1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
|
//===--- ConcreteTypeWitness.cpp - Nested types of concrete conformances --===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements "nested type concretization", which introduces concrete
// type requirements on nested types of type parameters which are subject to
// both a protocol conformance and a concrete type (or superclass) requirement.
//
// This process runs during property map construction. It may introduce new
// rewrite rules, together with rewrite loops relating the new rules to existing
// rules via relations.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/Decl.h"
#include "swift/AST/Module.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/Types.h"
#include <algorithm>
#include <vector>
#include "PropertyMap.h"
#include "RequirementLowering.h"
#include "RuleBuilder.h"
using namespace swift;
using namespace rewriting;
void PropertyMap::concretizeNestedTypesFromConcreteParents() {
for (auto *props : Entries) {
if (props->getConformsTo().empty())
continue;
if (Debug.contains(DebugFlags::ConcretizeNestedTypes)) {
if (props->isConcreteType() ||
props->hasSuperclassBound()) {
llvm::dbgs() << "^ Concretizing nested types of ";
props->dump(llvm::dbgs());
llvm::dbgs() << "\n";
}
}
if (props->isConcreteType()) {
if (Debug.contains(DebugFlags::ConcretizeNestedTypes)) {
llvm::dbgs() << "- via concrete type requirement\n";
}
for (auto pair : props->ConcreteTypeRules) {
concretizeNestedTypesFromConcreteParent(
props->getKey(),
RequirementKind::SameType,
pair.second,
pair.first.getConcreteType(),
pair.first.getSubstitutions(),
props->ConformsToRules,
props->ConformsTo);
}
}
if (props->hasSuperclassBound()) {
if (Debug.contains(DebugFlags::ConcretizeNestedTypes)) {
llvm::dbgs() << "- via superclass requirement\n";
}
const auto &superclassReq = props->getSuperclassRequirement();
for (auto pair : superclassReq.SuperclassRules) {
concretizeNestedTypesFromConcreteParent(
props->getKey(),
RequirementKind::Superclass,
pair.second,
pair.first.getConcreteType(),
pair.first.getSubstitutions(),
props->ConformsToRules,
props->ConformsTo);
}
}
}
}
/// Suppose a same-type requirement merges two property bags,
/// one of which has a conformance requirement to P and the other
/// one has a concrete type or superclass requirement.
///
/// If the concrete type or superclass conforms to P and P has an
/// associated type A, then we need to infer an equivalence between
/// T.[P:A] and whatever the type witness for 'A' is in the
/// concrete conformance.
///
/// For example, suppose we have a the following definitions,
///
/// protocol Q { associatedtype V }
/// protocol P { associatedtype A; associatedtype C }
/// struct Foo<A, B : Q> : P {
/// typealias C = B.V
/// }
///
/// together with the following property bag:
///
/// T => { conforms_to: [ P ], concrete: Foo<Int, τ_0_0> with <U> }
///
/// The type witness for A in the conformance Foo<Int, τ_0_0> : P is
/// the concrete type 'Int', which induces the following rule:
///
/// T.[P:A].[concrete: Int] => T.[P:A]
///
/// Whereas the type witness for B in the same conformance is the
/// abstract type 'τ_0_0.V', which via the substitutions <U> corresponds
/// to the term 'U.V', and therefore induces the following rule:
///
/// T.[P:B] => U.V
///
void PropertyMap::concretizeNestedTypesFromConcreteParent(
Term key, RequirementKind requirementKind,
unsigned concreteRuleID,
CanType concreteType,
ArrayRef<Term> substitutions,
ArrayRef<unsigned> conformsToRules,
ArrayRef<const ProtocolDecl *> conformsTo) {
assert(requirementKind == RequirementKind::SameType ||
requirementKind == RequirementKind::Superclass);
assert(conformsTo.size() == conformsToRules.size());
for (unsigned i : indices(conformsTo)) {
auto *proto = conformsTo[i];
unsigned conformanceRuleID = conformsToRules[i];
// If we've already processed this pair of rules, record the conformance
// and move on.
//
// This occurs when a pair of rules are inherited from the property map
// entry for this key's suffix.
if (!checkRulePairOnce(concreteRuleID, conformanceRuleID))
continue;
// FIXME: Either remove the ModuleDecl entirely from conformance lookup,
// or pass the correct one down in here.
auto *module = proto->getParentModule();
// For conformance to 'Sendable', allow synthesis of a missing conformance
// if the requirement is a concrete type requirement, that is, if we're
// looking at a signature of the form 'T == Foo, T : Sendable'.
//
// Otherwise, we have a superclass requirement, like 'T : C, T : Sendable'.
// Don't synthesize the conformance in this case since dropping
// 'T : Sendable' would be incorrect; we want to ensure that we only admit
// subclasses of 'C' which are 'Sendable'.
bool allowMissing = (requirementKind == RequirementKind::SameType);
auto conformance = module->lookupConformance(concreteType,
const_cast<ProtocolDecl *>(proto),
allowMissing);
if (!allowMissing &&
proto->isSpecificProtocol(KnownProtocolKind::Sendable) &&
conformance.hasUnavailableConformance()) {
conformance = ProtocolConformanceRef::forInvalid();
}
if (conformance.isInvalid()) {
// For superclass rules, it is totally fine to have a signature like:
//
// protocol P {}
// class C {}
// <T where T : P, T : C>
//
// There is no relation between P and C here.
//
// With concrete types, a missing conformance is a conflict.
if (requirementKind == RequirementKind::SameType)
System.recordConflict(conformanceRuleID, concreteRuleID);
if (Debug.contains(DebugFlags::ConcretizeNestedTypes)) {
llvm::dbgs() << "^^ " << concreteType << " does not conform to "
<< proto->getName() << "\n";
}
continue;
}
auto concreteConformanceSymbol = Symbol::forConcreteConformance(
concreteType, substitutions, proto, Context);
recordConcreteConformanceRule(concreteRuleID, conformanceRuleID,
requirementKind, concreteConformanceSymbol);
// This is disabled by default because we fail to produce a convergent
// rewrite system if the opaque archetype has infinitely-recursive
// nested types. Fixing this requires a better representation for
// concrete conformances in the rewrite system.
if (conformance.isAbstract() &&
!Context.getASTContext().LangOpts.EnableRequirementMachineOpaqueArchetypes) {
if (Debug.contains(DebugFlags::ConcretizeNestedTypes)) {
llvm::dbgs() << "^^ " << "Skipping abstract conformance of "
<< concreteType << " to " << proto->getName() << "\n";
}
continue;
}
for (auto *assocType : proto->getAssociatedTypeMembers()) {
concretizeTypeWitnessInConformance(key, requirementKind,
concreteConformanceSymbol,
conformance, assocType);
}
// We only infer conditional requirements in top-level generic signatures,
// not in protocol requirement signatures.
if (conformance.isConcrete() &&
key.getRootProtocol() == nullptr)
inferConditionalRequirements(conformance.getConcrete(), substitutions);
}
}
void PropertyMap::concretizeTypeWitnessInConformance(
Term key, RequirementKind requirementKind,
Symbol concreteConformanceSymbol,
ProtocolConformanceRef conformance,
AssociatedTypeDecl *assocType) const {
auto concreteType = concreteConformanceSymbol.getConcreteType();
auto substitutions = concreteConformanceSymbol.getSubstitutions();
auto *proto = assocType->getProtocol();
assert(proto == concreteConformanceSymbol.getProtocol());
if (Debug.contains(DebugFlags::ConcretizeNestedTypes)) {
llvm::dbgs() << "^^ " << "Looking up type witness for "
<< proto->getName() << ":" << assocType->getName()
<< " on " << concreteType << "\n";
}
CanType typeWitness;
if (conformance.isConcrete()) {
auto t = conformance.getConcrete()->getTypeWitness(assocType);
if (!t) {
if (Debug.contains(DebugFlags::ConcretizeNestedTypes)) {
llvm::dbgs() << "^^ " << "Type witness for " << assocType->getName()
<< " of " << concreteType << " could not be inferred\n";
}
t = ErrorType::get(concreteType);
}
typeWitness = t->getCanonicalType();
} else if (conformance.isAbstract()) {
auto archetype = concreteType->getAs<OpaqueTypeArchetypeType>();
if (archetype == nullptr) {
llvm::errs() << "Should only have an abstract conformance with an "
<< "opaque archetype type\n";
llvm::errs() << "Symbol: " << concreteConformanceSymbol << "\n";
llvm::errs() << "Term: " << key << "\n";
dump(llvm::errs());
abort();
}
typeWitness = archetype->getNestedType(assocType)->getCanonicalType();
} else if (conformance.isInvalid()) {
typeWitness = CanType(ErrorType::get(Context.getASTContext()));
}
if (Debug.contains(DebugFlags::ConcretizeNestedTypes)) {
llvm::dbgs() << "^^ " << "Type witness for " << assocType->getName()
<< " of " << concreteType << " is " << typeWitness << "\n";
}
// Build the term T.[concrete: C : P].[P:X].
MutableTerm subjectType(key);
subjectType.add(concreteConformanceSymbol);
subjectType.add(Symbol::forAssociatedType(proto, assocType->getName(),
Context));
MutableTerm constraintType;
RewritePath path;
constraintType = computeConstraintTermForTypeWitness(
key, requirementKind, concreteType, typeWitness, subjectType,
substitutions, path);
assert(!path.empty());
(void) System.addRule(constraintType, subjectType, &path);
if (Debug.contains(DebugFlags::ConcretizeNestedTypes)) {
llvm::dbgs() << "^^ Induced rule " << constraintType
<< " => " << subjectType << "\n";
}
}
/// Given the key of a property bag known to have \p concreteType,
/// together with a \p typeWitness from a conformance on that concrete
/// type, return the right hand side of a rewrite rule to relate
/// \p subjectType with a term representing the type witness.
///
/// Suppose the key is T and the subject type is T.[P:A].
///
/// If the type witness is an abstract type U, this produces a rewrite
/// rule
///
/// T.[P:A] => U
///
/// If the type witness is a concrete type Foo, this produces a rewrite
/// rule
///
/// T.[P:A].[concrete: Foo] => T.[P:A]
///
/// However, this also tries to tie off recursion first using a heuristic.
///
/// If the type witness is fully concrete and we've already seen some
/// term V in the same domain with the same concrete type, we produce a
/// rewrite rule:
///
/// T.[P:A] => V
MutableTerm PropertyMap::computeConstraintTermForTypeWitness(
Term key, RequirementKind requirementKind,
CanType concreteType, CanType typeWitness,
const MutableTerm &subjectType,
ArrayRef<Term> substitutions,
RewritePath &path) const {
// If the type witness is abstract, introduce a same-type requirement
// between two type parameters.
if (typeWitness->isTypeParameter()) {
// The type witness is a type parameter of the form τ_0_n.X.Y...Z,
// where 'n' is an index into the substitution array.
//
// Add a rule:
//
// T.[concrete: C : P].[P:X] => S[n].X.Y...Z
//
// Where S[n] is the nth substitution term.
auto result = Context.getRelativeTermForType(
typeWitness, substitutions);
unsigned relationID = System.recordRelation(
Term::get(result, Context),
Term::get(subjectType, Context));
path.add(RewriteStep::forRelation(
/*startOffset=*/0, relationID,
/*inverse=*/false));
return result;
}
// Compute the concrete type symbol [concrete: C.X].
SmallVector<Term, 3> result;
auto typeWitnessSchema =
Context.getRelativeSubstitutionSchemaFromType(typeWitness, substitutions,
result);
auto typeWitnessSymbol =
Symbol::forConcreteType(typeWitnessSchema, result, Context);
// If the type witness is completely concrete, check if one of our prefix
// types has the same concrete type, and if so, introduce a same-type
// requirement between the subject type and the prefix.
if (!typeWitness->hasTypeParameter()) {
auto begin = key.begin();
auto end = key.end();
while (begin != end) {
MutableTerm prefix(begin, end);
if (auto *props = lookUpProperties(prefix)) {
if (props->isConcreteType() &&
props->getConcreteType() == typeWitness) {
// Record a relation U.[concrete: C.X] =>> U.V.[concrete: C : P].[P:X]
// where U is the parent such that U.[concrete: C:X] => U.
MutableTerm result(props->getKey());
result.add(typeWitnessSymbol);
unsigned relationID = System.recordRelation(
Term::get(result, Context),
Term::get(subjectType, Context));
path.add(RewriteStep::forRelation(
/*startOffset=*/0, relationID,
/*inverse=*/false));
if (Debug.contains(DebugFlags::ConcretizeNestedTypes)) {
llvm::dbgs() << "^^ Type witness can re-use property bag of "
<< result << "\n";
}
return result;
}
}
--end;
}
}
// Otherwise the type witness is concrete, but may contain type
// parameters in structural position.
auto concreteConformanceSymbol = *(subjectType.end() - 2);
auto associatedTypeSymbol = *(subjectType.end() - 1);
// Record the relation before simplifying typeWitnessSymbol below.
unsigned concreteRelationID = System.recordConcreteTypeWitnessRelation(
concreteConformanceSymbol,
associatedTypeSymbol,
typeWitnessSymbol);
// Simplify the substitution terms in the type witness symbol.
RewritePath substPath;
auto differenceID = System.simplifySubstitutions(
key, typeWitnessSymbol, /*map=*/this,
&substPath);
if (differenceID) {
const auto &difference = System.getTypeDifference(*differenceID);
assert(difference.LHS == typeWitnessSymbol);
typeWitnessSymbol = difference.RHS;
substPath.invert();
}
// If it is equal to the parent type, introduce a same-type requirement
// between the two parameters.
if (requirementKind == RequirementKind::SameType &&
typeWitnessSymbol.getConcreteType() == concreteType &&
typeWitnessSymbol.getSubstitutions() == substitutions) {
if (Debug.contains(DebugFlags::ConcretizeNestedTypes)) {
llvm::dbgs() << "^^ Type witness is the same as the concrete type\n";
}
// Add a rule T.[concrete: C : P] => T.[concrete: C : P].[P:X].
MutableTerm result(key);
result.add(concreteConformanceSymbol);
unsigned sameRelationID = System.recordSameTypeWitnessRelation(
concreteConformanceSymbol,
associatedTypeSymbol);
// ([concrete: C : P] => [concrete: C : P].[P:X].[concrete: C])
path.add(RewriteStep::forRelation(
/*startOffset=*/key.size(), sameRelationID,
/*inverse=*/true));
// [concrete: C : P].[P:X].([concrete: C] => [concrete: C.X])
path.append(substPath);
// T.([concrete: C : P].[P:X].[concrete: C.X] => [concrete: C : P].[P:X])
path.add(RewriteStep::forRelation(
/*startOffset=*/key.size(), concreteRelationID,
/*inverse=*/false));
return result;
}
// Otherwise, add a concrete type requirement for the type witness.
//
// Add a rule:
//
// T.[concrete: C : P].[P:X].[concrete: C.X'] => T.[concrete: C : P].[P:X].
//
// Where C.X' is the canonical form of C.X.
MutableTerm constraintType = subjectType;
constraintType.add(typeWitnessSymbol);
// T.[concrete: C : P].[P:X].([concrete: C.X'] => [concrete: C.X])
path.append(substPath);
// T.([concrete: C : P].[P:X].[concrete: C.X] => [concrete: C : P].[P:X])
path.add(RewriteStep::forRelation(
/*startOffset=*/key.size(), concreteRelationID,
/*inverse=*/false));
return constraintType;
}
void PropertyMap::recordConcreteConformanceRule(
unsigned concreteRuleID,
unsigned conformanceRuleID,
RequirementKind requirementKind,
Symbol concreteConformanceSymbol) const {
const auto &concreteRule = System.getRule(concreteRuleID);
const auto &conformanceRule = System.getRule(conformanceRuleID);
RewritePath path;
// We have a pair of rules T.[P] and T'.[concrete: C].
// Either T == T', or T is a prefix of T', or T' is a prefix of T.
//
// Let T'' be the longest of T and T'.
MutableTerm rhs(concreteRule.getRHS().size() > conformanceRule.getRHS().size()
? concreteRule.getRHS()
: conformanceRule.getRHS());
// First, apply the conformance rule in reverse to obtain T''.[P].
path.add(RewriteStep::forRewriteRule(
/*startOffset=*/rhs.size() - conformanceRule.getRHS().size(),
/*endOffset=*/0,
/*ruleID=*/conformanceRuleID,
/*inverse=*/true));
// Now, apply the concrete type rule in reverse to obtain T''.[concrete: C].[P].
path.add(RewriteStep::forRewriteRule(
/*startOffset=*/rhs.size() - concreteRule.getRHS().size(),
/*endOffset=*/1,
/*ruleID=*/concreteRuleID,
/*inverse=*/true));
// If T' is a suffix of T, prepend the prefix to the concrete type's
// substitutions.
auto concreteSymbol = *concreteRule.isPropertyRule();
unsigned prefixLength = rhs.size() - concreteRule.getRHS().size();
if (prefixLength > 0 &&
!concreteConformanceSymbol.getSubstitutions().empty()) {
path.add(RewriteStep::forPrefixSubstitutions(prefixLength, /*endOffset=*/1,
/*inverse=*/false));
MutableTerm prefix(rhs.begin(), rhs.begin() + prefixLength);
concreteSymbol = concreteSymbol.prependPrefixToConcreteSubstitutions(
prefix, Context);
}
auto protocolSymbol = *conformanceRule.isPropertyRule();
// Now, transform T''.[concrete: C].[P] into T''.[concrete: C].[concrete: C : P].
unsigned relationID = System.recordConcreteConformanceRelation(
concreteSymbol, protocolSymbol, concreteConformanceSymbol);
path.add(RewriteStep::forRelation(
/*startOffset=*/rhs.size(), relationID,
/*inverse=*/false));
// If T' is a suffix of T, prepend the prefix to the concrete type's
// substitutions.
if (prefixLength > 0 &&
!concreteConformanceSymbol.getSubstitutions().empty()) {
path.add(RewriteStep::forPrefixSubstitutions(prefixLength, /*endOffset=*/1,
/*inverse=*/true));
}
// Finally, apply the concrete type rule to obtain T''.[concrete: C : P].
path.add(RewriteStep::forRewriteRule(
/*startOffset=*/rhs.size() - concreteRule.getRHS().size(),
/*endOffset=*/1,
/*ruleID=*/concreteRuleID,
/*inverse=*/false));
MutableTerm lhs(rhs);
lhs.add(concreteConformanceSymbol);
// The path turns T'' (RHS) into T''.[concrete: C : P] (LHS), but we need
// it to go in the other direction.
path.invert();
(void) System.addRule(std::move(lhs), std::move(rhs), &path);
}
/// If \p key is fixed to a concrete type and is also subject to a conformance
/// requirement, the concrete type might conform conditionally. In this case,
/// introduce rules for any conditional requirements in the given conformance.
void PropertyMap::inferConditionalRequirements(
ProtocolConformance *concrete, ArrayRef<Term> substitutions) const {
auto conditionalRequirements = concrete->getConditionalRequirements();
if (Debug.contains(DebugFlags::ConditionalRequirements)) {
if (conditionalRequirements.empty())
llvm::dbgs() << "@@ No conditional requirements from ";
else
llvm::dbgs() << "@@ Inferring conditional requirements from ";
llvm::dbgs() << concrete->getType() << " : ";
llvm::dbgs() << concrete->getProtocol()->getName() << "\n";
}
if (conditionalRequirements.empty())
return;
SmallVector<Requirement, 2> desugaredRequirements;
// FIXME: Do we need to diagnose these errors?
SmallVector<RequirementError, 2> errors;
SmallVector<InverseRequirement, 2> ignoredInverses;
// First, desugar all conditional requirements.
for (auto req : conditionalRequirements) {
if (Debug.contains(DebugFlags::ConditionalRequirements)) {
llvm::dbgs() << "@@@ Original requirement: ";
req.dump(llvm::dbgs());
llvm::dbgs() << "\n";
}
desugarRequirement(req, SourceLoc(), desugaredRequirements,
ignoredInverses, errors);
}
// Now, convert desugared conditional requirements to rules.
// This will update System.getReferencedProtocols() with any new
// protocols that were imported.
RuleBuilder builder(Context, System.getReferencedProtocols());
builder.initWithConditionalRequirements(desugaredRequirements,
substitutions);
assert(builder.PermanentRules.empty());
System.addRules(std::move(builder.ImportedRules),
std::move(builder.PermanentRules),
std::move(builder.RequirementRules));
}
|