File: ConcreteTypeWitness.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (606 lines) | stat: -rw-r--r-- 22,291 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
//===--- ConcreteTypeWitness.cpp - Nested types of concrete conformances --===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements "nested type concretization", which introduces concrete
// type requirements on nested types of type parameters which are subject to
// both a protocol conformance and a concrete type (or superclass) requirement.
//
// This process runs during property map construction. It may introduce new
// rewrite rules, together with rewrite loops relating the new rules to existing
// rules via relations.
//
//===----------------------------------------------------------------------===//

#include "swift/AST/Decl.h"
#include "swift/AST/Module.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/Types.h"
#include <algorithm>
#include <vector>
#include "PropertyMap.h"
#include "RequirementLowering.h"
#include "RuleBuilder.h"

using namespace swift;
using namespace rewriting;

void PropertyMap::concretizeNestedTypesFromConcreteParents() {
  for (auto *props : Entries) {
    if (props->getConformsTo().empty())
      continue;

    if (Debug.contains(DebugFlags::ConcretizeNestedTypes)) {
      if (props->isConcreteType() ||
          props->hasSuperclassBound()) {
        llvm::dbgs() << "^ Concretizing nested types of ";
        props->dump(llvm::dbgs());
        llvm::dbgs() << "\n";
      }
    }

    if (props->isConcreteType()) {
      if (Debug.contains(DebugFlags::ConcretizeNestedTypes)) {
        llvm::dbgs() << "- via concrete type requirement\n";
      }

      for (auto pair : props->ConcreteTypeRules) {
        concretizeNestedTypesFromConcreteParent(
            props->getKey(),
            RequirementKind::SameType,
            pair.second,
            pair.first.getConcreteType(),
            pair.first.getSubstitutions(),
            props->ConformsToRules,
            props->ConformsTo);
      }
    }

    if (props->hasSuperclassBound()) {
      if (Debug.contains(DebugFlags::ConcretizeNestedTypes)) {
        llvm::dbgs() << "- via superclass requirement\n";
      }

      const auto &superclassReq = props->getSuperclassRequirement();
      for (auto pair : superclassReq.SuperclassRules) {
        concretizeNestedTypesFromConcreteParent(
            props->getKey(),
            RequirementKind::Superclass,
            pair.second,
            pair.first.getConcreteType(),
            pair.first.getSubstitutions(),
            props->ConformsToRules,
            props->ConformsTo);
      }
    }
  }
}

/// Suppose a same-type requirement merges two property bags,
/// one of which has a conformance requirement to P and the other
/// one has a concrete type or superclass requirement.
///
/// If the concrete type or superclass conforms to P and P has an
/// associated type A, then we need to infer an equivalence between
/// T.[P:A] and whatever the type witness for 'A' is in the
/// concrete conformance.
///
/// For example, suppose we have a the following definitions,
///
///    protocol Q { associatedtype V }
///    protocol P { associatedtype A; associatedtype C }
///    struct Foo<A, B : Q> : P {
///      typealias C = B.V
///    }
///
/// together with the following property bag:
///
///    T => { conforms_to: [ P ], concrete: Foo<Int, τ_0_0> with <U> }
///
/// The type witness for A in the conformance Foo<Int, τ_0_0> : P is
/// the concrete type 'Int', which induces the following rule:
///
///    T.[P:A].[concrete: Int] => T.[P:A]
///
/// Whereas the type witness for B in the same conformance is the
/// abstract type 'τ_0_0.V', which via the substitutions <U> corresponds
/// to the term 'U.V', and therefore induces the following rule:
///
///    T.[P:B] => U.V
///
void PropertyMap::concretizeNestedTypesFromConcreteParent(
    Term key, RequirementKind requirementKind,
    unsigned concreteRuleID,
    CanType concreteType,
    ArrayRef<Term> substitutions,
    ArrayRef<unsigned> conformsToRules,
    ArrayRef<const ProtocolDecl *> conformsTo) {
  assert(requirementKind == RequirementKind::SameType ||
         requirementKind == RequirementKind::Superclass);
  assert(conformsTo.size() == conformsToRules.size());

  for (unsigned i : indices(conformsTo)) {
    auto *proto = conformsTo[i];
    unsigned conformanceRuleID = conformsToRules[i];

    // If we've already processed this pair of rules, record the conformance
    // and move on.
    //
    // This occurs when a pair of rules are inherited from the property map
    // entry for this key's suffix.
    if (!checkRulePairOnce(concreteRuleID, conformanceRuleID))
      continue;

    // FIXME: Either remove the ModuleDecl entirely from conformance lookup,
    // or pass the correct one down in here.
    auto *module = proto->getParentModule();

    // For conformance to 'Sendable', allow synthesis of a missing conformance
    // if the requirement is a concrete type requirement, that is, if we're
    // looking at a signature of the form 'T == Foo, T : Sendable'.
    //
    // Otherwise, we have a superclass requirement, like 'T : C, T : Sendable'.
    // Don't synthesize the conformance in this case since dropping
    // 'T : Sendable' would be incorrect; we want to ensure that we only admit
    // subclasses of 'C' which are 'Sendable'.
    bool allowMissing = (requirementKind == RequirementKind::SameType);

    auto conformance = module->lookupConformance(concreteType,
                                                 const_cast<ProtocolDecl *>(proto),
                                                 allowMissing);
    if (!allowMissing &&
        proto->isSpecificProtocol(KnownProtocolKind::Sendable) &&
        conformance.hasUnavailableConformance()) {
      conformance = ProtocolConformanceRef::forInvalid();
    }

    if (conformance.isInvalid()) {
      // For superclass rules, it is totally fine to have a signature like:
      //
      // protocol P {}
      // class C {}
      // <T  where T : P, T : C>
      //
      // There is no relation between P and C here.
      //
      // With concrete types, a missing conformance is a conflict.
      if (requirementKind == RequirementKind::SameType)
        System.recordConflict(conformanceRuleID, concreteRuleID);

      if (Debug.contains(DebugFlags::ConcretizeNestedTypes)) {
        llvm::dbgs() << "^^ " << concreteType << " does not conform to "
                     << proto->getName() << "\n";
      }

      continue;
    }

    auto concreteConformanceSymbol = Symbol::forConcreteConformance(
        concreteType, substitutions, proto, Context);

    recordConcreteConformanceRule(concreteRuleID, conformanceRuleID,
                                  requirementKind, concreteConformanceSymbol);

    // This is disabled by default because we fail to produce a convergent
    // rewrite system if the opaque archetype has infinitely-recursive
    // nested types. Fixing this requires a better representation for
    // concrete conformances in the rewrite system.
    if (conformance.isAbstract() &&
        !Context.getASTContext().LangOpts.EnableRequirementMachineOpaqueArchetypes) {
      if (Debug.contains(DebugFlags::ConcretizeNestedTypes)) {
        llvm::dbgs() << "^^ " << "Skipping abstract conformance of "
                     << concreteType << " to " << proto->getName() << "\n";
      }

      continue;
    }

    for (auto *assocType : proto->getAssociatedTypeMembers()) {
      concretizeTypeWitnessInConformance(key, requirementKind,
                                         concreteConformanceSymbol,
                                         conformance, assocType);
    }

    // We only infer conditional requirements in top-level generic signatures,
    // not in protocol requirement signatures.
    if (conformance.isConcrete() &&
        key.getRootProtocol() == nullptr)
      inferConditionalRequirements(conformance.getConcrete(), substitutions);
  }
}

void PropertyMap::concretizeTypeWitnessInConformance(
    Term key, RequirementKind requirementKind,
    Symbol concreteConformanceSymbol,
    ProtocolConformanceRef conformance,
    AssociatedTypeDecl *assocType) const {
  auto concreteType = concreteConformanceSymbol.getConcreteType();
  auto substitutions = concreteConformanceSymbol.getSubstitutions();

  auto *proto = assocType->getProtocol();
  assert(proto == concreteConformanceSymbol.getProtocol());

  if (Debug.contains(DebugFlags::ConcretizeNestedTypes)) {
    llvm::dbgs() << "^^ " << "Looking up type witness for "
                 << proto->getName() << ":" << assocType->getName()
                 << " on " << concreteType << "\n";
  }

  CanType typeWitness;
  if (conformance.isConcrete()) {
    auto t = conformance.getConcrete()->getTypeWitness(assocType);

    if (!t) {
      if (Debug.contains(DebugFlags::ConcretizeNestedTypes)) {
        llvm::dbgs() << "^^ " << "Type witness for " << assocType->getName()
                     << " of " << concreteType << " could not be inferred\n";
      }

      t = ErrorType::get(concreteType);
    }

    typeWitness = t->getCanonicalType();
  } else if (conformance.isAbstract()) {
    auto archetype = concreteType->getAs<OpaqueTypeArchetypeType>();
    if (archetype == nullptr) {
      llvm::errs() << "Should only have an abstract conformance with an "
                   << "opaque archetype type\n";
      llvm::errs() << "Symbol: " << concreteConformanceSymbol << "\n";
      llvm::errs() << "Term: " << key << "\n";
      dump(llvm::errs());
      abort();
    }

    typeWitness = archetype->getNestedType(assocType)->getCanonicalType();
  } else if (conformance.isInvalid()) {
    typeWitness = CanType(ErrorType::get(Context.getASTContext()));
  }

  if (Debug.contains(DebugFlags::ConcretizeNestedTypes)) {
    llvm::dbgs() << "^^ " << "Type witness for " << assocType->getName()
                 << " of " << concreteType << " is " << typeWitness << "\n";
  }

  // Build the term T.[concrete: C : P].[P:X].
  MutableTerm subjectType(key);
  subjectType.add(concreteConformanceSymbol);
  subjectType.add(Symbol::forAssociatedType(proto, assocType->getName(),
                                            Context));

  MutableTerm constraintType;

  RewritePath path;

  constraintType = computeConstraintTermForTypeWitness(
      key, requirementKind, concreteType, typeWitness, subjectType,
      substitutions, path);

  assert(!path.empty());
  (void) System.addRule(constraintType, subjectType, &path);
  if (Debug.contains(DebugFlags::ConcretizeNestedTypes)) {
    llvm::dbgs() << "^^ Induced rule " << constraintType
                 << " => " << subjectType << "\n";
  }
}

/// Given the key of a property bag known to have \p concreteType,
/// together with a \p typeWitness from a conformance on that concrete
/// type, return the right hand side of a rewrite rule to relate
/// \p subjectType with a term representing the type witness.
///
/// Suppose the key is T and the subject type is T.[P:A].
///
/// If the type witness is an abstract type U, this produces a rewrite
/// rule
///
///     T.[P:A] => U
///
/// If the type witness is a concrete type Foo, this produces a rewrite
/// rule
///
///     T.[P:A].[concrete: Foo] => T.[P:A]
///
/// However, this also tries to tie off recursion first using a heuristic.
///
/// If the type witness is fully concrete and we've already seen some
/// term V in the same domain with the same concrete type, we produce a
/// rewrite rule:
///
///        T.[P:A] => V
MutableTerm PropertyMap::computeConstraintTermForTypeWitness(
    Term key, RequirementKind requirementKind,
    CanType concreteType, CanType typeWitness,
    const MutableTerm &subjectType,
    ArrayRef<Term> substitutions,
    RewritePath &path) const {
  // If the type witness is abstract, introduce a same-type requirement
  // between two type parameters.
  if (typeWitness->isTypeParameter()) {
    // The type witness is a type parameter of the form τ_0_n.X.Y...Z,
    // where 'n' is an index into the substitution array.
    //
    // Add a rule:
    //
    // T.[concrete: C : P].[P:X] => S[n].X.Y...Z
    //
    // Where S[n] is the nth substitution term.

    auto result = Context.getRelativeTermForType(
        typeWitness, substitutions);

    unsigned relationID = System.recordRelation(
        Term::get(result, Context),
        Term::get(subjectType, Context));
    path.add(RewriteStep::forRelation(
        /*startOffset=*/0, relationID,
        /*inverse=*/false));

    return result;
  }

  // Compute the concrete type symbol [concrete: C.X].
  SmallVector<Term, 3> result;
  auto typeWitnessSchema =
      Context.getRelativeSubstitutionSchemaFromType(typeWitness, substitutions,
                                                    result);
  auto typeWitnessSymbol =
      Symbol::forConcreteType(typeWitnessSchema, result, Context);

  // If the type witness is completely concrete, check if one of our prefix
  // types has the same concrete type, and if so, introduce a same-type
  // requirement between the subject type and the prefix.
  if (!typeWitness->hasTypeParameter()) {
    auto begin = key.begin();
    auto end = key.end();

    while (begin != end) {
      MutableTerm prefix(begin, end);
      if (auto *props = lookUpProperties(prefix)) {
        if (props->isConcreteType() &&
            props->getConcreteType() == typeWitness) {
          // Record a relation U.[concrete: C.X] =>> U.V.[concrete: C : P].[P:X]
          // where U is the parent such that U.[concrete: C:X] => U.
          MutableTerm result(props->getKey());
          result.add(typeWitnessSymbol);

          unsigned relationID = System.recordRelation(
              Term::get(result, Context),
              Term::get(subjectType, Context));
          path.add(RewriteStep::forRelation(
              /*startOffset=*/0, relationID,
              /*inverse=*/false));

          if (Debug.contains(DebugFlags::ConcretizeNestedTypes)) {
             llvm::dbgs() << "^^ Type witness can re-use property bag of "
                          << result << "\n";
          }

          return result;
        }
      }

      --end;
    }
  }

  // Otherwise the type witness is concrete, but may contain type
  // parameters in structural position.

  auto concreteConformanceSymbol = *(subjectType.end() - 2);
  auto associatedTypeSymbol = *(subjectType.end() - 1);

  // Record the relation before simplifying typeWitnessSymbol below.
  unsigned concreteRelationID = System.recordConcreteTypeWitnessRelation(
      concreteConformanceSymbol,
      associatedTypeSymbol,
      typeWitnessSymbol);

  // Simplify the substitution terms in the type witness symbol.
  RewritePath substPath;
  auto differenceID = System.simplifySubstitutions(
      key, typeWitnessSymbol, /*map=*/this,
      &substPath);
  if (differenceID) {
    const auto &difference = System.getTypeDifference(*differenceID);
    assert(difference.LHS == typeWitnessSymbol);
    typeWitnessSymbol = difference.RHS;
    substPath.invert();
  }

  // If it is equal to the parent type, introduce a same-type requirement
  // between the two parameters.
  if (requirementKind == RequirementKind::SameType &&
      typeWitnessSymbol.getConcreteType() == concreteType &&
      typeWitnessSymbol.getSubstitutions() == substitutions) {
    if (Debug.contains(DebugFlags::ConcretizeNestedTypes)) {
      llvm::dbgs() << "^^ Type witness is the same as the concrete type\n";
    }

    // Add a rule T.[concrete: C : P] => T.[concrete: C : P].[P:X].
    MutableTerm result(key);
    result.add(concreteConformanceSymbol);

    unsigned sameRelationID = System.recordSameTypeWitnessRelation(
        concreteConformanceSymbol,
        associatedTypeSymbol);

    // ([concrete: C : P] => [concrete: C : P].[P:X].[concrete: C])
    path.add(RewriteStep::forRelation(
        /*startOffset=*/key.size(), sameRelationID,
        /*inverse=*/true));

    // [concrete: C : P].[P:X].([concrete: C] => [concrete: C.X])
    path.append(substPath);

    // T.([concrete: C : P].[P:X].[concrete: C.X] => [concrete: C : P].[P:X])
    path.add(RewriteStep::forRelation(
        /*startOffset=*/key.size(), concreteRelationID,
        /*inverse=*/false));

    return result;
  }

  // Otherwise, add a concrete type requirement for the type witness.
  //
  // Add a rule:
  //
  // T.[concrete: C : P].[P:X].[concrete: C.X'] => T.[concrete: C : P].[P:X].
  //
  // Where C.X' is the canonical form of C.X.
  MutableTerm constraintType = subjectType;
  constraintType.add(typeWitnessSymbol);

  // T.[concrete: C : P].[P:X].([concrete: C.X'] => [concrete: C.X])
  path.append(substPath);

  // T.([concrete: C : P].[P:X].[concrete: C.X] => [concrete: C : P].[P:X])
  path.add(RewriteStep::forRelation(
      /*startOffset=*/key.size(), concreteRelationID,
      /*inverse=*/false));

  return constraintType;
}

void PropertyMap::recordConcreteConformanceRule(
    unsigned concreteRuleID,
    unsigned conformanceRuleID,
    RequirementKind requirementKind,
    Symbol concreteConformanceSymbol) const {
  const auto &concreteRule = System.getRule(concreteRuleID);
  const auto &conformanceRule = System.getRule(conformanceRuleID);

  RewritePath path;

  // We have a pair of rules T.[P] and T'.[concrete: C].
  // Either T == T', or T is a prefix of T', or T' is a prefix of T.
  //
  // Let T'' be the longest of T and T'.
  MutableTerm rhs(concreteRule.getRHS().size() > conformanceRule.getRHS().size()
                  ? concreteRule.getRHS()
                  : conformanceRule.getRHS());

  // First, apply the conformance rule in reverse to obtain T''.[P].
  path.add(RewriteStep::forRewriteRule(
      /*startOffset=*/rhs.size() - conformanceRule.getRHS().size(),
      /*endOffset=*/0,
      /*ruleID=*/conformanceRuleID,
      /*inverse=*/true));

  // Now, apply the concrete type rule in reverse to obtain T''.[concrete: C].[P].
  path.add(RewriteStep::forRewriteRule(
      /*startOffset=*/rhs.size() - concreteRule.getRHS().size(),
      /*endOffset=*/1,
      /*ruleID=*/concreteRuleID,
      /*inverse=*/true));

  // If T' is a suffix of T, prepend the prefix to the concrete type's
  // substitutions.
  auto concreteSymbol = *concreteRule.isPropertyRule();
  unsigned prefixLength = rhs.size() - concreteRule.getRHS().size();

  if (prefixLength > 0 &&
      !concreteConformanceSymbol.getSubstitutions().empty()) {
    path.add(RewriteStep::forPrefixSubstitutions(prefixLength, /*endOffset=*/1,
                                                 /*inverse=*/false));

    MutableTerm prefix(rhs.begin(), rhs.begin() + prefixLength);
    concreteSymbol = concreteSymbol.prependPrefixToConcreteSubstitutions(
        prefix, Context);
  }

  auto protocolSymbol = *conformanceRule.isPropertyRule();

  // Now, transform T''.[concrete: C].[P] into T''.[concrete: C].[concrete: C : P].
  unsigned relationID = System.recordConcreteConformanceRelation(
      concreteSymbol, protocolSymbol, concreteConformanceSymbol);

  path.add(RewriteStep::forRelation(
      /*startOffset=*/rhs.size(), relationID,
      /*inverse=*/false));

  // If T' is a suffix of T, prepend the prefix to the concrete type's
  // substitutions.
  if (prefixLength > 0 &&
      !concreteConformanceSymbol.getSubstitutions().empty()) {
    path.add(RewriteStep::forPrefixSubstitutions(prefixLength, /*endOffset=*/1,
                                                 /*inverse=*/true));
  }

  // Finally, apply the concrete type rule to obtain T''.[concrete: C : P].
  path.add(RewriteStep::forRewriteRule(
      /*startOffset=*/rhs.size() - concreteRule.getRHS().size(),
      /*endOffset=*/1,
      /*ruleID=*/concreteRuleID,
      /*inverse=*/false));

  MutableTerm lhs(rhs);
  lhs.add(concreteConformanceSymbol);

  // The path turns T'' (RHS) into T''.[concrete: C : P] (LHS), but we need
  // it to go in the other direction.
  path.invert();

  (void) System.addRule(std::move(lhs), std::move(rhs), &path);
}

/// If \p key is fixed to a concrete type and is also subject to a conformance
/// requirement, the concrete type might conform conditionally. In this case,
/// introduce rules for any conditional requirements in the given conformance.
void PropertyMap::inferConditionalRequirements(
    ProtocolConformance *concrete, ArrayRef<Term> substitutions) const {

  auto conditionalRequirements = concrete->getConditionalRequirements();

  if (Debug.contains(DebugFlags::ConditionalRequirements)) {
    if (conditionalRequirements.empty())
      llvm::dbgs() << "@@ No conditional requirements from ";
    else
      llvm::dbgs() << "@@ Inferring conditional requirements from ";

    llvm::dbgs() << concrete->getType() << " : ";
    llvm::dbgs() << concrete->getProtocol()->getName() << "\n";
  }

  if (conditionalRequirements.empty())
    return;

  SmallVector<Requirement, 2> desugaredRequirements;

  // FIXME: Do we need to diagnose these errors?
  SmallVector<RequirementError, 2> errors;
  SmallVector<InverseRequirement, 2> ignoredInverses;

  // First, desugar all conditional requirements.
  for (auto req : conditionalRequirements) {
    if (Debug.contains(DebugFlags::ConditionalRequirements)) {
      llvm::dbgs() << "@@@ Original requirement: ";
      req.dump(llvm::dbgs());
      llvm::dbgs() << "\n";
    }

    desugarRequirement(req, SourceLoc(), desugaredRequirements,
                       ignoredInverses, errors);
  }

  // Now, convert desugared conditional requirements to rules.

  // This will update System.getReferencedProtocols() with any new
  // protocols that were imported.
  RuleBuilder builder(Context, System.getReferencedProtocols());
  builder.initWithConditionalRequirements(desugaredRequirements,
                                          substitutions);

  assert(builder.PermanentRules.empty());

  System.addRules(std::move(builder.ImportedRules),
                  std::move(builder.PermanentRules),
                  std::move(builder.RequirementRules));
}