1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
|
//===--- Pattern.cpp - Swift Language Pattern-Matching ASTs ---------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the Pattern class and subclasses.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/Pattern.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/ASTVisitor.h"
#include "swift/AST/ASTWalker.h"
#include "swift/AST/Expr.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/AST/TypeLoc.h"
#include "swift/AST/TypeRepr.h"
#include "swift/Basic/Statistic.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/Support/raw_ostream.h"
using namespace swift;
#define PATTERN(Id, _) \
static_assert(IsTriviallyDestructible<Id##Pattern>::value, \
"Patterns are BumpPtrAllocated; the d'tor is never called");
#include "swift/AST/PatternNodes.def"
DescriptivePatternKind Pattern::getDescriptiveKind() const {
#define TRIVIAL_PATTERN_KIND(Kind) \
case PatternKind::Kind: \
return DescriptivePatternKind::Kind
switch (getKind()) {
TRIVIAL_PATTERN_KIND(Paren);
TRIVIAL_PATTERN_KIND(Tuple);
TRIVIAL_PATTERN_KIND(Named);
TRIVIAL_PATTERN_KIND(Any);
TRIVIAL_PATTERN_KIND(Typed);
TRIVIAL_PATTERN_KIND(Is);
TRIVIAL_PATTERN_KIND(EnumElement);
TRIVIAL_PATTERN_KIND(OptionalSome);
TRIVIAL_PATTERN_KIND(Bool);
TRIVIAL_PATTERN_KIND(Expr);
case PatternKind::Binding:
switch (cast<BindingPattern>(this)->getIntroducer()) {
case VarDecl::Introducer::Let:
case VarDecl::Introducer::Borrowing:
return DescriptivePatternKind::Let;
case VarDecl::Introducer::Var:
case VarDecl::Introducer::InOut:
return DescriptivePatternKind::Var;
}
}
#undef TRIVIAL_PATTERN_KIND
llvm_unreachable("bad DescriptivePatternKind");
}
StringRef Pattern::getKindName(PatternKind K) {
switch (K) {
#define PATTERN(Id, Parent) case PatternKind::Id: return #Id;
#include "swift/AST/PatternNodes.def"
}
llvm_unreachable("bad PatternKind");
}
StringRef Pattern::getDescriptivePatternKindName(DescriptivePatternKind K) {
#define ENTRY(Kind, String) \
case DescriptivePatternKind::Kind: \
return String
switch (K) {
ENTRY(Paren, "parenthesized pattern");
ENTRY(Tuple, "tuple pattern");
ENTRY(Named, "pattern variable binding");
ENTRY(Any, "'_' pattern");
ENTRY(Typed, "pattern type annotation");
ENTRY(Is, "prefix 'is' pattern");
ENTRY(EnumElement, "enum case matching pattern");
ENTRY(OptionalSome, "optional pattern");
ENTRY(Bool, "bool matching pattern");
ENTRY(Expr, "expression pattern");
ENTRY(Var, "'var' binding pattern");
ENTRY(Let, "'let' binding pattern");
}
#undef ENTRY
llvm_unreachable("bad DescriptivePatternKind");
}
// Metaprogram to verify that every concrete class implements
// a 'static bool classof(const Pattern*)'.
template <bool fn(const Pattern*)> struct CheckClassOfPattern {
static const bool IsImplemented = true;
};
template <> struct CheckClassOfPattern<Pattern::classof> {
static const bool IsImplemented = false;
};
#define PATTERN(ID, PARENT) \
static_assert(CheckClassOfPattern<ID##Pattern::classof>::IsImplemented, \
#ID "Pattern is missing classof(const Pattern*)");
#include "swift/AST/PatternNodes.def"
// Metaprogram to verify that every concrete class implements
// 'SourceRange getSourceRange()'.
typedef const char (&TwoChars)[2];
template<typename Class>
inline char checkSourceRangeType(SourceRange (Class::*)() const);
inline TwoChars checkSourceRangeType(SourceRange (Pattern::*)() const);
/// getSourceRange - Return the full source range of the pattern.
SourceRange Pattern::getSourceRange() const {
switch (getKind()) {
#define PATTERN(ID, PARENT) \
case PatternKind::ID: \
static_assert(sizeof(checkSourceRangeType(&ID##Pattern::getSourceRange)) == 1, \
#ID "Pattern is missing getSourceRange()"); \
return cast<ID##Pattern>(this)->getSourceRange();
#include "swift/AST/PatternNodes.def"
}
llvm_unreachable("pattern type not handled!");
}
void Pattern::setDelayedInterfaceType(Type interfaceTy, DeclContext *dc) {
assert(interfaceTy->hasTypeParameter() && "Not an interface type");
Ty = interfaceTy;
ASTContext &ctx = interfaceTy->getASTContext();
ctx.DelayedPatternContexts[this] = dc;
Bits.Pattern.hasInterfaceType = true;
}
Type Pattern::getType() const {
assert(hasType());
// If this pattern has an interface type, map it into the context type.
if (Bits.Pattern.hasInterfaceType) {
ASTContext &ctx = Ty->getASTContext();
// Retrieve the generic environment to use for the mapping.
auto found = ctx.DelayedPatternContexts.find(this);
assert(found != ctx.DelayedPatternContexts.end());
auto dc = found->second;
if (auto genericEnv = dc->getGenericEnvironmentOfContext()) {
ctx.DelayedPatternContexts.erase(this);
Ty = genericEnv->mapTypeIntoContext(Ty);
const_cast<Pattern*>(this)->Bits.Pattern.hasInterfaceType = false;
}
}
return Ty;
}
/// getLoc - Return the caret location of the pattern.
SourceLoc Pattern::getLoc() const {
switch (getKind()) {
#define PATTERN(ID, PARENT) \
case PatternKind::ID: \
if (&Pattern::getLoc != &ID##Pattern::getLoc) \
return cast<ID##Pattern>(this)->getLoc(); \
break;
#include "swift/AST/PatternNodes.def"
}
return getStartLoc();
}
void Pattern::collectVariables(SmallVectorImpl<VarDecl *> &variables) const {
forEachVariable([&](VarDecl *VD) { variables.push_back(VD); });
}
VarDecl *Pattern::getSingleVar() const {
auto pattern = getSemanticsProvidingPattern();
if (auto named = dyn_cast<NamedPattern>(pattern))
return named->getDecl();
return nullptr;
}
namespace {
class WalkToVarDecls : public ASTWalker {
const std::function<void(VarDecl*)> &fn;
public:
WalkToVarDecls(const std::function<void(VarDecl*)> &fn)
: fn(fn) {}
/// Walk everything that's available; there shouldn't be macro expansions
/// that matter anyway.
MacroWalking getMacroWalkingBehavior() const override {
return MacroWalking::ArgumentsAndExpansion;
}
PostWalkResult<Pattern *> walkToPatternPost(Pattern *P) override {
// Handle vars.
if (auto *Named = dyn_cast<NamedPattern>(P))
fn(Named->getDecl());
return Action::Continue(P);
}
// Only walk into an expression insofar as it doesn't open a new scope -
// that is, don't walk into a closure body.
PreWalkResult<Expr *> walkToExprPre(Expr *E) override {
if (isa<ClosureExpr>(E)) {
return Action::SkipNode(E);
}
return Action::Continue(E);
}
// Don't walk into anything else.
PreWalkResult<Stmt *> walkToStmtPre(Stmt *S) override {
return Action::SkipNode(S);
}
PreWalkAction walkToTypeReprPre(TypeRepr *T) override {
return Action::SkipNode();
}
PreWalkAction walkToParameterListPre(ParameterList *PL) override {
return Action::SkipNode();
}
PreWalkAction walkToDeclPre(Decl *D) override {
return Action::SkipNode();
}
};
} // end anonymous namespace
/// apply the specified function to all variables referenced in this
/// pattern.
void Pattern::forEachVariable(llvm::function_ref<void(VarDecl *)> fn) const {
switch (getKind()) {
case PatternKind::Any:
case PatternKind::Bool:
return;
case PatternKind::Is:
if (auto SP = cast<IsPattern>(this)->getSubPattern())
SP->forEachVariable(fn);
return;
case PatternKind::Named:
fn(cast<NamedPattern>(this)->getDecl());
return;
case PatternKind::Paren:
case PatternKind::Typed:
case PatternKind::Binding:
return getSemanticsProvidingPattern()->forEachVariable(fn);
case PatternKind::Tuple:
for (auto elt : cast<TuplePattern>(this)->getElements())
elt.getPattern()->forEachVariable(fn);
return;
case PatternKind::EnumElement:
if (auto SP = cast<EnumElementPattern>(this)->getSubPattern())
SP->forEachVariable(fn);
return;
case PatternKind::OptionalSome:
cast<OptionalSomePattern>(this)->getSubPattern()->forEachVariable(fn);
return;
case PatternKind::Expr:
// An ExprPattern only exists before sema has resolved a refutable pattern
// into a concrete pattern. We have to use an AST Walker to find the
// VarDecls buried down inside of it.
const_cast<Pattern*>(this)->walk(WalkToVarDecls(fn));
return;
}
}
/// apply the specified function to all pattern nodes recursively in
/// this pattern. This is a pre-order traversal.
void Pattern::forEachNode(llvm::function_ref<void(Pattern*)> f) {
f(this);
switch (getKind()) {
// Leaf patterns have no recursion.
case PatternKind::Any:
case PatternKind::Named:
case PatternKind::Expr:// FIXME: expr nodes are not modeled right in general.
case PatternKind::Bool:
return;
case PatternKind::Is:
if (auto SP = cast<IsPattern>(this)->getSubPattern())
SP->forEachNode(f);
return;
case PatternKind::Paren:
return cast<ParenPattern>(this)->getSubPattern()->forEachNode(f);
case PatternKind::Typed:
return cast<TypedPattern>(this)->getSubPattern()->forEachNode(f);
case PatternKind::Binding:
return cast<BindingPattern>(this)->getSubPattern()->forEachNode(f);
case PatternKind::Tuple:
for (auto elt : cast<TuplePattern>(this)->getElements())
elt.getPattern()->forEachNode(f);
return;
case PatternKind::EnumElement: {
auto *OP = cast<EnumElementPattern>(this);
if (OP->hasSubPattern())
OP->getSubPattern()->forEachNode(f);
return;
}
case PatternKind::OptionalSome:
cast<OptionalSomePattern>(this)->getSubPattern()->forEachNode(f);
return;
}
}
bool Pattern::hasStorage() const {
bool HasStorage = false;
forEachVariable([&](VarDecl *VD) {
if (VD->hasStorage())
HasStorage = true;
});
return HasStorage;
}
bool Pattern::hasAnyMutableBindings() const {
auto HasMutable = false;
forEachVariable([&](VarDecl *VD) {
if (!VD->isLet())
HasMutable = true;
});
return HasMutable;
}
BindingPattern *BindingPattern::createParsed(ASTContext &ctx, SourceLoc loc,
VarDecl::Introducer introducer,
Pattern *sub) {
// Reset the introducer of the all variables in the pattern.
sub->forEachVariable([&](VarDecl *vd) { vd->setIntroducer(introducer); });
return new (ctx) BindingPattern(loc, introducer, sub);
}
BindingPattern *BindingPattern::createImplicitCatch(DeclContext *dc,
SourceLoc loc) {
auto &ctx = dc->getASTContext();
auto var = new (ctx) VarDecl(/*IsStatic=*/false, VarDecl::Introducer::Let,
loc, ctx.Id_error, dc);
var->setImplicit();
auto namePattern = new (ctx) NamedPattern(var);
auto varPattern =
new (ctx) BindingPattern(loc, VarDecl::Introducer::Let, namePattern);
varPattern->setImplicit();
return varPattern;
}
OptionalSomePattern *OptionalSomePattern::create(ASTContext &ctx,
Pattern *subPattern,
SourceLoc questionLoc) {
return new (ctx) OptionalSomePattern(ctx, subPattern, questionLoc);
}
OptionalSomePattern *
OptionalSomePattern::createImplicit(ASTContext &ctx, Pattern *subPattern,
SourceLoc questionLoc) {
auto *P = OptionalSomePattern::create(ctx, subPattern, questionLoc);
P->setImplicit();
return P;
}
EnumElementDecl *OptionalSomePattern::getElementDecl() const {
return Ctx.getOptionalSomeDecl();
}
/// Return true if this is a non-resolved ExprPattern which is syntactically
/// irrefutable.
static bool isIrrefutableExprPattern(const ExprPattern *EP) {
// If the pattern is resolved, it must be irrefutable.
if (EP->isResolved()) return false;
auto expr = EP->getSubExpr();
while (true) {
// Drill into parens.
if (auto parens = dyn_cast<ParenExpr>(expr)) {
expr = parens->getSubExpr();
continue;
}
// A '_' is an untranslated AnyPattern.
if (isa<DiscardAssignmentExpr>(expr))
return true;
// Everything else is non-exhaustive.
return false;
}
}
/// Return true if this pattern (or a subpattern) is refutable.
bool Pattern::isRefutablePattern() const {
bool foundRefutablePattern = false;
const_cast<Pattern*>(this)->forEachNode([&](Pattern *Node) {
// If this is an always matching 'is' pattern, then it isn't refutable.
if (auto *is = dyn_cast<IsPattern>(Node))
if (is->getCastKind() == CheckedCastKind::Coercion ||
is->getCastKind() == CheckedCastKind::BridgingCoercion)
return;
// If this is an ExprPattern that isn't resolved yet, do some simple
// syntactic checks.
// FIXME: This is unsound, since type checking will turn other more
// complicated patterns into non-refutable forms.
if (auto *ep = dyn_cast<ExprPattern>(Node))
if (isIrrefutableExprPattern(ep))
return;
switch (Node->getKind()) {
#define PATTERN(ID, PARENT) case PatternKind::ID: break;
#define REFUTABLE_PATTERN(ID, PARENT) \
case PatternKind::ID: foundRefutablePattern = true; break;
#include "swift/AST/PatternNodes.def"
}
});
return foundRefutablePattern;
}
/// Find the name directly bound by this pattern. When used as a
/// tuple element in a function signature, such names become part of
/// the type.
Identifier Pattern::getBoundName() const {
if (auto *NP = dyn_cast<NamedPattern>(getSemanticsProvidingPattern()))
return NP->getBoundName();
return Identifier();
}
Identifier NamedPattern::getBoundName() const {
return Var->getName();
}
/// Allocate a new pattern that matches a tuple.
TuplePattern *TuplePattern::create(ASTContext &C, SourceLoc lp,
ArrayRef<TuplePatternElt> elts,
SourceLoc rp) {
#ifndef NDEBUG
if (elts.size() == 1)
assert(!elts[0].getLabel().empty());
#endif
unsigned n = elts.size();
void *buffer = C.Allocate(totalSizeToAlloc<TuplePatternElt>(n),
alignof(TuplePattern));
TuplePattern *pattern = ::new (buffer) TuplePattern(lp, n, rp);
std::uninitialized_copy(elts.begin(), elts.end(),
pattern->getTrailingObjects<TuplePatternElt>());
return pattern;
}
Pattern *TuplePattern::createSimple(ASTContext &C, SourceLoc lp,
ArrayRef<TuplePatternElt> elements,
SourceLoc rp) {
assert(lp.isValid() == rp.isValid());
if (elements.size() == 1 &&
elements[0].getLabel().empty()) {
auto &first = const_cast<TuplePatternElt&>(elements.front());
return new (C) ParenPattern(lp, first.getPattern(), rp);
}
return create(C, lp, elements, rp);
}
SourceRange TuplePattern::getSourceRange() const {
if (LPLoc.isValid())
return { LPLoc, RPLoc };
auto Fields = getElements();
if (Fields.empty())
return {};
return { Fields.front().getPattern()->getStartLoc(),
Fields.back().getPattern()->getEndLoc() };
}
TypedPattern::TypedPattern(Pattern *pattern, TypeRepr *tr)
: Pattern(PatternKind::Typed), SubPattern(pattern), PatTypeRepr(tr) {
Bits.TypedPattern.IsPropagatedType = false;
}
SourceLoc TypedPattern::getLoc() const {
if (SubPattern->isImplicit() && PatTypeRepr)
return PatTypeRepr->getSourceRange().Start;
return SubPattern->getLoc();
}
SourceRange TypedPattern::getSourceRange() const {
if (isImplicit() || isPropagatedType()) {
// If a TypedPattern is implicit, then its type is definitely implicit, so
// we should ignore its location. On the other hand, the sub-pattern can
// be explicit or implicit.
return SubPattern->getSourceRange();
}
if (!PatTypeRepr)
return SourceRange();
if (SubPattern->isImplicit())
return PatTypeRepr->getSourceRange();
return { SubPattern->getSourceRange().Start,
PatTypeRepr->getSourceRange().End };
}
IsPattern::IsPattern(SourceLoc IsLoc, TypeExpr *CastTy, Pattern *SubPattern,
CheckedCastKind Kind)
: Pattern(PatternKind::Is), IsLoc(IsLoc), SubPattern(SubPattern),
CastKind(Kind), CastType(CastTy) {
assert(IsLoc.isValid() == CastTy->getLoc().isValid());
}
IsPattern *IsPattern::createImplicit(ASTContext &Ctx, Type castTy,
Pattern *SubPattern,
CheckedCastKind Kind) {
assert(castTy);
auto *CastTE = TypeExpr::createImplicit(castTy, Ctx);
auto *ip = new (Ctx) IsPattern(SourceLoc(), CastTE, SubPattern, Kind);
ip->setImplicit();
return ip;
}
SourceRange IsPattern::getSourceRange() const {
SourceLoc beginLoc = SubPattern ? SubPattern->getSourceRange().Start : IsLoc;
SourceLoc endLoc = (isImplicit() ? beginLoc : CastType->getEndLoc());
return {beginLoc, endLoc};
}
Type IsPattern::getCastType() const { return CastType->getInstanceType(); }
void IsPattern::setCastType(Type type) {
assert(type);
CastType->setType(MetatypeType::get(type));
}
TypeRepr *IsPattern::getCastTypeRepr() const { return CastType->getTypeRepr(); }
ExprPattern *ExprPattern::createParsed(ASTContext &ctx, Expr *E,
DeclContext *DC) {
return new (ctx) ExprPattern(E, DC, /*isResolved*/ false);
}
ExprPattern *ExprPattern::createResolved(ASTContext &ctx, Expr *E,
DeclContext *DC) {
return new (ctx) ExprPattern(E, DC, /*isResolved*/ true);
}
ExprPattern *ExprPattern::createImplicit(ASTContext &ctx, Expr *E,
DeclContext *DC) {
auto *EP = ExprPattern::createResolved(ctx, E, DC);
EP->setImplicit();
return EP;
}
Expr *ExprPattern::getMatchExpr() const {
auto &eval = DC->getASTContext().evaluator;
return evaluateOrDefault(eval, ExprPatternMatchRequest{this}, std::nullopt)
.getMatchExpr();
}
VarDecl *ExprPattern::getMatchVar() const {
auto &eval = DC->getASTContext().evaluator;
return evaluateOrDefault(eval, ExprPatternMatchRequest{this}, std::nullopt)
.getMatchVar();
}
void ExprPattern::updateMatchExpr(Expr *e) const {
class FindMatchOperatorDeclRef: public ASTWalker {
public:
ValueOwnership Ownership = ValueOwnership::Default;
PreWalkResult<Expr *> walkToExprPre(Expr *E) override {
// See if this is the reference to the ~= operator used.
auto declRef = dyn_cast<DeclRefExpr>(E);
if (!declRef) {
return Action::Continue(E);
}
auto decl = declRef->getDecl();
auto declName = decl->getName();
if (!declName.isOperator()) {
return Action::Continue(E);
}
if (!declName.getBaseIdentifier().is("~=")) {
return Action::Continue(E);
}
// We found a `~=` declref. Get the value ownership from the parameter.
auto fnTy = decl->getInterfaceType()->castTo<AnyFunctionType>();
if (decl->isStatic()) {
fnTy = fnTy->getResult()->castTo<AnyFunctionType>();
}
// Subject value is the right-hand operand to the operator.
assert(fnTy->getParams().size() == 2);
Ownership = fnTy->getParams()[1].getValueOwnership();
// Operators are always normal functions or methods, so their default
// parameter ownership is always borrowing.
if (Ownership == ValueOwnership::Default) {
Ownership = ValueOwnership::Shared;
}
return Action::Stop();
}
};
FindMatchOperatorDeclRef walker;
e->walk(walker);
MatchExprAndOperandOwnership = {e, walker.Ownership};
}
SourceLoc EnumElementPattern::getStartLoc() const {
return (ParentType && !ParentType->isImplicit())
? ParentType->getSourceRange().Start
: DotLoc.isValid() ? DotLoc : NameLoc.getBaseNameLoc();
}
SourceLoc EnumElementPattern::getEndLoc() const {
if (SubPattern && SubPattern->getSourceRange().isValid()) {
return SubPattern->getSourceRange().End;
}
return NameLoc.getEndLoc();
}
TypeRepr *EnumElementPattern::getParentTypeRepr() const {
if (!ParentType)
return nullptr;
return ParentType->getTypeRepr();
}
Type EnumElementPattern::getParentType() const {
if (!ParentType)
return Type();
return ParentType->getInstanceType();
}
void EnumElementPattern::setParentType(Type type) {
assert(type);
if (ParentType) {
ParentType->setType(MetatypeType::get(type));
} else {
ParentType = TypeExpr::createImplicit(type, type->getASTContext());
}
}
SourceLoc ExprPattern::getLoc() const {
return getSubExpr()->getLoc();
}
SourceRange ExprPattern::getSourceRange() const {
return getSubExpr()->getSourceRange();
}
// See swift/Basic/Statistic.h for declaration: this enables tracing Patterns, is
// defined here to avoid too much layering violation / circular linkage
// dependency.
struct PatternTraceFormatter : public UnifiedStatsReporter::TraceFormatter {
void traceName(const void *Entity, raw_ostream &OS) const override {
if (!Entity)
return;
const Pattern *P = static_cast<const Pattern *>(Entity);
if (const NamedPattern *NP = dyn_cast<NamedPattern>(P)) {
OS << NP->getBoundName();
}
}
void traceLoc(const void *Entity, SourceManager *SM,
clang::SourceManager *CSM, raw_ostream &OS) const override {
if (!Entity)
return;
const Pattern *P = static_cast<const Pattern *>(Entity);
P->getSourceRange().print(OS, *SM, false);
}
};
static PatternTraceFormatter TF;
template<>
const UnifiedStatsReporter::TraceFormatter*
FrontendStatsTracer::getTraceFormatter<const Pattern *>() {
return &TF;
}
ContextualPattern ContextualPattern::forPatternBindingDecl(
PatternBindingDecl *pbd, unsigned index) {
return ContextualPattern(
pbd->getPattern(index), /*isTopLevel=*/true, pbd, index);
}
DeclContext *ContextualPattern::getDeclContext() const {
if (auto pbd = getPatternBindingDecl())
return pbd->getDeclContext();
return declOrContext.get<DeclContext *>();
}
PatternBindingDecl *ContextualPattern::getPatternBindingDecl() const {
return declOrContext.dyn_cast<PatternBindingDecl *>();
}
bool ContextualPattern::allowsInference() const {
if (auto pbd = getPatternBindingDecl()) {
return pbd->isInitialized(index) ||
pbd->isDefaultInitializableViaPropertyWrapper(index);
}
return true;
}
void swift::simple_display(llvm::raw_ostream &out,
const ContextualPattern &pattern) {
simple_display(out, pattern.getPattern());
}
void swift::simple_display(llvm::raw_ostream &out, const Pattern *pattern) {
out << "(pattern @ " << pattern << ")";
}
SourceLoc swift::extractNearestSourceLoc(const Pattern *pattern) {
return pattern->getLoc();
}
ValueOwnership
Pattern::getOwnership(
SmallVectorImpl<Pattern *> *mostRestrictiveSubpatterns) const
{
class GetPatternOwnership: public PatternVisitor<GetPatternOwnership, void> {
public:
ValueOwnership Ownership = ValueOwnership::Shared;
SmallVectorImpl<Pattern *> *RestrictingPatterns = nullptr;
void increaseOwnership(ValueOwnership newOwnership, Pattern *p) {
// If the new ownership is stricter than the current ownership, then
// clear the restricting patterns we'd collected and start over with the
// new stricter ownership.
if (newOwnership > Ownership) {
Ownership = newOwnership;
if (RestrictingPatterns) {
RestrictingPatterns->clear();
}
}
if (RestrictingPatterns
&& newOwnership == Ownership
&& Ownership > ValueOwnership::Shared) {
RestrictingPatterns->push_back(p);
}
}
#define USE_SUBPATTERN(Kind) \
void visit##Kind##Pattern(Kind##Pattern *pattern) { \
return visit(pattern->getSubPattern()); \
}
USE_SUBPATTERN(Paren)
USE_SUBPATTERN(Typed)
USE_SUBPATTERN(Binding)
#undef USE_SUBPATTERN
void visitTuplePattern(TuplePattern *p) {
for (auto &element : p->getElements()) {
visit(element.getPattern());
}
}
void visitNamedPattern(NamedPattern *p) {
switch (p->getDecl()->getIntroducer()) {
case VarDecl::Introducer::Let:
// `let` defaults to the prevailing ownership of the switch.
break;
case VarDecl::Introducer::Var:
// If the subpattern type is copyable, then we can bind the variable
// by copying without requiring more than a borrow of the original.
if (!p->hasType() || !p->getType()->isNoncopyable()) {
break;
}
// TODO: An explicit `consuming` binding kind consumes regardless of
// type.
// Noncopyable `var` consumes the bound value to move it into
// a new independent variable.
increaseOwnership(ValueOwnership::Owned, p);
break;
case VarDecl::Introducer::InOut:
// `inout` bindings modify the value in-place.
increaseOwnership(ValueOwnership::InOut, p);
break;
case VarDecl::Introducer::Borrowing:
// `borrow` bindings borrow parts of the value in-place.
increaseOwnership(ValueOwnership::Shared, p);
break;
}
}
void visitAnyPattern(AnyPattern *p) {
/* no change */
}
void visitBoolPattern(BoolPattern *p) {
/* no change */
}
void visitIsPattern(IsPattern *p) {
// Casting has to either be possible by borrowing or copying the subject,
// or can't be supported in a pattern match.
/* no change */
}
void visitEnumElementPattern(EnumElementPattern *p) {
if (p->hasSubPattern()) {
visit(p->getSubPattern());
}
}
void visitOptionalSomePattern(OptionalSomePattern *p) {
visit(p->getSubPattern());
}
void visitExprPattern(ExprPattern *p) {
// A `~=` operator has to be able to either borrow or copy the operand,
// or can't be used.
/* no change */
}
};
GetPatternOwnership visitor;
visitor.RestrictingPatterns = mostRestrictiveSubpatterns;
visitor.visit(const_cast<Pattern *>(this));
return visitor.Ownership;
}
|