1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
|
//===--- Requirement.cpp - Generic requirement ----------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2022 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the Requirement class.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/ASTContext.h"
#include "swift/AST/Requirement.h"
#include "swift/AST/Decl.h"
#include "swift/AST/GenericParamList.h"
#include "swift/AST/GenericSignature.h"
#include "swift/AST/Module.h"
#include "swift/AST/Types.h"
using namespace swift;
bool Requirement::hasError() const {
if (getFirstType()->hasError())
return true;
if (getKind() != RequirementKind::Layout && getSecondType()->hasError())
return true;
return false;
}
bool Requirement::isCanonical() const {
if (!getFirstType()->isCanonical())
return false;
switch (getKind()) {
case RequirementKind::SameShape:
case RequirementKind::Conformance:
case RequirementKind::SameType:
case RequirementKind::Superclass:
if (!getSecondType()->isCanonical())
return false;
break;
case RequirementKind::Layout:
break;
}
return true;
}
/// Get the canonical form of this requirement.
Requirement Requirement::getCanonical() const {
Type firstType = getFirstType()->getCanonicalType();
switch (getKind()) {
case RequirementKind::SameShape:
case RequirementKind::Conformance:
case RequirementKind::SameType:
case RequirementKind::Superclass: {
Type secondType = getSecondType()->getCanonicalType();
return Requirement(getKind(), firstType, secondType);
}
case RequirementKind::Layout:
return Requirement(getKind(), firstType, getLayoutConstraint());
}
llvm_unreachable("Unhandled RequirementKind in switch");
}
ProtocolDecl *Requirement::getProtocolDecl() const {
assert(getKind() == RequirementKind::Conformance);
return getSecondType()->castTo<ProtocolType>()->getDecl();
}
CheckRequirementResult Requirement::checkRequirement(
SmallVectorImpl<Requirement> &subReqs,
bool allowMissing) const {
if (hasError())
return CheckRequirementResult::SubstitutionFailure;
auto firstType = getFirstType();
auto expandPackRequirement = [&](PackType *packType) {
for (auto eltType : packType->getElementTypes()) {
// FIXME: Doesn't seem right
if (auto *expansionType = eltType->getAs<PackExpansionType>())
eltType = expansionType->getPatternType();
auto kind = getKind();
if (kind == RequirementKind::Layout) {
subReqs.emplace_back(kind, eltType,
getLayoutConstraint());
} else {
subReqs.emplace_back(kind, eltType,
getSecondType());
}
}
return CheckRequirementResult::PackRequirement;
};
switch (getKind()) {
case RequirementKind::Conformance: {
if (auto packType = firstType->getAs<PackType>()) {
return expandPackRequirement(packType);
}
auto *proto = getProtocolDecl();
auto *module = proto->getParentModule();
auto conformance = module->lookupConformance(
firstType, proto, allowMissing);
if (!conformance)
return CheckRequirementResult::RequirementFailure;
auto condReqs = conformance.getConditionalRequirements();
if (condReqs.empty())
return CheckRequirementResult::Success;
subReqs.append(condReqs.begin(), condReqs.end());
return CheckRequirementResult::ConditionalConformance;
}
case RequirementKind::Layout: {
if (auto packType = firstType->getAs<PackType>()) {
return expandPackRequirement(packType);
}
if (auto *archetypeType = firstType->getAs<ArchetypeType>()) {
auto layout = archetypeType->getLayoutConstraint();
if (layout && layout.merge(getLayoutConstraint()))
return CheckRequirementResult::Success;
return CheckRequirementResult::RequirementFailure;
}
if (getLayoutConstraint()->isClass()) {
if (firstType->satisfiesClassConstraint())
return CheckRequirementResult::Success;
return CheckRequirementResult::RequirementFailure;
}
// TODO: Statically check other layout constraints, once they can
// be spelled in Swift.
return CheckRequirementResult::Success;
}
case RequirementKind::Superclass:
if (auto packType = firstType->getAs<PackType>()) {
return expandPackRequirement(packType);
}
if (getSecondType()->isExactSuperclassOf(firstType))
return CheckRequirementResult::Success;
return CheckRequirementResult::RequirementFailure;
case RequirementKind::SameType:
if (firstType->isEqual(getSecondType()))
return CheckRequirementResult::Success;
return CheckRequirementResult::RequirementFailure;
case RequirementKind::SameShape:
if (firstType->getReducedShape() ==
getSecondType()->getReducedShape())
return CheckRequirementResult::Success;
return CheckRequirementResult::RequirementFailure;
}
llvm_unreachable("Bad requirement kind");
}
bool Requirement::canBeSatisfied() const {
switch (getKind()) {
case RequirementKind::SameShape:
llvm_unreachable("Same-shape requirements not supported here");
case RequirementKind::Conformance:
return getFirstType()->is<ArchetypeType>();
case RequirementKind::Layout: {
if (auto *archetypeType = getFirstType()->getAs<ArchetypeType>()) {
auto layout = archetypeType->getLayoutConstraint();
return (!layout || layout.merge(getLayoutConstraint()));
}
return false;
}
case RequirementKind::Superclass:
return (getFirstType()->isBindableTo(getSecondType()) ||
getSecondType()->isBindableTo(getFirstType()));
case RequirementKind::SameType:
return (getFirstType()->isBindableTo(getSecondType()) ||
getSecondType()->isBindableTo(getFirstType()));
}
llvm_unreachable("Bad requirement kind");
}
bool Requirement::isInvertibleProtocolRequirement() const {
return getKind() == RequirementKind::Conformance
&& getFirstType()->is<GenericTypeParamType>()
&& getProtocolDecl()->getInvertibleProtocolKind();
}
/// Determine the canonical ordering of requirements.
static unsigned getRequirementKindOrder(RequirementKind kind) {
switch (kind) {
case RequirementKind::SameShape: return 4;
case RequirementKind::Conformance: return 2;
case RequirementKind::Superclass: return 0;
case RequirementKind::SameType: return 3;
case RequirementKind::Layout: return 1;
}
llvm_unreachable("unhandled kind");
}
/// Linear order on requirements in a generic signature.
int Requirement::compare(const Requirement &other) const {
int compareLHS =
compareDependentTypes(getFirstType(), other.getFirstType());
if (compareLHS != 0)
return compareLHS;
int compareKind = (getRequirementKindOrder(getKind()) -
getRequirementKindOrder(other.getKind()));
if (compareKind != 0)
return compareKind;
// We should only have multiple conformance requirements.
if (getKind() != RequirementKind::Conformance) {
llvm::errs() << "Unordered generic requirements\n";
llvm::errs() << "LHS: "; dump(llvm::errs()); llvm::errs() << "\n";
llvm::errs() << "RHS: "; other.dump(llvm::errs()); llvm::errs() << "\n";
abort();
}
int compareProtos =
TypeDecl::compare(getProtocolDecl(), other.getProtocolDecl());
assert(compareProtos != 0 && "Duplicate conformance requirements");
return compareProtos;
}
static std::optional<CheckRequirementsResult>
checkRequirementsImpl(ArrayRef<Requirement> requirements,
bool allowTypeParameters) {
SmallVector<Requirement, 4> worklist(requirements.begin(), requirements.end());
bool hadSubstFailure = false;
while (!worklist.empty()) {
auto req = worklist.pop_back_val();
// Check preconditions.
#ifndef NDEBUG
{
auto firstType = req.getFirstType();
assert((allowTypeParameters || !firstType->hasTypeParameter())
&& "must take a contextual type. if you really are ok with an "
"indefinite answer (and usually YOU ARE NOT), then consider whether "
"you really, definitely are ok with an indefinite answer, and "
"use `checkRequirementsWithoutContext` instead");
assert(!firstType->hasTypeVariable());
if (req.getKind() != RequirementKind::Layout) {
auto secondType = req.getSecondType();
assert((allowTypeParameters || !secondType->hasTypeParameter())
&& "must take a contextual type. if you really are ok with an "
"indefinite answer (and usually YOU ARE NOT), then consider whether "
"you really, definitely are ok with an indefinite answer, and "
"use `checkRequirementsWithoutContext` instead");
assert(!secondType->hasTypeVariable());
}
}
#endif
switch (req.checkRequirement(worklist, /*allowMissing=*/true)) {
case CheckRequirementResult::Success:
case CheckRequirementResult::ConditionalConformance:
case CheckRequirementResult::PackRequirement:
break;
case CheckRequirementResult::RequirementFailure:
// If a requirement failure was caused by a context-free type parameter,
// then we can't definitely know whether it would have satisfied the
// requirement without context.
if (req.getFirstType()->isTypeParameter()) {
return std::nullopt;
}
return CheckRequirementsResult::RequirementFailure;
case CheckRequirementResult::SubstitutionFailure:
hadSubstFailure = true;
break;
}
}
if (hadSubstFailure)
return CheckRequirementsResult::SubstitutionFailure;
return CheckRequirementsResult::Success;
}
CheckRequirementsResult
swift::checkRequirements(ArrayRef<Requirement> requirements) {
// This entry point requires that there are no type parameters in any of the
// requirements, so the underlying check should always produce a result.
return checkRequirementsImpl(requirements, /*allow type parameters*/ false)
.value();
}
std::optional<CheckRequirementsResult>
swift::checkRequirementsWithoutContext(ArrayRef<Requirement> requirements) {
return checkRequirementsImpl(requirements, /*allow type parameters*/ true);
}
CheckRequirementsResult swift::checkRequirements(
ModuleDecl *module, ArrayRef<Requirement> requirements,
TypeSubstitutionFn substitutions, SubstOptions options) {
SmallVector<Requirement, 4> substReqs;
for (auto req : requirements) {
substReqs.push_back(req.subst(substitutions,
LookUpConformanceInModule(module), options));
}
return checkRequirements(substReqs);
}
InverseRequirement::InverseRequirement(Type subject,
ProtocolDecl *protocol,
SourceLoc loc)
: subject(subject), protocol(protocol), loc(loc) {
// Ensure it's an invertible protocol.
assert(protocol);
assert(protocol->getKnownProtocolKind());
assert(getInvertibleProtocolKind(*(protocol->getKnownProtocolKind())));
}
InvertibleProtocolKind InverseRequirement::getKind() const {
return *getInvertibleProtocolKind(*(protocol->getKnownProtocolKind()));
}
void InverseRequirement::expandDefaults(
ASTContext &ctx,
ArrayRef<Type> gps,
SmallVectorImpl<StructuralRequirement> &result) {
for (auto gp : gps) {
for (auto ip : InvertibleProtocolSet::allKnown()) {
auto proto = ctx.getProtocol(getKnownProtocolKind(ip));
result.push_back({{RequirementKind::Conformance, gp,
proto->getDeclaredInterfaceType()},
SourceLoc()});
}
}
}
/// Linear order on inverse requirements in a generic signature.
int InverseRequirement::compare(const InverseRequirement &other) const {
int compareLHS =
compareDependentTypes(subject, other.subject);
if (compareLHS != 0)
return compareLHS;
int compareProtos =
TypeDecl::compare(protocol, other.protocol);
assert(compareProtos != 0 && "Duplicate conformance requirements");
return compareProtos;
}
|