1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
|
//===--- ConcreteContraction.cpp - Preprocessing concrete conformances ----===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2022 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// The concrete contraction pass runs after requirement desugaring and before
// rewrite rules are built from desugared requirements when constructing a
// rewrite system for a user-written generic signature.
//
// This is an imperfect hack to deal with two issues:
//
// a) When a generic parameter is subject to both a conformance requirement and
// a concrete type requirement (or a superclass requirement where the
// superclass also conforms to the protocol), the conformance requirement
// becomes redundant during property map construction.
//
// However, unlike other kinds of requirements, dropping a conformance
// requirement can change canonical types in the rewrite system, and in
// particular, it can change the canonical types of other minimal
// requirements, if the protocol in the conformance requirement has
// associated types.
//
// Consider this example:
//
// protocol P {
// associatedtype T
// }
//
// protocol Q {}
//
// struct S<T> : P {}
//
// struct Holder<A : P, B : P> where A.T : Q {}
//
// extension Holder where A == S<B.T> {}
//
// The signature of the extension is built from these requirements:
//
// - A : P
// - B : P
// - A.T : Q
// - A == S<B.T>
//
// In this rewrite system, the canonical type of 'B.T' is 'A.T', so the
// requirements canonicalize as follows:
//
// - A : P
// - B : P
// - A.T : Q
// - A == S<A.T>
//
// Also, the first requirement 'A : P' is redundant in this rewrite system,
// because 'A == S<B.T>' and S conforms to P.
//
// However, simply dropping 'A : P' is not enough. If the user instead
// directly wrote a signature with the original requirements omitting
// 'A : P', we would have:
//
// - B : P
// - A == S<B.T>
// - B.T : Q
//
// Indeed, computing canonical types from the first rewrite system produces
// different results, because 'B.T' canonicalizes to 'A.T' and not 'B.T'.
//
// b) The GenericSignatureBuilder permitted references to "fully concrete"
// member types of a dependent type that were not associated types from
// conformance requirements.
//
// That is, the following was permitted:
//
// class C {
// typealias A = Int
// }
//
// <T, U where T : C, U == T.A>
//
// The requirement 'U == T.A' was resolved to 'U == Int', despite 'T' not
// declaring any protocol conformance requirements with an associated type
// named 'A' (or any conformance requirements at all).
//
// The GenericSignatureBuilder dealt with a) using a "rebuilding" pass that
// build a new generic signature after dropping redundant conformance
// requirements, feeding the original requirements back in. The behavior b)
// was a consequence of how requirement resolution was implemented, by calling
// into name lookup.
//
// The Requirement Machine's approach to both a) and b) doesn't handle as many
// cases, but is much simpler and hopefully more robust. Before building the
// rewrite system, we pre-process the requirements and identify generic
// parameters subject to a superclass or concrete type requirement. Then, we
// substitute this generic parameter for the superclass or concrete type,
// respectively, in all other requirements.
//
// In the above example, it produces the following list of requirements:
//
// - S<B.T> : P
// - B : P
// - S<B.T>.T : Q
// - A == S<B.T>
//
// The requirements are fed back into desugarRequirements(), and we get:
//
// - B : P
// - B.T : Q
// - A == S<B.T>
//
// This also handles b), where the original requirements are:
//
// - T : C
// - U == T.A
//
// and after concrete contraction, we get
//
// - T : C
// - U == Int
//
// Since this is all a heuristic that is applied before the rewrite system is
// built, it doesn't handle cases where a nested type of a generic parameter is
// subject to both a concrete type and conformance requirement, nor does it
// handle more complex cases where the redundant conformance is only discovered
// via an intermediate same-type requirement, such as the following:
//
// <T, U, V where T == S<V>, T == U, U : P>
//
// If concrete contraction fails, the minimized generic signature will fail
// verification if it still contains incorrectly-canonicalized types.
//
// We might need a more general solution eventually, but for now this is good
// enough to handle the cases where this arises in practice.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/Decl.h"
#include "swift/AST/Module.h"
#include "swift/AST/Requirement.h"
#include "swift/AST/Type.h"
#include "swift/AST/Types.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "NameLookup.h"
#include "RequirementLowering.h"
using namespace swift;
using namespace rewriting;
/// Strip associated types from types used as keys to erase differences between
/// resolved types coming from the parent generic signature and unresolved types
/// coming from user-written requirements.
static Type stripBoundDependentMemberTypes(Type t) {
if (auto *depMemTy = t->getAs<DependentMemberType>()) {
return DependentMemberType::get(
stripBoundDependentMemberTypes(depMemTy->getBase()),
depMemTy->getName());
}
return t;
}
/// Returns true if \p lhs appears as the base of a member type in \p rhs.
static bool typeOccursIn(Type lhs, Type rhs) {
return rhs.findIf([lhs](Type t) -> bool {
if (auto *memberType = t->getAs<DependentMemberType>())
return memberType->getBase()->isEqual(lhs);
return false;
});
}
namespace {
/// Utility class to store some shared state.
class ConcreteContraction {
bool Debug;
llvm::SmallDenseMap<CanType, llvm::SmallDenseSet<Type, 1>> ConcreteTypes;
llvm::SmallDenseMap<CanType, llvm::SmallDenseSet<Type, 1>> Superclasses;
llvm::SmallDenseMap<CanType, llvm::SmallVector<ProtocolDecl *, 1>> Conformances;
enum Position {
/// Base type of some other type appearing in a requirement.
BaseType,
/// Subject type of a conformance requirement.
ConformanceRequirement,
/// Subject type of a superclass requirement.
SuperclassRequirement,
/// Subject type of a same-type requirement.
SameTypeRequirement,
/// Some other position.
Other
};
std::optional<Type> substTypeParameterRec(Type type, Position position) const;
Type substTypeParameter(Type type, Position position) const;
Type substType(Type type) const;
Requirement substRequirement(const Requirement &req) const;
bool preserveSameTypeRequirement(const Requirement &req) const;
bool hasResolvedMemberTypeOfInterestingParameter(Type t) const;
public:
ConcreteContraction(bool debug) : Debug(debug) {}
bool performConcreteContraction(
ArrayRef<StructuralRequirement> requirements,
SmallVectorImpl<StructuralRequirement> &result,
SmallVectorImpl<RequirementError> &errors);
};
} // end namespace
/// A re-implementation of Type::subst() that also handles unresolved
/// DependentMemberTypes by performing name lookup into the base type.
///
/// When substituting a superclass requirement, we have to handle the
/// case where the superclass might not conform to the protocol in
/// question. For example, you can have a generic signature like this
///
/// <T where T : Sequence, T : SomeClass, T.Element == Int>
///
/// If SomeClass does not conform to Sequence, the type T is understood
/// to be some subclass of SomeClass which does conform to Sequence;
/// this is perfectly valid, and we cannot substitute the 'T.Element'
/// requirement. In this case, this method returns None.
std::optional<Type>
ConcreteContraction::substTypeParameterRec(Type type, Position position) const {
// If we have a superclass (T : C) or same-type requirement (T == C),
// don't substitute T, since then we end up with 'C == C' or 'C : C',
// losing the requirement.
if (position == Position::BaseType ||
position == Position::ConformanceRequirement) {
auto key = stripBoundDependentMemberTypes(type)->getCanonicalType();
Type concreteType;
{
auto found = ConcreteTypes.find(key);
if (found != ConcreteTypes.end() && found->second.size() == 1)
concreteType = *found->second.begin();
}
Type superclass;
{
auto found = Superclasses.find(key);
if (found != Superclasses.end() && found->second.size() == 1)
superclass = *found->second.begin();
}
// If we have both, prefer the concrete type requirement since it is more
// specific.
if (!concreteType && superclass)
concreteType = superclass;
if (concreteType) {
return concreteType;
}
}
if (auto *memberType = type->getAs<DependentMemberType>()) {
auto baseType = memberType->getBase();
auto substBaseType = substTypeParameterRec(baseType, Position::BaseType);
if (!substBaseType)
return std::nullopt;
// A resolved DependentMemberType stores an associated type declaration.
//
// Handle this by looking up the corresponding type witness in the base
// type's conformance to the associated type's protocol.
if (auto *assocType = memberType->getAssocType()) {
auto *proto = assocType->getProtocol();
auto *module = proto->getParentModule();
// The 'Sendable' protocol does not declare any associated types, so the
// 'allowMissing' value here is actually irrelevant.
auto conformance = ((*substBaseType)->isTypeParameter()
? ProtocolConformanceRef(proto)
: module->lookupConformance(
*substBaseType, proto,
/*allowMissing=*/false));
if (proto->isSpecificProtocol(KnownProtocolKind::Sendable) &&
conformance.hasUnavailableConformance()) {
conformance = ProtocolConformanceRef::forInvalid();
}
// The base type doesn't conform, in which case the requirement remains
// unsubstituted.
if (!conformance) {
if (Debug) {
llvm::dbgs() << "@@@ " << substBaseType << " does not conform to "
<< proto->getName() << "\n";
}
return std::nullopt;
}
return assocType->getDeclaredInterfaceType()
->castTo<DependentMemberType>()
->substBaseType(module, *substBaseType);
}
// An unresolved DependentMemberType stores an identifier. Handle this
// by performing a name lookup into the base type.
SmallVector<TypeDecl *> concreteDecls;
lookupConcreteNestedType(*substBaseType, memberType->getName(), concreteDecls);
auto *typeDecl = findBestConcreteNestedType(concreteDecls);
if (typeDecl == nullptr) {
// The base type doesn't contain a member type with this name, in which
// case the requirement remains unsubstituted.
if (Debug) {
llvm::dbgs() << "@@@ Lookup of " << memberType->getName() << " failed on "
<< *substBaseType << "\n";
}
return std::nullopt;
}
// Substitute the base type into the member type.
auto *dc = typeDecl->getDeclContext();
auto subMap = (*substBaseType)->getContextSubstitutionMap(
dc->getParentModule(), dc);
return typeDecl->getDeclaredInterfaceType().subst(subMap);
}
return std::nullopt;
}
/// Replace the generic parameter at the root of \p type, which must be a
/// type parameter, with the superclass or concrete type requirement that
/// the generic parameter is subject to.
///
/// Note that if the generic parameter has a superclass conformance, we
/// only substitute if it's the root of a member type; the generic parameter
/// itself does not become concrete when it's superclass-constrained, unless
/// it is the subject of a conformance requirement.
Type ConcreteContraction::substTypeParameter(
Type type, Position position) const {
assert(type->isTypeParameter());
auto result = substTypeParameterRec(type, position);
if (!result)
return type;
return *result;
}
/// Substitute all type parameters occurring in structural positions of \p type.
Type ConcreteContraction::substType(Type type) const {
return type.transformRec([&](Type type) -> std::optional<Type> {
if (!type->isTypeParameter())
return std::nullopt;
return substTypeParameter(type, Position::Other);
});
}
/// Substitute all type parameters occurring in the given requirement.
Requirement
ConcreteContraction::substRequirement(const Requirement &req) const {
auto firstType = req.getFirstType();
switch (req.getKind()) {
case RequirementKind::SameShape: {
auto substFirstType = substType(firstType);
auto substSecondType = substType(req.getSecondType());
return Requirement(req.getKind(), substFirstType, substSecondType);
}
case RequirementKind::Superclass:
case RequirementKind::SameType: {
auto position = (req.getKind() == RequirementKind::Superclass
? Position::SuperclassRequirement
: Position::SameTypeRequirement);
auto substFirstType = substTypeParameter(firstType, position);
auto secondType = req.getSecondType();
auto substSecondType = substType(secondType);
return Requirement(req.getKind(),
substFirstType,
substSecondType);
}
case RequirementKind::Conformance: {
auto substFirstType = substTypeParameter(
firstType, Position::ConformanceRequirement);
auto *proto = req.getProtocolDecl();
auto *module = proto->getParentModule();
// For conformance to 'Sendable', allow synthesis of a missing conformance
// if the generic parameter is concrete, that is, if we're looking at a
// signature of the form 'T == Foo, T : Sendable'.
//
// Otherwise, we have a superclass requirement, like 'T : C, T : Sendable';
// don't synthesize the conformance in this case since dropping
// 'T : Sendable' would be incorrect; we want to ensure that we only admit
// subclasses of 'C' which are 'Sendable'.
bool allowMissing = false;
auto key = stripBoundDependentMemberTypes(firstType)->getCanonicalType();
if (ConcreteTypes.count(key) > 0)
allowMissing = true;
if (!substFirstType->isTypeParameter()) {
auto conformance = module->lookupConformance(substFirstType, proto,
allowMissing);
if (!allowMissing &&
proto->isSpecificProtocol(KnownProtocolKind::Sendable) &&
conformance.hasUnavailableConformance()) {
conformance = ProtocolConformanceRef::forInvalid();
}
if (!conformance) {
// Handle the case of <T where T : P, T : C> where C is a class and
// C does not conform to P and only substitute the parent type of T
// by pretending we have a same-type requirement here.
substFirstType = substTypeParameter(
firstType, Position::SameTypeRequirement);
}
}
// Otherwise, replace the generic parameter in the conformance
// requirement with the concrete type. It will desugar to nothing
// (if the conformance is conditional) or to zero or more
// conditional requirements needed to satisfy the conformance.
return Requirement(req.getKind(),
substFirstType,
req.getSecondType());
}
case RequirementKind::Layout: {
auto substFirstType = substTypeParameter(firstType, Position::Other);
if (!substFirstType->isTypeParameter() &&
!substFirstType->satisfiesClassConstraint() &&
req.getLayoutConstraint()->isClass()) {
// If the concrete type doesn't satisfy the layout constraint, produce
// a better diagnostic and only substitute the parent type by pretending
// we have a same-type requirement here.
substFirstType = substTypeParameter(
firstType, Position::SameTypeRequirement);
}
return Requirement(req.getKind(),
substFirstType,
req.getLayoutConstraint());
}
}
}
bool ConcreteContraction::
hasResolvedMemberTypeOfInterestingParameter(Type type) const {
return type.findIf([&](Type t) -> bool {
if (auto *memberTy = t->getAs<DependentMemberType>()) {
if (memberTy->getAssocType() == nullptr)
return false;
auto key = stripBoundDependentMemberTypes(memberTy->getBase())
->getCanonicalType();
Type concreteType;
{
auto found = ConcreteTypes.find(key);
if (found != ConcreteTypes.end() && found->second.size() == 1)
return true;
}
Type superclass;
{
auto found = Superclasses.find(key);
if (found != Superclasses.end() && found->second.size() == 1)
return true;
}
}
return false;
});
}
/// Another silly GenericSignatureBuilder compatibility hack.
///
/// Consider this code:
///
/// class C<T> {
/// typealias A = T
/// }
///
/// protocol P {
/// associatedtype A
/// }
///
/// func f<X, T>(_: X, _: T) where X : P, X : C<T>, X.A == T {}
///
/// The GenericSignatureBuilder would introduce an equivalence between
/// typealias A in class C and associatedtype A in protocol P, so the
/// requirement 'X.A == T' would effectively constrain _both_.
///
/// Simulate this by keeping both the original and substituted same-type
/// requirement in a narrow case.
bool ConcreteContraction::preserveSameTypeRequirement(
const Requirement &req) const {
if (req.getKind() != RequirementKind::SameType)
return false;
// One of the parent types of this type parameter should be subject
// to a superclass requirement.
auto type = stripBoundDependentMemberTypes(req.getFirstType())
->getCanonicalType();
while (true) {
if (Superclasses.find(type) != Superclasses.end())
break;
if (auto memberType = dyn_cast<DependentMemberType>(type)) {
type = memberType.getBase();
continue;
}
return false;
}
if (hasResolvedMemberTypeOfInterestingParameter(req.getFirstType()) ||
hasResolvedMemberTypeOfInterestingParameter(req.getSecondType()))
return false;
return true;
}
/// Substitute all occurrences of generic parameters subject to superclass
/// or concrete type requirements with their corresponding superclass or
/// concrete type.
///
/// If this returns false, \p result should be ignored and the requirements
/// remain unchanged. If this returns true, \p result should replace the
/// original \p requirements.
bool ConcreteContraction::performConcreteContraction(
ArrayRef<StructuralRequirement> requirements,
SmallVectorImpl<StructuralRequirement> &result,
SmallVectorImpl<RequirementError> &errors) {
// Phase 1 - collect concrete type and superclass requirements where the
// subject type is a generic parameter.
for (auto req : requirements) {
auto subjectType = req.req.getFirstType();
assert(subjectType->isTypeParameter() &&
"You forgot to call desugarRequirement()");
auto kind = req.req.getKind();
switch (kind) {
case RequirementKind::SameShape:
assert(req.req.getSecondType()->isTypeParameter());
continue;
case RequirementKind::SameType: {
auto constraintType = req.req.getSecondType();
// Same-type requirements between type parameters are not interesting
// to this pass.
if (constraintType->isTypeParameter())
break;
subjectType = stripBoundDependentMemberTypes(subjectType);
if (typeOccursIn(subjectType,
stripBoundDependentMemberTypes(constraintType))) {
if (Debug) {
llvm::dbgs() << "@ Subject type of same-type requirement "
<< subjectType << " == " << constraintType << " "
<< "occurs in the constraint type, skipping\n";
}
break;
}
ConcreteTypes[subjectType->getCanonicalType()].insert(constraintType);
break;
}
case RequirementKind::Superclass: {
auto constraintType = req.req.getSecondType();
assert(!constraintType->isTypeParameter() &&
"You forgot to call desugarRequirement()");
subjectType = stripBoundDependentMemberTypes(subjectType);
if (typeOccursIn(subjectType,
stripBoundDependentMemberTypes(constraintType))) {
if (Debug) {
llvm::dbgs() << "@ Subject type of superclass requirement "
<< subjectType << " : " << constraintType << " "
<< "occurs in the constraint type, skipping\n";
}
break;
}
Superclasses[subjectType->getCanonicalType()].insert(constraintType);
break;
}
case RequirementKind::Conformance: {
auto *protoDecl = req.req.getProtocolDecl();
subjectType = stripBoundDependentMemberTypes(subjectType);
Conformances[subjectType->getCanonicalType()].push_back(protoDecl);
break;
}
case RequirementKind::Layout:
break;
}
}
// Block concrete contraction if a generic parameter conforms to a protocol P
// which has a superclass bound C which again conforms to P. This is a really
// silly edge case, but we go to great pains to produce the same minimized
// signature as the GenericSignatureBuilder in this case, <T : P>, and not the
// more logical <T : C>.
for (const auto &pair : Conformances) {
auto subjectType = pair.first;
auto found = Superclasses.find(subjectType);
if (found == Superclasses.end() || found->second.size() != 1)
continue;
auto superclassTy = *found->second.begin();
for (auto *proto : pair.second) {
auto *module = proto->getParentModule();
if (module->lookupConformance(superclassTy, proto)) {
auto genericSig = proto->getGenericSignature();
// FIXME: If we end up here while building the requirement
// signature of `proto`, we will hit a request cycle.
if (auto otherSuperclassTy = genericSig->getSuperclassBound(
proto->getSelfInterfaceType())) {
if (Debug) {
llvm::dbgs() << "@ Subject type of superclass requirement "
<< subjectType << " : " << superclassTy
<< " conforms to "<< proto->getName()
<< " which has a superclass bound "
<< otherSuperclassTy << "\n";
}
if (superclassTy->isEqual(otherSuperclassTy)) {
Superclasses.erase(subjectType);
break;
}
}
}
}
}
// If there's nothing to do just return.
if (ConcreteTypes.empty() && Superclasses.empty())
return false;
if (Debug) {
llvm::dbgs() << "@ Concrete types: @\n";
for (auto pair : ConcreteTypes) {
llvm::dbgs() << pair.first;
if (pair.second.size() == 1) {
llvm::dbgs() << " == " << *pair.second.begin() << "\n";
} else {
llvm::dbgs() << " has duplicate concrete type requirements\n";
}
}
llvm::dbgs() << "@ Superclasses: @\n";
for (auto pair : Superclasses) {
llvm::dbgs() << pair.first;
if (pair.second.size() == 1) {
llvm::dbgs() << " : " << *pair.second.begin() << "\n";
} else {
llvm::dbgs() << " has duplicate superclass requirements\n";
}
}
}
// Phase 2: Replace each concretely-conforming generic parameter with its
// concrete type.
for (auto req : requirements) {
if (Debug) {
llvm::dbgs() << "@ Original requirement: ";
req.req.dump(llvm::dbgs());
llvm::dbgs() << "\n";
}
// Substitute the requirement.
auto substReq = substRequirement(req.req);
if (Debug) {
llvm::dbgs() << "@ Substituted requirement: ";
substReq.dump(llvm::dbgs());
llvm::dbgs() << "\n";
}
// Otherwise, desugar the requirement again, since we might now have a
// requirement where the left hand side is not a type parameter.
SmallVector<Requirement, 4> reqs;
SmallVector<InverseRequirement, 4> ignoreInverses;
desugarRequirement(substReq, req.loc, reqs, ignoreInverses, errors);
for (auto desugaredReq : reqs) {
if (Debug) {
llvm::dbgs() << "@@ Desugared requirement: ";
desugaredReq.dump(llvm::dbgs());
llvm::dbgs() << "\n";
}
result.push_back({desugaredReq, req.loc});
}
if (preserveSameTypeRequirement(req.req) &&
(!req.req.getFirstType()->isEqual(substReq.getFirstType()) ||
!req.req.getSecondType()->isEqual(substReq.getSecondType()))) {
if (Debug) {
llvm::dbgs() << "@ Preserving original requirement: ";
req.req.dump(llvm::dbgs());
llvm::dbgs() << "\n";
}
// Make the duplicated requirement 'inferred' so that we don't diagnose
// it as redundant.
result.push_back({req.req, SourceLoc()});
}
}
if (Debug) {
llvm::dbgs() << "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@\n";
llvm::dbgs() << "@ Concrete contraction succeeded @\n";
llvm::dbgs() << "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@\n";
}
return true;
}
/// Substitute all occurrences of generic parameters subject to superclass
/// or concrete type requirements with their corresponding superclass or
/// concrete type.
///
/// If this returns false, \p result should be ignored and the requirements
/// remain unchanged. If this returns true, \p result should replace the
/// original \p requirements.
bool swift::rewriting::performConcreteContraction(
ArrayRef<StructuralRequirement> requirements,
SmallVectorImpl<StructuralRequirement> &result,
SmallVectorImpl<RequirementError> &errors,
bool debug) {
ConcreteContraction concreteContraction(debug);
return concreteContraction.performConcreteContraction(
requirements, result, errors);
}
|