "ObjCMethodLookupTable:\n";
for (auto pair : *this) {
auto selector = pair.getFirst().first;
auto isInstanceMethod = pair.getFirst().second;
auto &methods = pair.getSecond();
llvm::errs() << " \"" << (isInstanceMethod ? "-" : "+") << selector
<< "\":\n";
for (auto method : methods.Methods) {
llvm::errs() << " - \"";
method->dumpRef(llvm::errs());
llvm::errs() << "\"\n";
}
}
}
};
MemberLookupTable::MemberLookupTable(ASTContext &ctx) {
// Register a cleanup with the ASTContext to call the lookup table
// destructor.
ctx.addCleanup([this]() {
this->~MemberLookupTable();
});
}
void MemberLookupTable::addMember(Decl *member) {
// Only value declarations matter.
auto vd = dyn_cast<ValueDecl>(member);
if (!vd)
return;
// @_implements members get added under their declared name.
auto A = vd->getAttrs().getAttribute<ImplementsAttr>();
// Unnamed entities w/o @_implements synonyms cannot be found by name lookup.
if (!A && !vd->hasName())
return;
// If this declaration is already in the lookup table, don't add it
// again.
if (vd->isAlreadyInLookupTable()) {
return;
}
vd->setAlreadyInLookupTable();
// Add this declaration to the lookup set under its compound name and simple
// name.
vd->getName().addToLookupTable(Lookup, vd);
// And if given a synonym, under that name too.
if (A)
A->getMemberName().addToLookupTable(Lookup, vd);
}
void MemberLookupTable::addMembers(DeclRange members) {
for (auto member : members) {
addMember(member);
}
}
static bool shouldLoadMembersImmediately(ExtensionDecl *ext) {
assert(ext->hasLazyMembers());
if (ext->wasDeserialized() || ext->hasClangNode())
return false;
// This extension is lazy but is not deserialized or backed by a clang node,
// so it's a ClangImporter extension containing import-as-member globals.
// Historically, Swift forced these extensions to load their members
// immediately, bypassing the module's SwiftLookupTable. Using the
// SwiftLookupTable *ought* to work the same, but in practice it sometimes
// gives different results when a header is not properly modularized. Provide
// a flag to temporarily re-enable the old behavior.
return ext->getASTContext().LangOpts.DisableNamedLazyImportAsMemberLoading;
}
void MemberLookupTable::addExtension(ExtensionDecl *ext) {
// If we can lazy-load this extension, only take the members we've loaded
// so far.
if (ext->hasLazyMembers() && !shouldLoadMembersImmediately(ext)) {
addMembers(ext->getCurrentMembersWithoutLoading());
clearLazilyCompleteCache();
clearLazilyCompleteForMacroExpansionCache();
addExtensionWithLazyMembers(ext);
} else {
// Else, load all the members into the table.
addMembers(ext->getMembers());
}
addContainerWithMacroExpansions(ext);
}
void NominalTypeDecl::addedExtension(ExtensionDecl *ext) {
if (!LookupTable.getInt())
return;
auto *table = LookupTable.getPointer();
assert(table);
table->addExtension(ext);
}
void NominalTypeDecl::addedMember(Decl *member) {
// If we have a lookup table, add the new member to it. If not, we'll pick up
// this member when we first create the table.
auto *vd = dyn_cast<ValueDecl>(member);
if (!vd || !LookupTable.getInt())
return;
auto *table = LookupTable.getPointer();
assert(table);
table->addMember(vd);
}
void ExtensionDecl::addedMember(Decl *member) {
// If this extension has already been bound to a nominal, add the new member
// to the nominal's lookup table.
if (NextExtension.getInt()) {
auto nominal = getExtendedNominal();
if (nominal)
nominal->addedMember(member);
}
}
void NominalTypeDecl::addMemberToLookupTable(Decl *member) {
getLookupTable()->addMember(member);
}
// For lack of anywhere more sensible to put it, here's a diagram of the pieces
// involved in finding members and extensions of a NominalTypeDecl.
//
// ┌────────────────────────────┬─┐
// │IterableDeclContext │ │ ┌─────────────────────────────┐
// │------------------- │ │ │┌───────────────┬┐ ▼
// │Decl *LastDecl ───────────┼─┼─────┘│Decl ││ ┌───────────────┬┐
// │Decl *FirstDecl ───────────┼─┼─────▶│---- ││ │Decl ││
// │ │ │ │Decl *NextDecl├┼─▶│---- ││
// │bool HasLazyMembers │ │ ├───────────────┘│ │Decl *NextDecl ││
// │IterableDeclContextKind Kind│ │ │ │ ├───────────────┘│
// │ │ │ │ValueDecl │ │ │
// ├────────────────────────────┘ │ │--------- │ │ValueDecl │
// │ │ │DeclName Name │ │--------- │
// │NominalTypeDecl │ └────────────────┘ │DeclName Name │
// │--------------- │ ▲ └────────────────┘
// │ExtensionDecl *FirstExtension─┼────────┐ │ ▲
// │ExtensionDecl *LastExtension ─┼───────┐│ │ └───┐
// │ │ ││ └──────────────────────┐│
// │MemberLookupTable *LookupTable├─┐ ││ ││
// └──────────────────────────────┘ │ ││ ┌─────────────────┐ ││
// │ ││ │ExtensionDecl │ ││
// │ ││ │------------- │ ││
// ┌─────────────┘ │└────▶│ExtensionDecl │ ││
// │ │ │ *NextExtension ├──┐ ││
// ▼ │ └─────────────────┘ │ ││
// ┌─────────────────────────────────────┐│ ┌─────────────────┐ │ ││
// │MemberLookupTable ││ │ExtensionDecl │ │ ││
// │----------------- ││ │------------- │ │ ││
// │ExtensionDecl *LastExtensionIncluded ├┴─────▶│ExtensionDecl │◀─┘ ││
// │ │ │ *NextExtension │ ││
// │┌───────────────────────────────────┐│ └─────────────────┘ ││
// ││DenseMap<Declname, ...> LookupTable││ ││
// ││-----------------------------------││ ┌──────────────────────────┐ ││
// ││[NameA] TinyPtrVector<ValueDecl *> ││ │TinyPtrVector<ValueDecl *>│ ││
// ││[NameB] TinyPtrVector<ValueDecl *> ││ │--------------------------│ ││
// ││[NameC] TinyPtrVector<ValueDecl *>─┼┼─▶│[0] ValueDecl * ─────┼─┘│
// │└───────────────────────────────────┘│ │[1] ValueDecl * ─────┼──┘
// └─────────────────────────────────────┘ └──────────────────────────┘
//
// The HasLazyMembers, Kind, and LookupTableComplete fields are packed into
// PointerIntPairs so don't go grepping for them; but for purposes of
// illustration they are effectively their own fields.
//
// MemberLookupTable is populated en-masse when the IterableDeclContext's
// (IDC's) list of Decls is populated. But MemberLookupTable can also be
// populated incrementally by one-name-at-a-time lookups by lookupDirect, in
// which case those Decls are _not_ added to the IDC's list. They are cached in
// the loader they come from, lifecycle-wise, and are added to the
// MemberLookupTable to accelerate subsequent retrieval, but the IDC is not
// considered populated until someone calls getMembers().
//
// If the IDC list is later populated and/or an extension is added _after_
// MemberLookupTable is constructed (and possibly has entries in it),
// MemberLookupTable is incrementally reconstituted with new members.
static void
populateLookupTableEntryFromLazyIDCLoader(ASTContext &ctx,
MemberLookupTable &LookupTable,
DeclBaseName name,
IterableDeclContext *IDC) {
if (!IDC->hasLazyMembers())
return;
auto ci = ctx.getOrCreateLazyIterableContextData(IDC,
/*lazyLoader=*/nullptr);
auto res = ci->loader->loadNamedMembers(IDC, name, ci->memberData);
if (auto s = ctx.Stats) {
++s->getFrontendCounters().NamedLazyMemberLoadSuccessCount;
}
for (auto d : res) {
LookupTable.addMember(d);
}
}
static void
populateLookupTableEntryFromExtensions(ASTContext &ctx,
MemberLookupTable &table,
DeclBaseName name,
NominalTypeDecl *nominal) {
assert(!table.isLazilyComplete(name) &&
"Should not be searching extensions for complete name!");
for (auto e : table.getExtensionsWithLazyMembers()) {
// If there's no lazy members to look at, all the members of this extension
// are present in the lookup table.
if (!e->hasLazyMembers()) {
continue;
}
assert(!e->hasUnparsedMembers());
populateLookupTableEntryFromLazyIDCLoader(ctx, table, name, e);
}
}
/// Adjust the given name to make it a proper key for the lazy macro expansion
/// cache, which maps all uniquely-generated names down to a single placeholder
/// key.
static DeclName adjustLazyMacroExpansionNameKey(
ASTContext &ctx, DeclName name) {
if (MacroDecl::isUniqueMacroName(name.getBaseName()))
return MacroDecl::getUniqueNamePlaceholder(ctx);
return name;
}
SmallVector<MacroDecl *, 1> namelookup::lookupMacros(DeclContext *dc,
DeclNameRef moduleName,
DeclNameRef macroName,
MacroRoles roles) {
SmallVector<MacroDecl *, 1> choices;
auto moduleScopeDC = dc->getModuleScopeContext();
ASTContext &ctx = moduleScopeDC->getASTContext();
auto addChoiceIfApplicable = [&](ValueDecl *decl) {
if (auto macro = dyn_cast<MacroDecl>(decl)) {
auto candidateRoles = macro->getMacroRoles();
if ((candidateRoles && roles.contains(candidateRoles)) ||
// FIXME: `externalMacro` should have all roles.
macro->getBaseIdentifier().str() == "externalMacro") {
choices.push_back(macro);
}
}
};
// When a module is specified, it's a module-qualified lookup.
if (moduleName) {
UnqualifiedLookupDescriptor moduleLookupDesc(
moduleName, moduleScopeDC, SourceLoc(),
UnqualifiedLookupFlags::ModuleLookup);
auto moduleLookup = evaluateOrDefault(
ctx.evaluator, UnqualifiedLookupRequest{moduleLookupDesc}, {});
auto foundTypeDecl = moduleLookup.getSingleTypeResult();
auto *moduleDecl = dyn_cast_or_null<ModuleDecl>(foundTypeDecl);
if (!moduleDecl)
return {};
ModuleQualifiedLookupRequest req{moduleScopeDC, moduleDecl, macroName,
SourceLoc(),
NL_ExcludeMacroExpansions | NL_OnlyMacros};
auto lookup = evaluateOrDefault(ctx.evaluator, req, {});
for (auto *found : lookup)
addChoiceIfApplicable(found);
}
// Otherwise it's an unqualified lookup.
else {
// Macro lookup should always exclude macro expansions; macro
// expansions cannot introduce new macro declarations. Note that
// the source location here doesn't matter.
UnqualifiedLookupDescriptor descriptor{
macroName, moduleScopeDC, SourceLoc(),
UnqualifiedLookupFlags::ExcludeMacroExpansions |
UnqualifiedLookupFlags::MacroLookup};
auto lookup = evaluateOrDefault(ctx.evaluator,
UnqualifiedLookupRequest{descriptor}, {});
for (const auto &found : lookup.allResults())
addChoiceIfApplicable(found.getValueDecl());
}
return choices;
}
bool
namelookup::isInMacroArgument(SourceFile *sourceFile, SourceLoc loc) {
bool inMacroArgument = false;
// Make sure that the source location is actually within the given source
// file.
if (sourceFile && loc.isValid()) {
sourceFile =
sourceFile->getParentModule()->getSourceFileContainingLocation(loc);
if (!sourceFile)
return false;
}
ASTScope::lookupEnclosingMacroScope(
sourceFile, loc,
[&](auto potentialMacro) -> bool {
UnresolvedMacroReference macro(potentialMacro);
if (macro.getFreestanding()) {
inMacroArgument = true;
} else if (auto *attr = macro.getAttr()) {
auto *moduleScope = sourceFile->getModuleScopeContext();
auto results =
lookupMacros(moduleScope, macro.getModuleName(),
macro.getMacroName(), getAttachedMacroRoles());
inMacroArgument = !results.empty();
}
return inMacroArgument;
});
return inMacroArgument;
}
/// Call the given function body with each macro declaration and its associated
/// role attribute for the given role.
///
/// This routine intentionally avoids calling `forEachAttachedMacro`, which
/// triggers request cycles.
void namelookup::forEachPotentialResolvedMacro(
DeclContext *moduleScopeCtx, DeclNameRef macroName, MacroRole role,
llvm::function_ref<void(MacroDecl *, const MacroRoleAttr *)> body
) {
ASTContext &ctx = moduleScopeCtx->getASTContext();
UnqualifiedLookupDescriptor lookupDesc{
macroName, moduleScopeCtx, SourceLoc(),
UnqualifiedLookupFlags::ExcludeMacroExpansions |
UnqualifiedLookupFlags::MacroLookup};
auto lookup = evaluateOrDefault(
ctx.evaluator, UnqualifiedLookupRequest{lookupDesc}, {});
for (auto result : lookup.allResults()) {
auto *vd = result.getValueDecl();
auto *macro = dyn_cast<MacroDecl>(vd);
if (!macro)
continue;
auto *macroRoleAttr = macro->getMacroRoleAttr(role);
if (!macroRoleAttr)
continue;
body(macro, macroRoleAttr);
}
}
/// For each macro with the given role that might be attached to the given
/// declaration, call the body.
void namelookup::forEachPotentialAttachedMacro(
Decl *decl, MacroRole role,
llvm::function_ref<void(MacroDecl *macro, const MacroRoleAttr *)> body
) {
// We intentionally avoid calling `forEachAttachedMacro` in order to avoid
// a request cycle.
auto moduleScopeCtx = decl->getDeclContext()->getModuleScopeContext();
for (auto attrConst : decl->getExpandedAttrs().getAttributes<CustomAttr>()) {
auto *attr = const_cast<CustomAttr *>(attrConst);
UnresolvedMacroReference macroRef(attr);
auto macroName = macroRef.getMacroName();
forEachPotentialResolvedMacro(moduleScopeCtx, macroName, role, body);
}
}
namespace {
/// Function object that tracks macro-introduced names.
struct MacroIntroducedNameTracker {
ValueDecl *attachedTo = nullptr;
PotentialMacroExpansions potentialExpansions;
/// Augment the set of names with those introduced by the given macro.
void operator()(MacroDecl *macro, const MacroRoleAttr *attr) {
potentialExpansions.noteExpandedMacro();
// First check for arbitrary names.
if (attr->hasNameKind(MacroIntroducedDeclNameKind::Arbitrary)) {
potentialExpansions.noteIntroducesArbitraryNames();
}
// If this introduces arbitrary names, there's nothing more to do.
if (potentialExpansions.introducesArbitraryNames())
return;
SmallVector<DeclName, 4> introducedNames;
macro->getIntroducedNames(
attr->getMacroRole(), attachedTo, introducedNames);
for (auto name : introducedNames)
potentialExpansions.addIntroducedMacroName(name);
}
bool shouldExpandForName(DeclName name) const {
return potentialExpansions.shouldExpandForName(name);
}
};
}
/// Given an extension declaration, return the extended nominal type if the
/// extension was produced by expanding an extension or conformance macro from
/// the nominal declaration itself.
static NominalTypeDecl *nominalForExpandedExtensionDecl(ExtensionDecl *ext) {
if (!ext->isInMacroExpansionInContext())
return nullptr;
return ext->getSelfNominalTypeDecl();
}
PotentialMacroExpansions PotentialMacroExpansionsInContextRequest::evaluate(
Evaluator &evaluator, TypeOrExtensionDecl container) const {
/// The implementation here needs to be kept in sync with
/// populateLookupTableEntryFromMacroExpansions.
MacroIntroducedNameTracker nameTracker;
// Member macros on the type or extension.
auto containerDecl = container.getAsDecl();
forEachPotentialAttachedMacro(containerDecl, MacroRole::Member, nameTracker);
// Extension macros on the type or extension.
{
NominalTypeDecl *nominal = nullptr;
// If the container is an extension that was created from an extension
// macro, look at the nominal declaration to find any extension macros.
if (auto ext = dyn_cast<ExtensionDecl>(containerDecl))
nominal = nominalForExpandedExtensionDecl(ext);
else
nominal = container.getBaseNominal();
if (nominal)
forEachPotentialAttachedMacro(nominal, MacroRole::Extension, nameTracker);
}
// Peer and freestanding declaration macros.
auto dc = container.getAsDeclContext();
auto idc = container.getAsIterableDeclContext();
for (auto *member : idc->getCurrentMembersWithoutLoading()) {
if (auto *med = dyn_cast<MacroExpansionDecl>(member)) {
nameTracker.attachedTo = nullptr;
forEachPotentialResolvedMacro(
dc->getModuleScopeContext(), med->getMacroName(),
MacroRole::Declaration, nameTracker);
} else if (auto *vd = dyn_cast<ValueDecl>(member)) {
nameTracker.attachedTo = dyn_cast<ValueDecl>(member);
forEachPotentialAttachedMacro(member, MacroRole::Peer, nameTracker);
}
}
nameTracker.attachedTo = nullptr;
return nameTracker.potentialExpansions;
}
bool MemberLookupTable::hasAnyMacroNamesMatching(
TypeOrExtensionDecl container, DeclName name) {
ASTContext &ctx = container.getAsDecl()->getASTContext();
auto potentialExpansions = evaluateOrDefault(
ctx.evaluator, PotentialMacroExpansionsInContextRequest{container},
PotentialMacroExpansions());
return potentialExpansions.shouldExpandForName(name);
}
static void
populateLookupTableEntryFromMacroExpansions(ASTContext &ctx,
MemberLookupTable &table,
DeclName name,
TypeOrExtensionDecl container) {
// If there are no macro-introduced names in this container that match the
// given name, do nothing. This avoids an expensive walk over the members
// and attributes for the common case where there are no macros.
if (!table.hasAnyMacroNamesMatching(container, name))
return;
// Trigger the expansion of member macros on the container, if any of the
// names match.
{
MacroIntroducedNameTracker nameTracker;
auto decl = container.getAsDecl();
forEachPotentialAttachedMacro(decl, MacroRole::Member, nameTracker);
if (nameTracker.shouldExpandForName(name)) {
(void)evaluateOrDefault(
ctx.evaluator,
ExpandSynthesizedMemberMacroRequest{decl},
false);
}
}
// Trigger the expansion of extension macros on the container, if any of the
// names match.
{
MacroIntroducedNameTracker nameTracker;
NominalTypeDecl *nominal = nullptr;
// If the container is an extension that was created from an extension
// macro, look at the nominal declaration to find any extension macros.
if (auto ext = dyn_cast<ExtensionDecl>(container.getAsDecl()))
nominal = nominalForExpandedExtensionDecl(ext);
else
nominal = container.getBaseNominal();
if (nominal) {
forEachPotentialAttachedMacro(nominal,
MacroRole::Extension, nameTracker);
if (nameTracker.shouldExpandForName(name)) {
(void)evaluateOrDefault(ctx.evaluator, ExpandExtensionMacros{nominal},
false);
}
}
}
auto dc = container.getAsDeclContext();
auto *module = dc->getParentModule();
auto idc = container.getAsIterableDeclContext();
for (auto *member : idc->getCurrentMembersWithoutLoading()) {
// Collect all macro introduced names, along with its corresponding macro
// reference. We need the macro reference to prevent adding auxiliary decls
// that weren't introduced by the macro.
std::deque<Decl *> mightIntroduceNames;
mightIntroduceNames.push_back(member);
while (!mightIntroduceNames.empty()) {
auto *member = mightIntroduceNames.front();
MacroIntroducedNameTracker nameTracker;
if (auto *med = dyn_cast<MacroExpansionDecl>(member)) {
forEachPotentialResolvedMacro(
dc->getModuleScopeContext(), med->getMacroName(),
MacroRole::Declaration, nameTracker);
} else if (auto *vd = dyn_cast<ValueDecl>(member)) {
nameTracker.attachedTo = dyn_cast<ValueDecl>(member);
forEachPotentialAttachedMacro(member, MacroRole::Peer, nameTracker);
}
// Expand macros on this member.
if (nameTracker.shouldExpandForName(name)) {
member->visitAuxiliaryDecls([&](Decl *decl) {
auto *sf = module->getSourceFileContainingLocation(decl->getLoc());
// Bail out if the auxiliary decl was not produced by a macro.
if (!sf || sf->Kind != SourceFileKind::MacroExpansion)
return;
mightIntroduceNames.push_back(decl);
table.addMember(decl);
});
}
mightIntroduceNames.pop_front();
}
}
}
MemberLookupTable *NominalTypeDecl::getLookupTable() {
if (!LookupTable.getPointer()) {
auto &ctx = getASTContext();
LookupTable.setPointer(new (ctx) MemberLookupTable(ctx));
}
return LookupTable.getPointer();
}
void NominalTypeDecl::prepareLookupTable() {
// If we have already prepared the lookup table, then there's nothing further
// to do.
if (LookupTable.getInt())
return;
auto *table = getLookupTable();
// Otherwise start the first fill.
if (hasLazyMembers()) {
assert(!hasUnparsedMembers());
table->addMembers(getCurrentMembersWithoutLoading());
} else {
table->addMembers(getMembers());
}
// Note: this calls prepareExtensions()
for (auto e : getExtensions()) {
table->addExtension(e);
}
// Any extensions added after this point will add their members to the
// lookup table.
LookupTable.setInt(true);
}
static TinyPtrVector<ValueDecl *>
maybeFilterOutUnwantedDecls(TinyPtrVector<ValueDecl *> decls,
DeclName name,
bool includeAttrImplements,
bool excludeMacroExpansions) {
if (includeAttrImplements && !excludeMacroExpansions)
return decls;
TinyPtrVector<ValueDecl*> result;
for (auto V : decls) {
// If we're supposed to exclude anything that comes from a macro expansion,
// check whether the source location of the declaration is in a macro
// expansion, and skip this declaration if it does.
if (excludeMacroExpansions) {
auto sourceFile =
V->getModuleContext()->getSourceFileContainingLocation(V->getLoc());
if (sourceFile && sourceFile->Kind == SourceFileKind::MacroExpansion)
continue;
}
// Filter-out any decl that doesn't have the name we're looking for
// (asserting as a consistency-check that such entries all have
// @_implements attrs for the name!)
if (V->getName().matchesRef(name)) {
result.push_back(V);
} else {
auto A = V->getAttrs().getAttribute<ImplementsAttr>();
(void)A;
assert(A && A->getMemberName().matchesRef(name));
}
}
return result;
}
TinyPtrVector<ValueDecl *>
NominalTypeDecl::lookupDirect(DeclName name, SourceLoc loc,
OptionSet<LookupDirectFlags> flags) {
return evaluateOrDefault(getASTContext().evaluator,
DirectLookupRequest({this, name, flags}, loc), {});
}
TinyPtrVector<ValueDecl *>
DirectLookupRequest::evaluate(Evaluator &evaluator,
DirectLookupDescriptor desc) const {
const auto &name = desc.Name;
const auto flags = desc.Options;
auto *decl = desc.DC;
ASTContext &ctx = decl->getASTContext();
const bool includeAttrImplements =
flags.contains(NominalTypeDecl::LookupDirectFlags::IncludeAttrImplements);
const bool excludeMacroExpansions =
flags.contains(NominalTypeDecl::LookupDirectFlags::ExcludeMacroExpansions);
LLVM_DEBUG(llvm::dbgs() << decl->getNameStr() << ".lookupDirect("
<< name << ")"
<< ", excludeMacroExpansions="
<< excludeMacroExpansions
<< "\n");
decl->prepareLookupTable();
// Call prepareExtensions() to ensure we properly invalidate the
// lazily-complete cache for any extensions brought in by modules
// loaded after-the-fact. This can happen with the LLDB REPL.
decl->prepareExtensions();
auto &Table = *decl->getLookupTable();
if (!Table.isLazilyComplete(name.getBaseName())) {
DeclBaseName baseName(name.getBaseName());
if (isa_and_nonnull<clang::NamespaceDecl>(decl->getClangDecl())) {
auto allFound = evaluateOrDefault(
ctx.evaluator, CXXNamespaceMemberLookup({cast<EnumDecl>(decl), name}),
{});
populateLookupTableEntryFromExtensions(ctx, Table, baseName, decl);
// Bypass the regular member lookup table if we find something in
// the original C++ namespace. We don't want to store the C++ decl in the
// lookup table as the decl can be referenced from multiple namespace
// declarations due to inline namespaces. We still merge in the other
// entries found in the lookup table, to support finding members in
// namespace extensions.
if (!allFound.empty()) {
auto known = Table.find(name);
if (known != Table.end()) {
auto swiftLookupResult = maybeFilterOutUnwantedDecls(
known->second, name, includeAttrImplements,
excludeMacroExpansions);
for (auto foundSwiftDecl : swiftLookupResult) {
allFound.push_back(foundSwiftDecl);
}
}
return allFound;
}
} else if (isa_and_nonnull<clang::RecordDecl>(decl->getClangDecl())) {
auto allFound = evaluateOrDefault(
ctx.evaluator,
ClangRecordMemberLookup({cast<NominalTypeDecl>(decl), name}), {});
// Add all the members we found, later we'll combine these with the
// existing members.
for (auto found : allFound)
Table.addMember(found);
populateLookupTableEntryFromExtensions(ctx, Table, baseName, decl);
} else {
// The lookup table believes it doesn't have a complete accounting of this
// name - either because we're never seen it before, or another extension
// was registered since the last time we searched. Ask the loaders to give
// us a hand.
populateLookupTableEntryFromLazyIDCLoader(ctx, Table, baseName, decl);
populateLookupTableEntryFromExtensions(ctx, Table, baseName, decl);
}
Table.markLazilyComplete(baseName);
}
DeclName macroExpansionKey = adjustLazyMacroExpansionNameKey(ctx, name);
if (!excludeMacroExpansions &&
!Table.isLazilyCompleteForMacroExpansion(macroExpansionKey)) {
for (auto container : Table.getContainersWithMacroExpansions(decl)) {
populateLookupTableEntryFromMacroExpansions(
ctx, Table, macroExpansionKey, container);
}
Table.markLazilyCompleteForMacroExpansion(macroExpansionKey);
}
// Look for a declaration with this name.
auto known = Table.find(name);
if (known == Table.end()) {
return TinyPtrVector<ValueDecl *>();
}
// We found something; return it.
return maybeFilterOutUnwantedDecls(known->second, name,
includeAttrImplements,
excludeMacroExpansions);
}
bool NominalTypeDecl::createObjCMethodLookup() {
assert(!ObjCMethodLookup && "Already have an Objective-C member table");
// Most types cannot have ObjC methods.
if (!(isa<ClassDecl>(this) || isa<ProtocolDecl>(this)))
return false;
auto &ctx = getASTContext();
ObjCMethodLookup = new (ctx) ObjCMethodLookupTable();
// Register a cleanup with the ASTContext to call the lookup table
// destructor.
ctx.addDestructorCleanup(*ObjCMethodLookup);
return true;
}
TinyPtrVector<AbstractFunctionDecl *>
NominalTypeDecl::lookupDirect(ObjCSelector selector, bool isInstance) {
if (!ObjCMethodLookup && !createObjCMethodLookup())
return {};
// If any modules have been loaded since we did the search last (or if we
// hadn't searched before), look in those modules, too.
auto &stored = (*ObjCMethodLookup)[{selector, isInstance}];
ASTContext &ctx = getASTContext();
if (ctx.getCurrentGeneration() > stored.Generation) {
ctx.loadObjCMethods(this, selector, isInstance, stored.Generation,
stored.Methods);
stored.Generation = ctx.getCurrentGeneration();
}
return stored.Methods;
}
static bool inObjCImplExtension(AbstractFunctionDecl *newDecl) {
if (auto ext = dyn_cast<ExtensionDecl>(newDecl->getDeclContext()))
return ext->isObjCImplementation();
return false;
}
/// If there is an apparent conflict between \p newDecl and one of the methods
/// in \p vec, should we diagnose it?
static bool
shouldDiagnoseConflict(NominalTypeDecl *ty, AbstractFunctionDecl *newDecl,
llvm::TinyPtrVector<AbstractFunctionDecl *> &vec) {
// Conflicts between member implementations and their interfaces, or
// inherited inits and their overrides in @_objcImpl extensions, are spurious.
if (newDecl->isObjCMemberImplementation()
|| (isa<ConstructorDecl>(newDecl) && inObjCImplExtension(newDecl)
&& newDecl->getAttrs().hasAttribute<OverrideAttr>()))
return false;
// Are all conflicting methods imported from ObjC and in our ObjC half or a
// bridging header? Some code bases implement ObjC methods in Swift even
// though it's not exactly supported.
auto newDeclModuleName = newDecl->getModuleContext()->getName();
auto newDeclPrivateModuleName = newDecl->getASTContext().getIdentifier(
(llvm::Twine(newDeclModuleName.str()) + "_Private").str());
auto bridgingHeaderModuleName = newDecl->getASTContext().getIdentifier(
CLANG_HEADER_MODULE_NAME);
if (llvm::all_of(vec, [&](AbstractFunctionDecl *oldDecl) {
if (!oldDecl->hasClangNode())
return false;
auto oldDeclModuleName = oldDecl->getModuleContext()->getName();
return oldDeclModuleName == newDeclModuleName
|| oldDeclModuleName == newDeclPrivateModuleName
|| oldDeclModuleName == bridgingHeaderModuleName;
}))
return false;
return true;
}
void NominalTypeDecl::recordObjCMethod(AbstractFunctionDecl *method,
ObjCSelector selector) {
if (!ObjCMethodLookup && !createObjCMethodLookup())
return;
// Record the method.
bool isInstanceMethod = method->isObjCInstanceMethod();
auto &vec = (*ObjCMethodLookup)[{selector, isInstanceMethod}].Methods;
// Check whether we have a duplicate. This only checks more than one
// element in ill-formed code, so the linear search is acceptable.
if (std::find(vec.begin(), vec.end(), method) != vec.end())
return;
if (auto *sf = method->getParentSourceFile()) {
if (vec.empty()) {
sf->ObjCMethodList.push_back(method);
} else if (shouldDiagnoseConflict(this, method, vec)) {
// We have a conflict.
sf->ObjCMethodConflicts.insert({ this, selector, isInstanceMethod });
}
}
vec.push_back(method);
}
/// Determine whether the given declaration is an acceptable lookup
/// result when searching from the given DeclContext.
static bool isAcceptableLookupResult(const DeclContext *dc,
NLOptions options,
ValueDecl *decl,
bool onlyCompleteObjectInits) {
// Filter out designated initializers, if requested.
if (onlyCompleteObjectInits) {
if (auto ctor = dyn_cast<ConstructorDecl>(decl)) {
if (isa<ClassDecl>(ctor->getDeclContext()) && !ctor->isInheritable())
return false;
} else {
return false;
}
}
// Ignore stub implementations.
if (auto ctor = dyn_cast<ConstructorDecl>(decl)) {
if (ctor->hasStubImplementation())
return false;
}
// Check access.
if (!(options & NL_IgnoreAccessControl) &&
!dc->getASTContext().isAccessControlDisabled()) {
bool allowUsableFromInline = options & NL_IncludeUsableFromInline;
if (!decl->isAccessibleFrom(dc, /*forConformance*/ false,
allowUsableFromInline))
return false;
// Check that there is some import in the originating context that
// makes this decl visible.
if (decl->getDeclContext()->getParentModule() != dc->getParentModule() &&
dc->getASTContext().LangOpts.hasFeature(
Feature::MemberImportVisibility) &&
!decl->findImport(dc))
return false;
}
return true;
}
void namelookup::pruneLookupResultSet(const DeclContext *dc, NLOptions options,
SmallVectorImpl<ValueDecl *> &decls) {
// If we're supposed to remove overridden declarations, do so now.
if (options & NL_RemoveOverridden)
removeOverriddenDecls(decls);
// If we're supposed to remove shadowed/hidden declarations, do so now.
if (options & NL_RemoveNonVisible)
removeShadowedDecls(decls, dc);
ModuleDecl *M = dc->getParentModule();
filterForDiscriminator(decls, M->getDebugClient());
}
// An unfortunate hack to kick the decl checker into adding semantic members to
// the current type before we attempt a semantic lookup. The places this method
// looks needs to be in sync with \c extractDirectlyReferencedNominalTypes.
// See the note in \c synthesizeSemanticMembersIfNeeded about a better, more
// just, and peaceful world.
void namelookup::installSemanticMembersIfNeeded(Type type, DeclNameRef name) {
// Look-through class-bound archetypes to ensure we synthesize e.g.
// inherited constructors.
if (auto archetypeTy = type->getAs<ArchetypeType>()) {
if (auto super = archetypeTy->getSuperclass()) {
type = super;
}
}
if (type->isExistentialType()) {
auto layout = type->getExistentialLayout();
if (auto super = layout.explicitSuperclass) {
type = super;
}
}
if (auto *current = type->getAnyNominal()) {
current->synthesizeSemanticMembersIfNeeded(name.getFullName());
}
}
/// Inspect the given type to determine which nominal type declarations it
/// directly references, to facilitate name lookup into those types.
void namelookup::extractDirectlyReferencedNominalTypes(
Type type, SmallVectorImpl<NominalTypeDecl *> &decls) {
if (auto nominal = type->getAnyNominal()) {
decls.push_back(nominal);
return;
}
if (auto unbound = type->getAs<UnboundGenericType>()) {
if (auto nominal = dyn_cast<NominalTypeDecl>(unbound->getDecl()))
decls.push_back(nominal);
return;
}
if (auto archetypeTy = type->getAs<ArchetypeType>()) {
// Look in the protocols to which the archetype conforms (always).
for (auto proto : archetypeTy->getConformsTo())
decls.push_back(proto);
// Look into the superclasses of this archetype.
if (auto superclass = archetypeTy->getSuperclass()) {
if (auto superclassDecl = superclass->getClassOrBoundGenericClass())
decls.push_back(superclassDecl);
}
return;
}
if (auto compositionTy = type->getAs<ProtocolCompositionType>()) {
auto layout = compositionTy->getExistentialLayout();
for (auto protoDecl : layout.getProtocols()) {
decls.push_back(protoDecl);
}
if (auto superclass = layout.explicitSuperclass) {
auto *superclassDecl = superclass->getClassOrBoundGenericClass();
if (superclassDecl)
decls.push_back(superclassDecl);
}
return;
}
if (auto existential = type->getAs<ExistentialType>()) {
extractDirectlyReferencedNominalTypes(
existential->getConstraintType(), decls);
return;
}
if (type->is<TupleType>()) {
decls.push_back(type->getASTContext().getBuiltinTupleDecl());
return;
}
llvm_unreachable("Not a type containing nominal types?");
}
void namelookup::tryExtractDirectlyReferencedNominalTypes(
Type type, SmallVectorImpl<NominalTypeDecl *> &decls) {
if (!type->is<ModuleType>() && type->mayHaveMembers())
namelookup::extractDirectlyReferencedNominalTypes(type, decls);
}
bool DeclContext::lookupQualified(Type type,
DeclNameRef member,
SourceLoc loc,
NLOptions options,
SmallVectorImpl<ValueDecl *> &decls) const {
using namespace namelookup;
assert(decls.empty() && "additive lookup not supported");
// Handle AnyObject lookup.
if (type->isAnyObject()) {
AnyObjectLookupRequest req(this, member, options);
decls = evaluateOrDefault(getASTContext().evaluator, req, {});
return !decls.empty();
}
// Handle lookup in a module.
if (auto moduleTy = type->getAs<ModuleType>())
return lookupQualified(moduleTy->getModule(), member,
loc, options, decls);
// Figure out which nominal types we will look into.
SmallVector<NominalTypeDecl *, 4> nominalTypesToLookInto;
namelookup::extractDirectlyReferencedNominalTypes(type,
nominalTypesToLookInto);
return lookupQualified(nominalTypesToLookInto, member,
loc, options, decls);
}
static void installPropertyWrapperMembersIfNeeded(NominalTypeDecl *target,
DeclNameRef member) {
auto &Context = target->getASTContext();
auto baseName = member.getBaseName();
if (!member.isSimpleName() || baseName.isSpecial())
return;
if ((!baseName.getIdentifier().str().starts_with("$") &&
!baseName.getIdentifier().hasUnderscoredNaming()) ||
baseName.getIdentifier().str().size() <= 1) {
return;
}
// $- and _-prefixed variables can be generated by properties that have
// attached property wrappers.
auto originalPropertyName =
Context.getIdentifier(baseName.getIdentifier().str().substr(1));
for (auto member : target->lookupDirect(originalPropertyName)) {
if (auto var = dyn_cast<VarDecl>(member)) {
if (var->hasAttachedPropertyWrapper()) {
auto sourceFile = var->getDeclContext()->getParentSourceFile();
if (sourceFile && sourceFile->Kind != SourceFileKind::Interface) {
(void)var->getPropertyWrapperAuxiliaryVariables();
(void)var->getPropertyWrapperInitializerInfo();
}
}
}
}
}
bool DeclContext::lookupQualified(ArrayRef<NominalTypeDecl *> typeDecls,
DeclNameRef member,
SourceLoc loc, NLOptions options,
SmallVectorImpl<ValueDecl *> &decls) const {
assert(decls.empty() && "additive lookup not supported");
QualifiedLookupRequest req{this, {typeDecls.begin(), typeDecls.end()},
member, loc, options};
decls = evaluateOrDefault(getASTContext().evaluator, req, {});
return !decls.empty();
}
QualifiedLookupResult
QualifiedLookupRequest::evaluate(Evaluator &eval, const DeclContext *DC,
SmallVector<NominalTypeDecl *, 4> typeDecls,
DeclNameRef member, NLOptions options) const {
using namespace namelookup;
QualifiedLookupResult decls;
// Tracking for the nominal types we'll visit.
SmallVector<NominalTypeDecl *, 4> stack;
llvm::SmallPtrSet<NominalTypeDecl *, 4> visited;
bool sawClassDecl = false;
// Add the given nominal type to the stack.
auto addNominalType = [&](NominalTypeDecl *nominal) {
if (!visited.insert(nominal).second)
return false;
if (isa<ClassDecl>(nominal))
sawClassDecl = true;
stack.push_back(nominal);
return true;
};
// Add all of the nominal types to the stack.
for (auto nominal : typeDecls) {
addNominalType(nominal);
}
// Whether we only want to return complete object initializers.
bool onlyCompleteObjectInits = false;
// Visit all of the nominal types we know about, discovering any others
// we need along the way.
bool wantProtocolMembers = (options & NL_ProtocolMembers);
while (!stack.empty()) {
auto current = stack.back();
stack.pop_back();
// Make sure we've resolved property wrappers, if we need them.
installPropertyWrapperMembersIfNeeded(current, member);
// Look for results within the current nominal type and its extensions.
bool currentIsProtocol = isa<ProtocolDecl>(current);
auto flags = OptionSet<NominalTypeDecl::LookupDirectFlags>();
if (options & NL_IncludeAttributeImplements)
flags |= NominalTypeDecl::LookupDirectFlags::IncludeAttrImplements;
if (options & NL_ExcludeMacroExpansions)
flags |= NominalTypeDecl::LookupDirectFlags::ExcludeMacroExpansions;
// Note that the source loc argument doesn't matter, because excluding
// macro expansions is already propagated through the lookup flags above.
for (auto decl : current->lookupDirect(member.getFullName(),
SourceLoc(), flags)) {
// If we're performing a type lookup, don't even attempt to validate
// the decl if its not a type.
if ((options & NL_OnlyTypes) && !isa<TypeDecl>(decl))
continue;
// If we're performing a macro lookup, don't even attempt to validate
// the decl if its not a macro.
if ((options & NL_OnlyMacros) && !isa<MacroDecl>(decl))
continue;
if (isAcceptableLookupResult(DC, options, decl, onlyCompleteObjectInits))
decls.push_back(decl);
}
// Visit superclass.
if (auto classDecl = dyn_cast<ClassDecl>(current)) {
// If we're looking for initializers, only look at the superclass if the
// current class permits inheritance. Even then, only find complete
// object initializers.
bool visitSuperclass = true;
if (member.getBaseName().isConstructor()) {
if (classDecl->inheritsSuperclassInitializers())
onlyCompleteObjectInits = true;
else
visitSuperclass = false;
}
if (visitSuperclass) {
if (auto superclassDecl = classDecl->getSuperclassDecl())
if (visited.insert(superclassDecl).second)
stack.push_back(superclassDecl);
}
}
// If we're not looking at a protocol and we're not supposed to
// visit the protocols that this type conforms to, skip the next
// step.
if (!wantProtocolMembers && !currentIsProtocol)
continue;
if (auto *protoDecl = dyn_cast<ProtocolDecl>(current)) {
// If we haven't seen a class declaration yet, look into the protocol.
if (!sawClassDecl) {
if (auto superclassDecl = protoDecl->getSuperclassDecl()) {
visited.insert(superclassDecl);
stack.push_back(superclassDecl);
}
}
// Collect inherited protocols.
for (auto inheritedProto : protoDecl->getInheritedProtocols()) {
addNominalType(inheritedProto);
}
} else {
// Collect the protocols to which the nominal type conforms.
for (auto proto : current->getAllProtocols()) {
if (visited.insert(proto).second) {
stack.push_back(proto);
}
}
// For a class, we don't need to visit the protocol members of the
// superclass: that's already handled.
if (isa<ClassDecl>(current))
wantProtocolMembers = false;
}
}
pruneLookupResultSet(DC, options, decls);
if (auto *debugClient = DC->getParentModule()->getDebugClient()) {
debugClient->finishLookupInNominals(DC, typeDecls, member.getFullName(),
options, decls);
}
return decls;
}
bool DeclContext::lookupQualified(ModuleDecl *module, DeclNameRef member,
SourceLoc loc, NLOptions options,
SmallVectorImpl<ValueDecl *> &decls) const {
assert(decls.empty() && "additive lookup not supported");
ModuleQualifiedLookupRequest req{this, module, member, loc, options};
decls = evaluateOrDefault(getASTContext().evaluator, req, {});
return !decls.empty();
}
QualifiedLookupResult
ModuleQualifiedLookupRequest::evaluate(Evaluator &eval, const DeclContext *DC,
ModuleDecl *module, DeclNameRef member,
NLOptions options) const {
using namespace namelookup;
QualifiedLookupResult decls;
auto kind = (options & NL_OnlyTypes ? ResolutionKind::TypesOnly
: options & NL_OnlyMacros ? ResolutionKind::MacrosOnly
: ResolutionKind::Overloadable);
auto topLevelScope = DC->getModuleScopeContext();
if (module == topLevelScope->getParentModule()) {
lookupInModule(module, member.getFullName(), decls, NLKind::QualifiedLookup,
kind, topLevelScope, SourceLoc(), options);
} else {
// Note: This is a lookup into another module. Unless we're compiling
// multiple modules at once, or if the other module re-exports this one,
// it shouldn't be possible to have a dependency from that module on
// anything in this one.
// Perform the lookup in all imports of this module.
auto &ctx = DC->getASTContext();
auto accessPaths = ctx.getImportCache().getAllVisibleAccessPaths(
module, topLevelScope);
if (llvm::any_of(accessPaths,
[&](ImportPath::Access accessPath) {
return accessPath.matches(member.getFullName());
})) {
lookupInModule(module, member.getFullName(), decls,
NLKind::QualifiedLookup, kind, topLevelScope,
SourceLoc(), options);
}
}
pruneLookupResultSet(DC, options, decls);
if (auto *debugClient = DC->getParentModule()->getDebugClient()) {
debugClient->finishLookupInModule(DC, module, member.getFullName(),
options, decls);
}
return decls;
}
QualifiedLookupResult
AnyObjectLookupRequest::evaluate(Evaluator &evaluator, const DeclContext *dc,
DeclNameRef member, NLOptions options) const {
using namespace namelookup;
QualifiedLookupResult decls;
// Type-only and macro lookup won't find anything on AnyObject.
if (options & (NL_OnlyTypes | NL_OnlyMacros))
return decls;
// Collect all of the visible declarations.
SmallVector<ValueDecl *, 4> allDecls;
for (auto import : namelookup::getAllImports(dc)) {
import.importedModule->lookupClassMember(import.accessPath,
member.getFullName(), allDecls);
}
// For each declaration whose context is not something we've
// already visited above, add it to the list of declarations.
llvm::SmallPtrSet<ValueDecl *, 4> knownDecls;
for (auto decl : allDecls) {
// If the declaration is not @objc, it cannot be called dynamically.
if (!decl->isObjC())
continue;
// If the declaration is objc_direct, it cannot be called dynamically.
if (auto clangDecl = decl->getClangDecl()) {
if (auto objCMethod = dyn_cast<clang::ObjCMethodDecl>(clangDecl)) {
if (objCMethod->isDirectMethod())
continue;
} else if (auto objCProperty = dyn_cast<clang::ObjCPropertyDecl>(clangDecl)) {
if (objCProperty->isDirectProperty())
continue;
}
}
// If the declaration has an override, name lookup will also have
// found the overridden method. Skip this declaration, because we
// prefer the overridden method.
if (decl->getOverriddenDecl())
continue;
assert(decl->getDeclContext()->isTypeContext() &&
"Couldn't find nominal type?");
// If we didn't see this declaration before, and it's an acceptable
// result, add it to the list.
if (knownDecls.insert(decl).second &&
isAcceptableLookupResult(dc, options, decl,
/*onlyCompleteObjectInits=*/false))
decls.push_back(decl);
}
pruneLookupResultSet(dc, options, decls);
if (auto *debugClient = dc->getParentModule()->getDebugClient()) {
debugClient->finishLookupInAnyObject(dc, member.getFullName(), options,
decls);
}
return decls;
}
void DeclContext::lookupAllObjCMethods(
ObjCSelector selector,
SmallVectorImpl<AbstractFunctionDecl *> &results) const {
// Collect all of the methods with this selector.
for (auto import : namelookup::getAllImports(this)) {
import.importedModule->lookupObjCMethods(selector, results);
}
// Filter out duplicates.
llvm::SmallPtrSet<AbstractFunctionDecl *, 8> visited;
results.erase(
std::remove_if(results.begin(), results.end(),
[&](AbstractFunctionDecl *func) -> bool {
return !visited.insert(func).second;
}),
results.end());
}
/// Given a set of type declarations, find all of the nominal type declarations
/// that they reference, looking through typealiases as appropriate.
static TinyPtrVector<NominalTypeDecl *>
resolveTypeDeclsToNominal(Evaluator &evaluator,
ASTContext &ctx,
ArrayRef<TypeDecl *> typeDecls,
ResolveToNominalOptions options,
SmallVectorImpl<ModuleDecl *> &modulesFound,
bool &anyObject,
llvm::SmallPtrSetImpl<TypeAliasDecl *> &typealiases) {
SmallPtrSet<NominalTypeDecl *, 4> knownNominalDecls;
TinyPtrVector<NominalTypeDecl *> nominalDecls;
auto addNominalDecl = [&](NominalTypeDecl *nominal) {
if (knownNominalDecls.insert(nominal).second)
nominalDecls.push_back(nominal);
};
for (auto typeDecl : typeDecls) {
// Nominal type declarations get copied directly.
if (auto nominalDecl = dyn_cast<NominalTypeDecl>(typeDecl)) {
// ... unless it's the special Builtin.TheTupleType that we return
// when resolving a TupleTypeRepr, and the caller isn't asking for
// that.
if (!options.contains(ResolveToNominalFlags::AllowTupleType) &&
isa<BuiltinTupleDecl>(nominalDecl)) {
continue;
}
addNominalDecl(nominalDecl);
continue;
}
// Recursively resolve typealiases.
if (auto typealias = dyn_cast<TypeAliasDecl>(typeDecl)) {
// FIXME: Ad hoc recursion breaking, so we don't look through the
// same typealias multiple times.
if (!typealiases.insert(typealias).second)
continue;
auto underlyingTypeReferences = evaluateOrDefault(evaluator,
UnderlyingTypeDeclsReferencedRequest{typealias}, {});
auto underlyingNominalReferences
= resolveTypeDeclsToNominal(evaluator, ctx, underlyingTypeReferences.first,
options, modulesFound, anyObject, typealiases);
std::for_each(underlyingNominalReferences.begin(),
underlyingNominalReferences.end(),
addNominalDecl);
// Recognize Swift.AnyObject directly.
if (typealias->getName().is("AnyObject")) {
// Type version: an empty class-bound existential.
if (typealias->hasInterfaceType()) {
if (auto type = typealias->getUnderlyingType())
if (type->isAnyObject())
anyObject = true;
}
// TypeRepr version: Builtin.AnyObject
else if (auto *qualIdentTR = dyn_cast_or_null<QualifiedIdentTypeRepr>(
typealias->getUnderlyingTypeRepr())) {
if (!qualIdentTR->hasGenericArgList() &&
qualIdentTR->getNameRef().isSimpleName("AnyObject") &&
qualIdentTR->getBase()->isSimpleUnqualifiedIdentifier(
"Builtin")) {
anyObject = true;
}
}
}
continue;
}
// Keep track of modules we see.
if (auto module = dyn_cast<ModuleDecl>(typeDecl)) {
modulesFound.push_back(module);
continue;
}
// Make sure we didn't miss some interesting kind of type declaration.
assert(isa<GenericTypeParamDecl>(typeDecl) ||
isa<AssociatedTypeDecl>(typeDecl));
}
return nominalDecls;
}
static TinyPtrVector<NominalTypeDecl *>
resolveTypeDeclsToNominal(Evaluator &evaluator,
ASTContext &ctx,
ArrayRef<TypeDecl *> typeDecls,
ResolveToNominalOptions options,
SmallVectorImpl<ModuleDecl *> &modulesFound,
bool &anyObject) {
llvm::SmallPtrSet<TypeAliasDecl *, 4> typealiases;
return resolveTypeDeclsToNominal(evaluator, ctx, typeDecls, options,
modulesFound, anyObject, typealiases);
}
/// Perform unqualified name lookup for types at the given location.
static DirectlyReferencedTypeDecls
directReferencesForUnqualifiedTypeLookup(DeclNameRef name,
SourceLoc loc, DeclContext *dc,
LookupOuterResults lookupOuter,
bool allowUsableFromInline,
bool rhsOfSelfRequirement,
bool allowProtocolMembers) {
UnqualifiedLookupOptions options = UnqualifiedLookupFlags::TypeLookup;
if (allowProtocolMembers)
options |= UnqualifiedLookupFlags::AllowProtocolMembers;
if (lookupOuter == LookupOuterResults::Included)
options |= UnqualifiedLookupFlags::IncludeOuterResults;
if (allowUsableFromInline)
options |= UnqualifiedLookupFlags::IncludeUsableFromInline;
// Manually exclude macro expansions here since the source location
// is overridden below.
if (namelookup::isInMacroArgument(dc->getParentSourceFile(), loc))
options |= UnqualifiedLookupFlags::ExcludeMacroExpansions;
// In a protocol or protocol extension, the 'where' clause can refer to
// associated types without 'Self' qualification:
//
// protocol MyProto where AssocType : Q { ... }
//
// extension MyProto where AssocType == Int { ... }
//
// To avoid cycles when resolving the right-hand side, we perform the
// lookup in the parent context (for a protocol), or a special mode where
// we disregard 'Self' requirements (for a protocol extension).
if (rhsOfSelfRequirement) {
if (dc->getExtendedProtocolDecl())
options |= UnqualifiedLookupFlags::DisregardSelfBounds;
else {
dc = dc->getModuleScopeContext();
loc = SourceLoc();
}
}
DirectlyReferencedTypeDecls results;
auto &ctx = dc->getASTContext();
auto descriptor = UnqualifiedLookupDescriptor(name, dc, loc, options);
auto lookup = evaluateOrDefault(ctx.evaluator,
UnqualifiedLookupRequest{descriptor}, {});
unsigned nominalTypeDeclCount = 0;
for (const auto &result : lookup.allResults()) {
auto typeDecl = cast<TypeDecl>(result.getValueDecl());
if (isa<NominalTypeDecl>(typeDecl))
nominalTypeDeclCount++;
results.first.push_back(typeDecl);
}
// If we saw multiple nominal type declarations with the same name,
// the result of the lookup is definitely ambiguous.
if (nominalTypeDeclCount > 1)
results.first.clear();
return results;
}
/// Perform qualified name lookup for types.
static llvm::TinyPtrVector<TypeDecl *>
directReferencesForQualifiedTypeLookup(Evaluator &evaluator,
ASTContext &ctx,
ArrayRef<TypeDecl *> baseTypes,
DeclNameRef name,
DeclContext *dc,
SourceLoc loc,
bool allowUsableFromInline=false) {
llvm::TinyPtrVector<TypeDecl *> result;
auto addResults = [&result](ArrayRef<ValueDecl *> found){
for (auto decl : found){
assert(isa<TypeDecl>(decl) &&
"Lookup should only have found type declarations");
result.push_back(cast<TypeDecl>(decl));
}
};
{
// Look into the base types.
SmallVector<ValueDecl *, 4> members;
auto options = NL_RemoveNonVisible | NL_OnlyTypes;
if (allowUsableFromInline)
options |= NL_IncludeUsableFromInline;
// Look through the type declarations we were given, resolving them down
// to nominal type declarations, module declarations, and
SmallVector<ModuleDecl *, 2> moduleDecls;
bool anyObject = false;
auto nominalTypeDecls =
resolveTypeDeclsToNominal(ctx.evaluator, ctx, baseTypes,
ResolveToNominalOptions(),
moduleDecls, anyObject);
dc->lookupQualified(nominalTypeDecls, name, loc, options, members);
// Search all of the modules.
for (auto module : moduleDecls) {
auto innerOptions = options;
innerOptions &= ~NL_RemoveOverridden;
innerOptions &= ~NL_RemoveNonVisible;
SmallVector<ValueDecl *, 4> moduleMembers;
dc->lookupQualified(module, name, loc, innerOptions, moduleMembers);
members.append(moduleMembers.begin(), moduleMembers.end());
}
addResults(members);
}
return result;
}
/// Determine the types directly referenced by the given identifier type.
static DirectlyReferencedTypeDecls
directReferencesForDeclRefTypeRepr(Evaluator &evaluator, ASTContext &ctx,
DeclRefTypeRepr *repr, DeclContext *dc,
bool allowUsableFromInline,
bool rhsOfSelfRequirement,
bool allowProtocolMembers) {
if (auto *qualIdentTR = dyn_cast<QualifiedIdentTypeRepr>(repr)) {
auto result = directReferencesForTypeRepr(
evaluator, ctx, qualIdentTR->getBase(), dc,
allowUsableFromInline, rhsOfSelfRequirement, allowProtocolMembers);
// For a qualified identifier, perform qualified name lookup.
result.first = directReferencesForQualifiedTypeLookup(
evaluator, ctx, result.first, repr->getNameRef(), dc, repr->getLoc(),
allowUsableFromInline);
return result;
}
// For an unqualified identifier, perform unqualified name lookup.
return directReferencesForUnqualifiedTypeLookup(
repr->getNameRef(), repr->getLoc(), dc, LookupOuterResults::Excluded,
allowUsableFromInline, rhsOfSelfRequirement, allowProtocolMembers);
}
static DirectlyReferencedTypeDecls
directReferencesForTypeRepr(Evaluator &evaluator,
ASTContext &ctx, TypeRepr *typeRepr,
DeclContext *dc, bool allowUsableFromInline,
bool rhsOfSelfRequirement,
bool allowProtocolMembers) {
DirectlyReferencedTypeDecls result;
switch (typeRepr->getKind()) {
case TypeReprKind::Array:
result.first.push_back(ctx.getArrayDecl());
return result;
case TypeReprKind::Attributed: {
auto attributed = cast<AttributedTypeRepr>(typeRepr);
return directReferencesForTypeRepr(evaluator, ctx,
attributed->getTypeRepr(), dc,
allowUsableFromInline,
rhsOfSelfRequirement,
allowProtocolMembers);
}
case TypeReprKind::Composition: {
auto composition = cast<CompositionTypeRepr>(typeRepr);
for (auto component : composition->getTypes()) {
auto componentResult =
directReferencesForTypeRepr(evaluator, ctx, component, dc,
allowUsableFromInline,
rhsOfSelfRequirement,
allowProtocolMembers);
result.first.insert(result.first.end(),
componentResult.first.begin(),
componentResult.first.end());
// Merge inverses.
result.second.insertAll(componentResult.second);
}
return result;
}
case TypeReprKind::QualifiedIdent:
case TypeReprKind::UnqualifiedIdent:
return directReferencesForDeclRefTypeRepr(evaluator, ctx,
cast<DeclRefTypeRepr>(typeRepr),
dc, allowUsableFromInline,
rhsOfSelfRequirement,
allowProtocolMembers);
case TypeReprKind::Dictionary:
result.first.push_back(ctx.getDictionaryDecl());
return result;
case TypeReprKind::Tuple: {
auto tupleRepr = cast<TupleTypeRepr>(typeRepr);
if (tupleRepr->isParenType()) {
result = directReferencesForTypeRepr(evaluator, ctx,
tupleRepr->getElementType(0), dc,
allowUsableFromInline,
rhsOfSelfRequirement,
allowProtocolMembers);
} else {
result.first.push_back(ctx.getBuiltinTupleDecl());
}
return result;
}
case TypeReprKind::Vararg: {
auto packExpansionRepr = cast<VarargTypeRepr>(typeRepr);
return directReferencesForTypeRepr(evaluator, ctx,
packExpansionRepr->getElementType(), dc,
allowUsableFromInline,
rhsOfSelfRequirement,
allowProtocolMembers);
}
case TypeReprKind::PackExpansion: {
auto packExpansionRepr = cast<PackExpansionTypeRepr>(typeRepr);
return directReferencesForTypeRepr(evaluator, ctx,
packExpansionRepr->getPatternType(), dc,
allowUsableFromInline,
rhsOfSelfRequirement,
allowProtocolMembers);
}
case TypeReprKind::PackElement: {
auto packReferenceRepr = cast<PackElementTypeRepr>(typeRepr);
return directReferencesForTypeRepr(evaluator, ctx,
packReferenceRepr->getPackType(), dc,
allowUsableFromInline,
rhsOfSelfRequirement,
allowProtocolMembers);
}
case TypeReprKind::Inverse: {
// If ~P references a protocol P with a known inverse kind, record it in
// our set of inverses, otherwise just ignore it. We'll diagnose it later.
auto *inverseRepr = cast<InverseTypeRepr>(typeRepr);
auto innerResult = directReferencesForTypeRepr(evaluator, ctx,
inverseRepr->getConstraint(), dc,
allowUsableFromInline,
rhsOfSelfRequirement,
allowProtocolMembers);
if (innerResult.first.size() == 1) {
if (auto *proto = dyn_cast<ProtocolDecl>(innerResult.first[0])) {
if (auto ip = proto->getInvertibleProtocolKind()) {
result.second.insert(*ip);
}
}
}
return result;
}
case TypeReprKind::Error:
case TypeReprKind::Function:
case TypeReprKind::Ownership:
case TypeReprKind::Isolated:
case TypeReprKind::CompileTimeConst:
case TypeReprKind::Metatype:
case TypeReprKind::Protocol:
case TypeReprKind::SILBox:
case TypeReprKind::Placeholder:
case TypeReprKind::Pack:
case TypeReprKind::OpaqueReturn:
case TypeReprKind::NamedOpaqueReturn:
case TypeReprKind::Existential:
case TypeReprKind::ResultDependsOn:
case TypeReprKind::LifetimeDependentReturn:
case TypeReprKind::Sending:
return result;
case TypeReprKind::Fixed:
llvm_unreachable("Cannot get fixed TypeReprs in name lookup");
case TypeReprKind::Self:
llvm_unreachable("Cannot get fixed SelfTypeRepr in name lookup");
case TypeReprKind::Optional:
case TypeReprKind::ImplicitlyUnwrappedOptional:
result.first.push_back(ctx.getOptionalDecl());
return result;
}
llvm_unreachable("unhandled kind");
}
static DirectlyReferencedTypeDecls directReferencesForType(Type type) {
DirectlyReferencedTypeDecls result;
// If it's a typealias, return that.
if (auto aliasType = dyn_cast<TypeAliasType>(type.getPointer())) {
result.first.push_back(aliasType->getDecl());
return result;
}
// If there is a generic declaration, return it.
if (auto genericDecl = type->getAnyGeneric()) {
result.first.push_back(genericDecl);
return result;
}
if (type->is<TupleType>()) {
result.first.push_back(type->getASTContext().getBuiltinTupleDecl());
return result;
}
if (auto *protoType = type->getAs<ProtocolType>()) {
result.first.push_back(protoType->getDecl());
return result;
}
if (auto *compositionType = type->getAs<ProtocolCompositionType>()) {
for (auto member : compositionType->getMembers()) {
auto componentResult = directReferencesForType(member);
result.first.insert(result.first.end(),
componentResult.first.begin(),
componentResult.first.end());
// Merge inverses from each member recursively.
result.second.insertAll(componentResult.second);
}
// Merge inverses attached to the composition itself.
result.second.insertAll(compositionType->getInverses());
return result;
}
if (auto *paramType = type->getAs<ParameterizedProtocolType>()) {
return directReferencesForType(paramType->getBaseType());
}
if (auto *existentialType = type->getAs<ExistentialType>()) {
return directReferencesForType(existentialType->getConstraintType());
}
return result;
}
DirectlyReferencedTypeDecls InheritedDeclsReferencedRequest::evaluate(
Evaluator &evaluator,
llvm::PointerUnion<const TypeDecl *, const ExtensionDecl *> decl,
unsigned index) const {
// Prefer syntactic information when we have it.
const InheritedEntry &typeLoc = InheritedTypes(decl).getEntry(index);
if (auto typeRepr = typeLoc.getTypeRepr()) {
// Figure out the context in which name lookup will occur.
DeclContext *dc;
if (auto typeDecl = decl.dyn_cast<const TypeDecl *>())
dc = typeDecl->getInnermostDeclContext();
else
dc = (DeclContext *)decl.get<const ExtensionDecl *>();
// If looking at a protocol's inheritance list,
// do not look at protocol members to avoid circularity.
// Protocols cannot inherit from any protocol members anyway.
bool allowProtocolMembers = (dc->getSelfProtocolDecl() == nullptr);
return directReferencesForTypeRepr(evaluator, dc->getASTContext(), typeRepr,
const_cast<DeclContext *>(dc),
/*allowUsableFromInline=*/false,
/*rhsOfSelfRequirement=*/false,
allowProtocolMembers);
}
// Fall back to semantic types.
// FIXME: In the long run, we shouldn't need this. Non-syntactic results
// should be cached.
if (auto type = typeLoc.getType()) {
return directReferencesForType(type);
}
return { };
}
DirectlyReferencedTypeDecls UnderlyingTypeDeclsReferencedRequest::evaluate(
Evaluator &evaluator,
TypeAliasDecl *typealias) const {
// Prefer syntactic information when we have it.
if (auto typeRepr = typealias->getUnderlyingTypeRepr()) {
return directReferencesForTypeRepr(evaluator, typealias->getASTContext(),
typeRepr, typealias,
/*allowUsableFromInline=*/false,
/*rhsOfSelfRequirement=*/false,
/*allowProtocolMembers=*/true);
}
// Fall back to semantic types.
// FIXME: In the long run, we shouldn't need this. Non-syntactic results
// should be cached.
if (auto type = typealias->getUnderlyingType()) {
return directReferencesForType(type);
}
return { };
}
/// Evaluate a superclass declaration request.
ClassDecl *
SuperclassDeclRequest::evaluate(Evaluator &evaluator,
NominalTypeDecl *subject) const {
auto &Ctx = subject->getASTContext();
// Protocols may get their superclass bound from a `where Self : Superclass`
// clause.
if (auto *proto = dyn_cast<ProtocolDecl>(subject)) {
// If the protocol came from a serialized module, compute the superclass via
// its generic signature.
if (proto->wasDeserialized()) {
auto superTy = proto->getGenericSignature()
->getSuperclassBound(proto->getSelfInterfaceType());
if (superTy)
return superTy->getClassOrBoundGenericClass();
}
// Otherwise check the where clause.
auto selfBounds = getSelfBoundsFromWhereClause(proto);
for (auto inheritedNominal : selfBounds.decls)
if (auto classDecl = dyn_cast<ClassDecl>(inheritedNominal))
return classDecl;
}
for (unsigned i : subject->getInherited().getIndices()) {
// Find the inherited declarations referenced at this position.
auto inheritedTypes = evaluateOrDefault(evaluator,
InheritedDeclsReferencedRequest{subject, i}, {});
// Resolve those type declarations to nominal type declarations.
SmallVector<ModuleDecl *, 2> modulesFound;
bool anyObject = false;
auto inheritedNominalTypes
= resolveTypeDeclsToNominal(evaluator, Ctx,
inheritedTypes.first,
ResolveToNominalOptions(),
modulesFound, anyObject);
// Look for a class declaration.
ClassDecl *superclass = nullptr;
for (auto inheritedNominal : inheritedNominalTypes) {
if (auto classDecl = dyn_cast<ClassDecl>(inheritedNominal)) {
superclass = classDecl;
break;
}
}
// If we found a superclass, ensure that we don't have a circular
// inheritance hierarchy by evaluating its superclass. This forces the
// diagnostic at this point and then suppresses the superclass failure.
if (superclass) {
if (evaluateOrDefault(Ctx.evaluator,
SuperclassDeclRequest{superclass},
superclass) == superclass) {
return nullptr;
}
return superclass;
}
}
return nullptr;
}
ArrayRef<ProtocolDecl *>
InheritedProtocolsRequest::evaluate(Evaluator &evaluator,
ProtocolDecl *PD) const {
auto &ctx = PD->getASTContext();
llvm::SmallSetVector<ProtocolDecl *, 2> inherited;
assert(!PD->wasDeserialized());
InvertibleProtocolSet inverses;
bool anyObject = false;
for (const auto &found :
getDirectlyInheritedNominalTypeDecls(PD, inverses, anyObject)) {
auto proto = dyn_cast<ProtocolDecl>(found.Item);
if (proto && proto != PD)
inherited.insert(proto);
}
// Apply inverses.
bool skipInverses = false;
// ... except for these protocols, so that Copyable does not have to
// inherit ~Copyable, etc.
if (auto kp = PD->getKnownProtocolKind()) {
switch (*kp) {
case KnownProtocolKind::Sendable:
case KnownProtocolKind::Copyable:
case KnownProtocolKind::Escapable:
skipInverses = true;
break;
default:
break;
}
}
if (!skipInverses) {
for (auto ip : InvertibleProtocolSet::allKnown()) {
// Unless the user wrote ~P in the syntactic inheritance clause, the
// semantic inherited list includes P.
if (!inverses.contains(ip))
inherited.insert(ctx.getProtocol(getKnownProtocolKind(ip)));
}
}
return ctx.AllocateCopy(inherited.getArrayRef());
}
ArrayRef<ProtocolDecl *>
AllInheritedProtocolsRequest::evaluate(Evaluator &evaluator,
ProtocolDecl *PD) const {
llvm::SmallSetVector<ProtocolDecl *, 2> result;
PD->walkInheritedProtocols([&](ProtocolDecl *inherited) {
if (inherited != PD)
result.insert(inherited);
return TypeWalker::Action::Continue;
});
return PD->getASTContext().AllocateCopy(result.getArrayRef());
}
ArrayRef<ValueDecl *>
ProtocolRequirementsRequest::evaluate(Evaluator &evaluator,
ProtocolDecl *PD) const {
SmallVector<ValueDecl *, 4> requirements;
for (auto *member : PD->getABIMembers()) {
auto *VD = dyn_cast<ValueDecl>(member);
if (VD && VD->isProtocolRequirement())
requirements.push_back(VD);
}
return PD->getASTContext().AllocateCopy(requirements);
}
NominalTypeDecl *
ExtendedNominalRequest::evaluate(Evaluator &evaluator,
ExtensionDecl *ext) const {
auto typeRepr = ext->getExtendedTypeRepr();
if (!typeRepr) {
// We must've seen 'extension { ... }' during parsing.
return nullptr;
}
ASTContext &ctx = ext->getASTContext();
DirectlyReferencedTypeDecls referenced =
directReferencesForTypeRepr(evaluator, ctx, typeRepr, ext->getParent(),
ext->isInSpecializeExtensionContext(),
/*rhsOfSelfRequirement=*/false,
/*allowProtocolMembers=*/true);
// Resolve those type declarations to nominal type declarations.
SmallVector<ModuleDecl *, 2> modulesFound;
bool anyObject = false;
auto nominalTypes
= resolveTypeDeclsToNominal(evaluator, ctx, referenced.first,
ResolveToNominalFlags::AllowTupleType,
modulesFound, anyObject);
// If there is more than 1 element, we will emit a warning or an error
// elsewhere, so don't handle that case here.
if (nominalTypes.empty())
return nullptr;
return nominalTypes[0];
}
/// Whether there are only associated types in the set of declarations.
static bool declsAreAssociatedTypes(ArrayRef<TypeDecl *> decls) {
if (decls.empty())
return false;
for (auto decl : decls) {
if (!isa<AssociatedTypeDecl>(decl))
return false;
}
return true;
}
/// Verify there is at least one protocols in the set of declarations.
static bool declsAreProtocols(ArrayRef<TypeDecl *> decls) {
if (decls.empty())
return false; // Below, check outer type repr is a protocol, if not bail early
return llvm::any_of(decls, [&](const TypeDecl *decl) {
if (auto *alias = dyn_cast<TypeAliasDecl>(decl)) {
auto ty = alias->getUnderlyingType();
decl = ty->getNominalOrBoundGenericNominal();
if (decl == nullptr || ty->is<ExistentialType>())
return false;
}
return isa<ProtocolDecl>(decl);
});
}
bool TypeRepr::isProtocolOrProtocolComposition(DeclContext *dc) {
auto &ctx = dc->getASTContext();
auto references = directReferencesForTypeRepr(ctx.evaluator, ctx, this, dc,
/*allowUsableFromInline=*/false,
/*rhsOfSelfRequirement=*/false,
/*allowProtocolMembers=*/true);
return declsAreProtocols(references.first);
}
static GenericParamList *
createExtensionGenericParams(ASTContext &ctx,
ExtensionDecl *ext,
DeclContext *source) {
// Collect generic parameters from all outer contexts.
SmallVector<GenericParamList *, 2> allGenericParams;
source->forEachGenericContext([&](GenericParamList *gpList) {
allGenericParams.push_back(gpList->clone(ext));
});
GenericParamList *toParams = nullptr;
for (auto *gpList : llvm::reverse(allGenericParams)) {
gpList->setOuterParameters(toParams);
toParams = gpList;
}
return toParams;
}
/// If the extended type is a generic typealias whose underlying type is
/// a tuple, the extension inherits the generic parameter list from the
/// typealias.
static GenericParamList *
createTupleExtensionGenericParams(ASTContext &ctx,
ExtensionDecl *ext,
TypeRepr *extendedTypeRepr) {
DirectlyReferencedTypeDecls referenced =
directReferencesForTypeRepr(ctx.evaluator, ctx,
extendedTypeRepr,
ext->getParent(),
/*allowUsableFromInline=*/false,
/*rhsOfSelfRequirement=*/false,
/*allowProtocolMembers=*/true);
assert(referenced.second.empty() && "Implement me");
if (referenced.first.size() != 1 || !isa<TypeAliasDecl>(referenced.first[0]))
return nullptr;
auto *typeAlias = cast<TypeAliasDecl>(referenced.first[0]);
if (!typeAlias->isGeneric())
return nullptr;
return createExtensionGenericParams(ctx, ext, typeAlias);
}
CollectedOpaqueReprs swift::collectOpaqueTypeReprs(TypeRepr *r, ASTContext &ctx,
DeclContext *d) {
class Walker : public ASTWalker {
CollectedOpaqueReprs &Reprs;
ASTContext &Ctx;
DeclContext *dc;
public:
explicit Walker(CollectedOpaqueReprs &reprs, ASTContext &ctx, DeclContext *d) : Reprs(reprs), Ctx(ctx), dc(d) {}
/// Walk everything that's available.
MacroWalking getMacroWalkingBehavior() const override {
return MacroWalking::ArgumentsAndExpansion;
}
PreWalkAction walkToTypeReprPre(TypeRepr *repr) override {
// Don't allow variadic opaque parameter or return types.
if (isa<PackExpansionTypeRepr>(repr) || isa<VarargTypeRepr>(repr))
return Action::SkipNode();
if (auto opaqueRepr = dyn_cast<OpaqueReturnTypeRepr>(repr)) {
Reprs.push_back(opaqueRepr);
if (Ctx.LangOpts.hasFeature(Feature::ImplicitSome))
return Action::SkipNode();
}
if (!Ctx.LangOpts.hasFeature(Feature::ImplicitSome))
return Action::Continue();
if (auto existential = dyn_cast<ExistentialTypeRepr>(repr)) {
return Action::SkipNode();
} else if (auto composition = dyn_cast<CompositionTypeRepr>(repr)) {
if (!composition->isTypeReprAny())
Reprs.push_back(composition);
return Action::SkipNode();
} else if (isa<DeclRefTypeRepr>(repr)) {
// We only care about the type of an outermost member type
// representation. For example, in `A<T>.B.C<U>`, check `C` and generic
// arguments `U` and `T`, but not `A` or `B`.
if (auto *parentQualIdentTR = dyn_cast_or_null<QualifiedIdentTypeRepr>(
Parent.getAsTypeRepr())) {
if (repr == parentQualIdentTR->getBase()) {
return Action::Continue();
}
}
if (repr->isProtocolOrProtocolComposition(dc))
Reprs.push_back(repr);
}
return Action::Continue();
}
};
CollectedOpaqueReprs reprs;
r->walk(Walker(reprs, ctx, d));
return reprs;
}
/// If there are opaque parameters in the given declaration, create the
/// generic parameters associated with them.
static SmallVector<GenericTypeParamDecl *, 2>
createOpaqueParameterGenericParams(GenericContext *genericContext, GenericParamList *parsedGenericParams) {
ASTContext &ctx = genericContext->getASTContext();
auto value = dyn_cast_or_null<ValueDecl>(genericContext->getAsDecl());
if (!value)
return { };
// Functions, initializers, and subscripts can contain opaque parameters.
ParameterList *params = nullptr;
if (auto func = dyn_cast<AbstractFunctionDecl>(value))
params = func->getParameters();
else if (auto subscript = dyn_cast<SubscriptDecl>(value))
params = subscript->getIndices();
else
return { };
// Look for parameters that have "some" types in them.
unsigned index = parsedGenericParams ? parsedGenericParams->size() : 0;
SmallVector<GenericTypeParamDecl *, 2> implicitGenericParams;
auto dc = value->getInnermostDeclContext();
for (auto param : *params) {
auto typeRepr = param->getTypeRepr();
if (!typeRepr)
continue;
// Plain protocols should imply 'some' with experimetal feature
CollectedOpaqueReprs typeReprs;
typeReprs = collectOpaqueTypeReprs(typeRepr, ctx, dc);
for (auto repr : typeReprs) {
// Allocate a new generic parameter to represent this opaque type.
auto *gp = GenericTypeParamDecl::createImplicit(
dc, Identifier(), GenericTypeParamDecl::InvalidDepth, index++,
/*isParameterPack*/ false, /*isOpaqueType*/ true, repr,
/*nameLoc*/ repr->getStartLoc());
// Use the underlying constraint as the constraint on the generic parameter.
// The underlying constraint is only present for OpaqueReturnTypeReprs
if (auto opaque = dyn_cast<OpaqueReturnTypeRepr>(repr)) {
InheritedEntry inherited[1] = {
{ TypeLoc(opaque->getConstraint()) }
};
gp->setInherited(ctx.AllocateCopy(inherited));
} else {
InheritedEntry inherited[1] = {
{ TypeLoc(repr) }
};
gp->setInherited(ctx.AllocateCopy(inherited));
}
implicitGenericParams.push_back(gp);
}
}
return implicitGenericParams;
}
GenericParamList *
GenericParamListRequest::evaluate(Evaluator &evaluator, GenericContext *value) const {
if (auto *tupleDecl = dyn_cast<BuiltinTupleDecl>(value)) {
auto &ctx = value->getASTContext();
// Builtin.TheTupleType has a single pack generic parameter: <each Element>
auto *genericParam = GenericTypeParamDecl::createImplicit(
tupleDecl->getDeclContext(), ctx.Id_Element, /*depth*/ 0, /*index*/ 0,
/*isParameterPack*/ true);
return GenericParamList::create(ctx, SourceLoc(), genericParam,
SourceLoc());
}
if (auto *ext = dyn_cast<ExtensionDecl>(value)) {
// Create the generic parameter list for the extension by cloning the
// generic parameter lists of the nominal and any of its parent types.
auto &ctx = value->getASTContext();
auto *nominal = ext->getExtendedNominal();
if (!nominal) {
return nullptr;
}
// For a tuple extension, the generic parameter list comes from the
// extended type alias.
if (isa<BuiltinTupleDecl>(nominal)) {
if (auto *extendedTypeRepr = ext->getExtendedTypeRepr()) {
auto *genericParams = createTupleExtensionGenericParams(
ctx, ext, extendedTypeRepr);
if (genericParams)
return genericParams;
// Otherwise, just clone the generic parameter list of the
// Builtin.TheTupleType. We'll diagnose later.
}
}
auto *genericParams = createExtensionGenericParams(ctx, ext, nominal);
// Protocol extensions need an inheritance clause due to how name lookup
// is implemented.
if (auto *proto = ext->getExtendedProtocolDecl()) {
auto protoType = proto->getDeclaredInterfaceType();
InheritedEntry selfInherited[1] = {
InheritedEntry(TypeLoc::withoutLoc(protoType)) };
genericParams->getParams().front()->setInherited(
ctx.AllocateCopy(selfInherited));
}
// Set the depth of every generic parameter.
unsigned depth = nominal->getGenericContextDepth();
for (auto *outerParams = genericParams;
outerParams != nullptr;
outerParams = outerParams->getOuterParameters())
outerParams->setDepth(depth--);
return genericParams;
}
if (auto *proto = dyn_cast<ProtocolDecl>(value)) {
// The generic parameter 'Self'.
auto &ctx = value->getASTContext();
auto selfId = ctx.Id_Self;
auto selfDecl = GenericTypeParamDecl::createImplicit(
proto, selfId, /*depth*/ 0, /*index*/ 0);
auto protoType = proto->getDeclaredInterfaceType();
InheritedEntry selfInherited[1] = {
InheritedEntry(TypeLoc::withoutLoc(protoType)) };
selfDecl->setInherited(ctx.AllocateCopy(selfInherited));
selfDecl->setImplicit();
// The generic parameter list itself.
auto result = GenericParamList::create(ctx, SourceLoc(), selfDecl,
SourceLoc());
return result;
}
// AccessorDecl generic parameter list is the same of its storage
// context.
if (auto *AD = dyn_cast<AccessorDecl>(value)) {
auto *GC = AD->getStorage()->getAsGenericContext();
if (!GC)
return nullptr;
auto *GP = GC->getGenericParams();
if (!GP)
return nullptr;
return GP->clone(AD->getDeclContext());
}
auto parsedGenericParams = value->getParsedGenericParams();
// Create implicit generic parameters due to opaque parameters, if we need
// them.
auto implicitGenericParams =
createOpaqueParameterGenericParams(value, parsedGenericParams);
if (implicitGenericParams.empty())
return parsedGenericParams;
// If there were no parsed generic parameters, create a fully-implicit
// generic parameter list.
ASTContext &ctx = value->getASTContext();
if (!parsedGenericParams) {
return GenericParamList::create(
ctx, SourceLoc(), implicitGenericParams, SourceLoc());
}
// Combine the existing generic parameters with the implicit ones.
SmallVector<GenericTypeParamDecl *, 4> allGenericParams;
allGenericParams.reserve(
parsedGenericParams->size() + implicitGenericParams.size());
allGenericParams.append(parsedGenericParams->begin(),
parsedGenericParams->end());
allGenericParams.append(implicitGenericParams);
return GenericParamList::create(
ctx, parsedGenericParams->getLAngleLoc(), allGenericParams,
parsedGenericParams->getWhereLoc(),
parsedGenericParams->getRequirements(),
parsedGenericParams->getRAngleLoc());
}
NominalTypeDecl *
CustomAttrNominalRequest::evaluate(Evaluator &evaluator,
CustomAttr *attr, DeclContext *dc) const {
// Look for names at module scope, so we don't trigger name lookup for
// nested scopes. At this point, we're looking to see whether there are
// any suitable macros.
auto [module, macro] = attr->destructureMacroRef();
auto moduleName = (module) ? module->getNameRef() : DeclNameRef();
auto macroName = (macro) ? macro->getNameRef() : DeclNameRef();
auto macros = namelookup::lookupMacros(dc, moduleName, macroName,
getAttachedMacroRoles());
if (!macros.empty())
return nullptr;
// Find the types referenced by the custom attribute.
auto &ctx = dc->getASTContext();
DirectlyReferencedTypeDecls decls;
if (auto *typeRepr = attr->getTypeRepr()) {
decls = directReferencesForTypeRepr(
evaluator, ctx, typeRepr, dc,
/*allowUsableFromInline=*/false,
/*rhsOfSelfRequirement=*/false,
/*allowProtocolMembers=*/true);
} else if (Type type = attr->getType()) {
decls = directReferencesForType(type);
}
// Dig out the nominal type declarations.
SmallVector<ModuleDecl *, 2> modulesFound;
bool anyObject = false;
auto nominals = resolveTypeDeclsToNominal(evaluator, ctx, decls.first,
ResolveToNominalOptions(),
modulesFound, anyObject);
if (nominals.size() == 1 && !isa<ProtocolDecl>(nominals.front()))
return nominals.front();
// If we found declarations that are associated types, look outside of
// the current context to see if we can recover.
if (declsAreAssociatedTypes(decls.first)) {
if (auto *unqualIdentRepr =
dyn_cast_or_null<UnqualifiedIdentTypeRepr>(attr->getTypeRepr())) {
if (!unqualIdentRepr->hasGenericArgList()) {
auto assocType = cast<AssociatedTypeDecl>(decls.first.front());
const auto name = unqualIdentRepr->getNameRef();
const auto nameLoc = unqualIdentRepr->getNameLoc();
const auto loc = unqualIdentRepr->getLoc();
modulesFound.clear();
anyObject = false;
decls = directReferencesForUnqualifiedTypeLookup(
name, loc, dc, LookupOuterResults::Included,
/*allowUsableFromInline=*/false,
/*rhsOfSelfRequirement=*/false,
/*allowProtocolMembers*/true);
nominals = resolveTypeDeclsToNominal(evaluator, ctx, decls.first,
ResolveToNominalOptions(),
modulesFound, anyObject);
if (nominals.size() == 1 && !isa<ProtocolDecl>(nominals.front())) {
auto nominal = nominals.front();
if (nominal->getDeclContext()->isModuleScopeContext()) {
// Complain, producing module qualification in a Fix-It.
auto moduleName = nominal->getParentModule()->getName();
ctx.Diags
.diagnose(loc, diag::warn_property_wrapper_module_scope, name,
moduleName)
.fixItInsert(loc, moduleName.str().str() + ".");
ctx.Diags.diagnose(assocType, diag::kind_declname_declared_here,
assocType->getDescriptiveKind(),
assocType->getName());
auto *baseTR = UnqualifiedIdentTypeRepr::create(
ctx, nameLoc, DeclNameRef(moduleName));
auto *newTE = new (ctx) TypeExpr(
QualifiedIdentTypeRepr::create(ctx, baseTR, nameLoc, name));
attr->resetTypeInformation(newTE);
return nominal;
}
}
}
}
}
return nullptr;
}
/// Decompose the ith inheritance clause entry to a list of type declarations,
/// inverses, and optional AnyObject member.
void swift::getDirectlyInheritedNominalTypeDecls(
llvm::PointerUnion<const TypeDecl *, const ExtensionDecl *> decl,
unsigned i, llvm::SmallVectorImpl<InheritedNominalEntry> &result,
InvertibleProtocolSet &inverses, bool &anyObject) {
auto typeDecl = decl.dyn_cast<const TypeDecl *>();
auto extDecl = decl.dyn_cast<const ExtensionDecl *>();
ASTContext &ctx = typeDecl ? typeDecl->getASTContext()
: extDecl->getASTContext();
// Find inherited declarations.
auto referenced = evaluateOrDefault(ctx.evaluator,
InheritedDeclsReferencedRequest{decl, i}, {});
// Apply inverses written on this inheritance clause entry.
inverses.insertAll(referenced.second);
// Resolve those type declarations to nominal type declarations.
SmallVector<ModuleDecl *, 2> modulesFound;
auto nominalTypes
= resolveTypeDeclsToNominal(ctx.evaluator, ctx, referenced.first,
ResolveToNominalOptions(),
modulesFound, anyObject);
// Dig out the source location
// FIXME: This is a hack. We need cooperation from
// InheritedDeclsReferencedRequest to make this work.
SourceLoc loc;
SourceLoc uncheckedLoc;
SourceLoc preconcurrencyLoc;
auto inheritedTypes = InheritedTypes(decl);
bool isSuppressed = inheritedTypes.getEntry(i).isSuppressed();
if (TypeRepr *typeRepr = inheritedTypes.getTypeRepr(i)) {
loc = typeRepr->getLoc();
uncheckedLoc = typeRepr->findAttrLoc(TypeAttrKind::Unchecked);
preconcurrencyLoc = typeRepr->findAttrLoc(TypeAttrKind::Preconcurrency);
}
// Form the result.
for (auto nominal : nominalTypes) {
result.push_back(
{nominal, loc, uncheckedLoc, preconcurrencyLoc, isSuppressed});
}
}
/// Decompose all inheritance clause entries and return the union of their
/// type declarations, inverses, and optional AnyObject member.
SmallVector<InheritedNominalEntry, 4>
swift::getDirectlyInheritedNominalTypeDecls(
llvm::PointerUnion<const TypeDecl *, const ExtensionDecl *> decl,
InvertibleProtocolSet &inverses, bool &anyObject) {
SmallVector<InheritedNominalEntry, 4> result;
auto inheritedTypes = InheritedTypes(decl);
for (unsigned i : inheritedTypes.getIndices()) {
getDirectlyInheritedNominalTypeDecls(decl, i, result, inverses, anyObject);
}
auto *typeDecl = decl.dyn_cast<const TypeDecl *>();
auto *protoDecl = dyn_cast_or_null<ProtocolDecl>(typeDecl);
if (!protoDecl)
return result;
assert(!protoDecl->wasDeserialized() && "Use getInheritedProtocols()");
// Check for SynthesizedProtocolAttrs on the protocol. ClangImporter uses
// these to add `Sendable` conformances to protocols without modifying the
// inherited type list.
for (auto attr :
protoDecl->getAttrs().getAttributes<SynthesizedProtocolAttr>()) {
auto loc = attr->getLocation();
result.push_back(
{attr->getProtocol(), loc, attr->isUnchecked() ? loc : SourceLoc(),
/*preconcurrencyLoc=*/SourceLoc(), /*isSuppressed=*/false});
}
// Else we have access to this information on the where clause.
auto selfBounds = getSelfBoundsFromWhereClause(decl);
inverses.insertAll(selfBounds.inverses);
anyObject |= selfBounds.anyObject;
// FIXME: Refactor SelfBoundsFromWhereClauseRequest to dig out
// the source location.
for (auto inheritedNominal : selfBounds.decls)
result.emplace_back(inheritedNominal, SourceLoc(), SourceLoc(), SourceLoc(),
/*isSuppressed=*/false);
return result;
}
bool IsCallAsFunctionNominalRequest::evaluate(Evaluator &evaluator,
NominalTypeDecl *decl,
DeclContext *dc) const {
auto &ctx = dc->getASTContext();
// Do a qualified lookup for `callAsFunction`. We want to ignore access, as
// that will be checked when we actually try to solve with a `callAsFunction`
// member access.
SmallVector<ValueDecl *, 4> results;
auto opts = NL_QualifiedDefault | NL_ProtocolMembers | NL_IgnoreAccessControl;
dc->lookupQualified(decl, DeclNameRef(ctx.Id_callAsFunction),
decl->getLoc(), opts, results);
return llvm::any_of(results, [](ValueDecl *decl) -> bool {
if (auto *fd = dyn_cast<FuncDecl>(decl))
return fd->isCallAsFunctionMethod();
return false;
});
}
bool TypeBase::isCallAsFunctionType(DeclContext *dc) {
// We can perform the lookup at module scope to allow us to better cache the
// result across different contexts. Given we'll be doing a qualified lookup,
// this shouldn't make a difference.
dc = dc->getModuleScopeContext();
// Note this excludes AnyObject.
SmallVector<NominalTypeDecl *, 4> decls;
tryExtractDirectlyReferencedNominalTypes(this, decls);
auto &ctx = dc->getASTContext();
return llvm::any_of(decls, [&](auto *decl) {
IsCallAsFunctionNominalRequest req(decl, dc);
return evaluateOrDefault(ctx.evaluator, req, false);
});
}
template <class DynamicAttribute, class Req>
static bool checkForDynamicAttribute(Evaluator &eval, NominalTypeDecl *decl) {
// If this type has the attribute on it, then yes!
if (decl->getAttrs().hasAttribute<DynamicAttribute>())
return true;
auto hasAttribute = [&](NominalTypeDecl *decl) -> bool {
return evaluateOrDefault(eval, Req{decl}, false);
};
if (auto *proto = dyn_cast<ProtocolDecl>(decl)) {
// Check inherited protocols of a protocol.
for (auto *otherProto : proto->getInheritedProtocols())
if (hasAttribute(otherProto))
return true;
} else {
// Check the protocols the type conforms to.
for (auto *otherProto : decl->getAllProtocols()) {
if (hasAttribute(otherProto))
return true;
}
}
// Check the superclass if present.
if (auto *classDecl = dyn_cast<ClassDecl>(decl)) {
if (auto *superclass = classDecl->getSuperclassDecl()) {
if (hasAttribute(superclass))
return true;
}
}
return false;
}
bool HasDynamicMemberLookupAttributeRequest::evaluate(
Evaluator &eval, NominalTypeDecl *decl) const {
using Req = HasDynamicMemberLookupAttributeRequest;
return checkForDynamicAttribute<DynamicMemberLookupAttr, Req>(eval, decl);
}
bool TypeBase::hasDynamicMemberLookupAttribute() {
SmallVector<NominalTypeDecl *, 4> decls;
tryExtractDirectlyReferencedNominalTypes(this, decls);
auto &ctx = getASTContext();
return llvm::any_of(decls, [&](auto *decl) {
HasDynamicMemberLookupAttributeRequest req(decl);
return evaluateOrDefault(ctx.evaluator, req, false);
});
}
bool HasDynamicCallableAttributeRequest::evaluate(Evaluator &eval,
NominalTypeDecl *decl) const {
using Req = HasDynamicCallableAttributeRequest;
return checkForDynamicAttribute<DynamicCallableAttr, Req>(eval, decl);
}
bool TypeBase::hasDynamicCallableAttribute() {
SmallVector<NominalTypeDecl *, 4> decls;
tryExtractDirectlyReferencedNominalTypes(this, decls);
auto &ctx = getASTContext();
return llvm::any_of(decls, [&](auto *decl) {
HasDynamicCallableAttributeRequest req(decl);
return evaluateOrDefault(ctx.evaluator, req, false);
});
}
ProtocolDecl *ImplementsAttrProtocolRequest::evaluate(
Evaluator &evaluator, const ImplementsAttr *attr, DeclContext *dc) const {
auto typeRepr = attr->getProtocolTypeRepr();
ASTContext &ctx = dc->getASTContext();
DirectlyReferencedTypeDecls referenced =
directReferencesForTypeRepr(evaluator, ctx, typeRepr, dc,
/*allowUsableFromInline=*/false,
/*rhsOfSelfRequirement=*/false,
/*allowProtocolMembers=*/true);
// Resolve those type declarations to nominal type declarations.
SmallVector<ModuleDecl *, 2> modulesFound;
bool anyObject = false;
auto nominalTypes
= resolveTypeDeclsToNominal(evaluator, ctx, referenced.first,
ResolveToNominalOptions(),
modulesFound, anyObject);
if (nominalTypes.empty())
return nullptr;
return dyn_cast<ProtocolDecl>(nominalTypes.front());
}
FuncDecl *LookupIntrinsicRequest::evaluate(Evaluator &evaluator,
ModuleDecl *module,
Identifier funcName) const {
llvm::SmallVector<ValueDecl *, 1> decls;
module->lookupQualified(module, DeclNameRef(funcName), SourceLoc(),
NL_QualifiedDefault | NL_IncludeUsableFromInline,
decls);
if (decls.size() != 1)
return nullptr;
return dyn_cast<FuncDecl>(decls[0]);
}
void swift::simple_display(llvm::raw_ostream &out, NLKind kind) {
switch (kind) {
case NLKind::QualifiedLookup:
out << "QualifiedLookup";
return;
case NLKind::UnqualifiedLookup:
out << "UnqualifiedLookup";
return;
}
llvm_unreachable("Unhandled case in switch");
}
void swift::simple_display(llvm::raw_ostream &out, NLOptions options) {
using Flag = std::pair<NLOptions, StringRef>;
Flag possibleFlags[] = {
#define FLAG(Name) {Name, #Name},
FLAG(NL_ProtocolMembers)
FLAG(NL_RemoveNonVisible)
FLAG(NL_RemoveOverridden)
FLAG(NL_IgnoreAccessControl)
FLAG(NL_OnlyTypes)
FLAG(NL_OnlyMacros)
FLAG(NL_IncludeAttributeImplements)
#undef FLAG
};
auto flagsToPrint = llvm::make_filter_range(
possibleFlags, [&](Flag flag) { return options & flag.first; });
out << "{ ";
interleave(
flagsToPrint, [&](Flag flag) { out << flag.second; },
[&] { out << ", "; });
out << " }";
}
|