File: InterfaceType.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (632 lines) | stat: -rw-r--r-- 23,310 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
//===--- InterfaceType.cpp - Type to term conversion ----------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements routines for converting Swift AST interface types to
// rewrite system terms.
//
// A type parameter in Swift is a GenericTypeParamType wrapped in zero or
// more DependentMemberTypes. DependentMemberTypes come in two flavors,
// "unresolved" and "resolved". Unresolved DependentMemberTypes store an
// identifier. Resolved DependentMemberTypes store an associated type
// declaration.
//
// In the rewrite system, unresolved DependentMemberTypes map to name symbols;
// resolved DependentMemberTypes map to associated type symbols.
//
// The mapping of the root generic parameter depends on the specific usage:
//
// - If the type is understood to be the subject type of a requirement in a
//   protocol, the root generic parameter, which must equal τ_0_0, maps to a
//   protocol symbol for the protocol in question.
//
// - If the type is part of a top-level generic signature, the root generic
//   parameter maps to the corresponding generic parameter symbol.
//
// - If the type was derived from a superclass or concrete type symbol, the
//   root generic parameter, which must equal τ_0_N for some N, maps to the
//   Nth substitution stored in the superclass or concrete type symbol.
//
// The rewrite system's reduction order differs from the canonical type order
// used by Swift's ABI and name mangling. What this means in practice is that
// converting a canonical type to a term does not necessarily produce a
// canonical term; the term must further be simplified to produce a canonical
// term. Converting a canonical term back to a type, however, does produce a
// canonical type.
//
// Type to term conversion is implemented on the RewriteContext, and does not
// depend on the specific RewriteSystem used.
//
// Term to type conversion is implemented on the PropertyMap, and must only
// be performed after completion. This is because it relies on the property map
// to map associated type symbols back to Swift types.
//
// The specific difference between the canonical type order and the reduction
// order is as follows. In both orders, an associated type P1.T1 orders before
// an associated type P2.T2 if T1 < T2, or T1 == T2 and P1 < P2. The difference
// is in the protocol order relation P1 < P2.
//
// In the canonical type order, P1 < P2 based on the protocol names alone (or
// their module names, if the unqualified names are the same). In the reduction
// order, we want P1 < P2 to also hold if P1 inherits from P2.
//
// The following diagram shows the relationship between the two directions of
// the type to term mapping:
//
//      ---------------------
//     / Non-canonical Type /
//     ---------------------
//               |
//               v
//     +------------------+
//     | getTermForType() |
//     +------------------+
//               |
//               v
//     ---------------------
//    / Non-canonical Term /
//    ---------------------
//               |
//               v
//        +------------+
//        | simplify() |
//        +------------+
//               |
//               v
//       -----------------
//      / Canonical Term /
//      -----------------
//               |
//               v
//     +------------------+
//     | getTypeForTerm() |
//     +------------------+
//               |
//               v
//       -----------------
//      / Canonical Type /
//      -----------------
//
//===----------------------------------------------------------------------===//

#include "swift/AST/Decl.h"
#include "swift/AST/Types.h"
#include "PropertyMap.h"
#include "RewriteSystem.h"
#include "RewriteContext.h"

using namespace swift;
using namespace rewriting;

Term RewriteContext::getTermForType(CanType paramType,
                                    const ProtocolDecl *proto) {
  return Term::get(getMutableTermForType(paramType, proto), *this);
}

/// Map an interface type to a term.
///
/// If \p proto is null, this is a term relative to a generic
/// parameter in a top-level signature. The term is rooted in a generic
/// parameter symbol.
///
/// If \p proto is non-null, this is a term relative to a protocol's
/// 'Self' type. The term is rooted in a protocol symbol for this protocol,
/// or an associated type symbol for some associated type in this protocol.
///
/// Resolved DependentMemberTypes map to associated type symbols.
/// Unresolved DependentMemberTypes map to name symbols.
///
/// Note the behavior of the root term is special if it is an associated
/// type symbol. The protocol of the associated type is always mapped to
/// \p proto if it was provided. This ensures we get the correct behavior
/// if a protocol places a constraint on an associated type inherited from
/// another protocol:
///
/// protocol P {
///   associatedtype Foo
/// }
///
/// protocol Q : P where Foo : R {}
///
/// protocol R {}
///
/// The DependentMemberType in the requirement signature of Q refers to
/// P::Foo.
///
/// However, we want Q's requirement signature to introduce the rewrite rule
///
///   [Q:Foo].[R] => [Q:Foo]
///
/// and not
///
///   [P:Foo].[R] => [P:Foo]
///
/// This is because the rule only applies to Q's logical override of Foo, and
/// not P's Foo.
///
/// To handle this, getMutableTermForType() behaves as follows:
///
/// Self.P::Foo with proto = P         => [P:Foo]
/// Self.P::Foo with proto = Q         => [Q:Foo]
/// τ_0_0.P::Foo with proto == nullptr => τ_0_0.[P:Foo]
///
MutableTerm RewriteContext::getMutableTermForType(CanType paramType,
                                                  const ProtocolDecl *proto) {
  assert(paramType->isTypeParameter());

  // Collect zero or more nested type names in reverse order.
  bool innermostAssocTypeWasResolved = false;

  SmallVector<Symbol, 3> symbols;
  while (auto memberType = dyn_cast<DependentMemberType>(paramType)) {
    paramType = memberType.getBase();

    if (auto *assocType = memberType->getAssocType()) {
      const auto *thisProto = assocType->getProtocol();
      if (proto && isa<GenericTypeParamType>(paramType)) {
        thisProto = proto;
        innermostAssocTypeWasResolved = true;
      }
      symbols.push_back(Symbol::forAssociatedType(thisProto,
                                                  assocType->getName(),
                                                  *this));
    } else {
      symbols.push_back(Symbol::forName(memberType->getName(), *this));
      innermostAssocTypeWasResolved = false;
    }
  }

  // Add the root symbol at the end.
  if (proto) {
    assert(proto->getSelfInterfaceType()->isEqual(paramType));

    // Self.Foo becomes [P].Foo
    // Self.Q::Foo becomes [P:Foo] (not [Q:Foo] or [P].[Q:Foo])
    if (!innermostAssocTypeWasResolved)
      symbols.push_back(Symbol::forProtocol(proto, *this));
  } else {
    symbols.push_back(Symbol::forGenericParam(
        cast<GenericTypeParamType>(paramType), *this));
  }

  std::reverse(symbols.begin(), symbols.end());

  return MutableTerm(symbols);
}

/// Find the most canonical associated type declaration with the given
/// name among a set of conforming protocols stored in this property map
/// entry.
AssociatedTypeDecl *PropertyBag::getAssociatedType(Identifier name) {
  auto found = AssocTypes.find(name);
  if (found != AssocTypes.end())
    return found->second;

  AssociatedTypeDecl *assocType = nullptr;

  for (auto *proto : ConformsTo) {
    auto checkOtherAssocType = [&](AssociatedTypeDecl *otherAssocType) {
      otherAssocType = otherAssocType->getAssociatedTypeAnchor();

      if (otherAssocType->getName() == name &&
          (assocType == nullptr ||
           TypeDecl::compare(otherAssocType->getProtocol(),
                             assocType->getProtocol()) < 0)) {
        assocType = otherAssocType;
      }
    };

    for (auto *otherAssocType : proto->getAssociatedTypeMembers()) {
      checkOtherAssocType(otherAssocType);
    }
  }

  assert(assocType != nullptr && "Need to look harder");

  auto inserted = AssocTypes.insert(std::make_pair(name, assocType)).second;
  assert(inserted);
  (void) inserted;

  return assocType;
}

/// Compute the interface type for a range of symbols.
static Type
getTypeForSymbolRange(const Symbol *begin, const Symbol *end,
                      ArrayRef<GenericTypeParamType *> genericParams,
                      const PropertyMap &map) {
  auto &ctx = map.getRewriteContext();
  Type result;

  auto handleRoot = [&](GenericTypeParamType *genericParam) {
    assert(genericParam->isCanonical());

    if (!genericParams.empty()) {
      // Return a sugared GenericTypeParamType if we're given an array of
      // sugared types to substitute.
      unsigned index = GenericParamKey(genericParam).findIndexIn(genericParams);

      if (index == genericParams.size()) {
        llvm::errs() << "Cannot build interface type for term "
                     << MutableTerm(begin, end) << "\n";
        llvm::errs() << "Invalid generic parameter: "
                     << Type(genericParam) << "\n";
        llvm::errs() << "Valid generic parameters: ";
        for (auto *otherParam : genericParams)
          llvm::errs() << " " << otherParam->getCanonicalType();
        llvm::errs() << "\n";
        abort();
      }

      result = genericParams[index];
      return;
    }

    // Otherwise, we're going to return a canonical type.
    result = genericParam;
  };

  for (auto *iter = begin; iter != end; ++iter) {
    auto symbol = *iter;

    if (!result) {
      // A valid term always begins with a generic parameter, protocol or
      // associated type symbol.
      switch (symbol.getKind()) {
      case Symbol::Kind::GenericParam:
        handleRoot(symbol.getGenericParam());
        continue;

      case Symbol::Kind::Protocol:
        handleRoot(GenericTypeParamType::get(/*isParameterPack*/ false, 0, 0,
                                             ctx.getASTContext()));
        continue;

      case Symbol::Kind::AssociatedType:
        handleRoot(GenericTypeParamType::get(/*isParameterPack*/ false, 0, 0,
                                             ctx.getASTContext()));

        // An associated type symbol at the root means we have a dependent
        // member type rooted at Self; handle the associated type below.
        break;

      case Symbol::Kind::Name:
      case Symbol::Kind::Layout:
      case Symbol::Kind::Superclass:
      case Symbol::Kind::ConcreteType:
      case Symbol::Kind::ConcreteConformance:
      case Symbol::Kind::Shape:
        llvm::errs() << "Invalid root symbol: " << MutableTerm(begin, end) << "\n";
        abort();
      }
    }

    // An unresolved type can appear if we have invalid requirements.
    if (symbol.getKind() == Symbol::Kind::Name) {
      result = DependentMemberType::get(result, symbol.getName());
      continue;
    }

    // We can end up with an unsimplified term like this:
    //
    // X.[P].[P:X]
    //
    // Simplification will rewrite X.[P] to X, so just ignore a protocol symbol
    // in the middle of a term.
    if (symbol.getKind() == Symbol::Kind::Protocol) {
#ifndef NDEBUG
      // Ensure that the domain of the suffix contains P.
      if (iter + 1 < end) {
        auto proto = (iter + 1)->getProtocol();
        assert(proto == symbol.getProtocol());
      }
#endif
      continue;
    }

    assert(symbol.getKind() == Symbol::Kind::AssociatedType);

    MutableTerm prefix;
    if (begin == iter) {
      // If the term begins with an associated type symbol, look for the
      // associated type in the protocol itself.
      prefix.add(Symbol::forProtocol(symbol.getProtocol(), ctx));
    } else {
      // The protocol stored in an associated type symbol appearing in a
      // canonical term is not necessarily the right protocol to look for
      // an associated type declaration to get a canonical _type_, because
      // the reduction order on terms is different than the canonical order
      // on types.
      //
      // Instead, find all protocols that the prefix conforms to, and look
      // for an associated type in those protocols.
      prefix.append(begin, iter);
    }

    auto *props = map.lookUpProperties(prefix.rbegin(), prefix.rend());
    if (props == nullptr) {
      llvm::errs() << "Cannot build interface type for term "
                   << MutableTerm(begin, end) << "\n";
      llvm::errs() << "Prefix does not conform to any protocols: "
                   << prefix << "\n\n";
      map.dump(llvm::errs());
      abort();
    }

    // Assert that the associated type's protocol appears among the set
    // of protocols that the prefix conforms to.
#ifndef NDEBUG
    auto conformsTo = props->getConformsTo();
    assert(std::find(conformsTo.begin(), conformsTo.end(),
                     symbol.getProtocol())
           != conformsTo.end());
#endif

    auto *assocType = props->getAssociatedType(symbol.getName());
    if (assocType == nullptr) {
      llvm::errs() << "Cannot build interface type for term "
                   << MutableTerm(begin, end) << "\n";
      llvm::errs() << "Prefix term does not have a nested type named "
                   << symbol.getName() << ": "
                   << prefix << "\n";
      llvm::errs() << "Property map entry: ";
      props->dump(llvm::errs());
      llvm::errs() << "\n\n";
      map.dump(llvm::errs());
      abort();
    }

    result = DependentMemberType::get(result, assocType);
  }

  return result;
}

Type PropertyMap::getTypeForTerm(Term term,
                      ArrayRef<GenericTypeParamType *> genericParams) const {
  return getTypeForSymbolRange(term.begin(), term.end(), genericParams, *this);
}

Type PropertyMap::getTypeForTerm(const MutableTerm &term,
                      ArrayRef<GenericTypeParamType *> genericParams) const {
  return getTypeForSymbolRange(term.begin(), term.end(), genericParams, *this);
}

/// Concrete type terms are written in terms of generic parameter types that
/// have a depth of 0, and an index into an array of substitution terms.
///
/// See RewriteSystemBuilder::getSubstitutionSchemaFromType().
unsigned RewriteContext::getGenericParamIndex(Type type) {
  auto *paramTy = type->castTo<GenericTypeParamType>();
  assert(paramTy->getDepth() == 0);
  return paramTy->getIndex();
}

/// Computes the term corresponding to a member type access on a substitution.
///
/// The type witness is a type parameter of the form τ_0_n.X.Y.Z,
/// where 'n' is an index into the substitution array.
///
/// If the nth entry in the array is S, this will produce S.X.Y.Z.
///
/// There is a special behavior if the substitution is a term consisting of a
/// single protocol symbol [P]. If the innermost associated type in
/// \p typeWitness is [Q:Foo], the result will be [P:Foo], not [P].[Q:Foo] or
/// [Q:Foo].
MutableTerm
RewriteContext::getRelativeTermForType(CanType typeWitness,
                                       ArrayRef<Term> substitutions) {
  MutableTerm result;

  // Get the substitution S corresponding to τ_0_n.
  unsigned index = getGenericParamIndex(typeWitness->getRootGenericParam());
  result = MutableTerm(substitutions[index]);
  assert(result.back().getKind() != Symbol::Kind::Shape);

  // If the substitution is a term consisting of a single protocol symbol
  // [P], save P for later.
  const ProtocolDecl *proto = nullptr;
  if (result.size() == 1 &&
      result[0].getKind() == Symbol::Kind::Protocol) {
    proto = result[0].getProtocol();
  }

  // Collect zero or more member type names in reverse order.
  SmallVector<Symbol, 3> symbols;
  while (auto memberType = dyn_cast<DependentMemberType>(typeWitness)) {
    typeWitness = memberType.getBase();

    auto *assocType = memberType->getAssocType();
    assert(assocType != nullptr &&
           "Conformance checking should not produce unresolved member types");

    // If the substitution is a term consisting of a single protocol symbol [P],
    // produce [P:Foo] instead of [P].[Q:Foo] or [Q:Foo].
    const auto *thisProto = assocType->getProtocol();
    if (proto && isa<GenericTypeParamType>(typeWitness)) {
      thisProto = proto;

      assert(result.size() == 1);
      assert(result[0].getKind() == Symbol::Kind::Protocol);
      assert(result[0].getProtocol() == proto);
      result = MutableTerm();
    }

    symbols.push_back(Symbol::forAssociatedType(thisProto,
                                                assocType->getName(), *this));
  }

  // Add the member type names.
  for (auto iter = symbols.rbegin(), end = symbols.rend(); iter != end; ++iter)
    result.add(*iter);

  return result;
}

/// Reverses the transformation performed by
/// RewriteSystemBuilder::getSubstitutionSchemaFromType().
Type PropertyMap::getTypeFromSubstitutionSchema(
    Type schema, ArrayRef<Term> substitutions,
    ArrayRef<GenericTypeParamType *> genericParams,
    const MutableTerm &prefix) const {
  assert(!schema->isTypeParameter() && "Must have a concrete type here");

  if (!schema->hasTypeParameter())
    return schema;

  return schema.transformWithPosition(
      TypePosition::Invariant,
      [&](Type t, TypePosition pos) -> std::optional<Type> {
        if (t->is<GenericTypeParamType>()) {
          auto index = RewriteContext::getGenericParamIndex(t);
          auto substitution = substitutions[index];

          bool isShapePosition = (pos == TypePosition::Shape);
          bool isShapeTerm = (substitution.back() == Symbol::forShape(Context));
          if (isShapePosition != isShapeTerm) {
            llvm::errs() << "Shape vs. type mixup\n\n";
            schema.dump(llvm::errs());
            llvm::errs() << "Substitutions:\n";
            for (auto otherSubst : substitutions) {
              llvm::errs() << "- ";
              otherSubst.dump(llvm::errs());
              llvm::errs() << "\n";
            }
            llvm::errs() << "\n";
            dump(llvm::errs());

            abort();
          }

          // Undo the thing where the count type of a PackExpansionType
          // becomes a shape term.
          if (isShapeTerm) {
            MutableTerm mutTerm(substitution.begin(), substitution.end() - 1);
            substitution = Term::get(mutTerm, Context);
          }

          // Prepend the prefix of the lookup key to the substitution.
          if (prefix.empty()) {
            // Skip creation of a new MutableTerm in the case where the
            // prefix is empty.
            return getTypeForTerm(substitution, genericParams);
          } else {
            // Otherwise build a new term by appending the substitution
            // to the prefix.
            MutableTerm result(prefix);
            result.append(substitution);
            return getTypeForTerm(result, genericParams);
          }
        }

        assert(!t->isTypeParameter());
        return std::nullopt;
      });
}

/// This method takes a concrete type that was derived from a concrete type
/// produced by RewriteContext::getSubstitutionSchemaFromType() either by
/// extracting a structural sub-component or performing a (Swift AST)
/// substitution using subst(). It returns a new concrete substitution schema
/// and a new list of substitution terms.
///
/// For example, suppose we start with the concrete type
///
///   Dictionary<τ_0_0, Array<τ_0_1>> with substitutions {X.Y, Z}
///
/// We can extract out the structural sub-component Array<τ_0_1>. If we wish
/// to build a new concrete substitution schema, we call this method with
/// Array<τ_0_1> and the original substitutions {X.Y, Z}. This will produce
/// the new schema Array<τ_0_0> with substitutions {Z}.
///
/// As another example, consider we start with the schema Bar<τ_0_0> with
/// original substitutions {X.Y}, and perform a Swift AST subst() to get
/// Foo<τ_0_0.A.B>. We can then call this method with Foo<τ_0_0.A.B> and
/// the original substitutions {X.Y} to produce the new schema Foo<τ_0_0>
/// with substitutions {X.Y.A.B}.
CanType
RewriteContext::getRelativeSubstitutionSchemaFromType(
    CanType concreteType,
    ArrayRef<Term> substitutions,
    SmallVectorImpl<Term> &result) {
  assert(!concreteType->isTypeParameter() && "Must have a concrete type here");
  assert(!concreteType->is<PackExpansionType>());

  if (!concreteType->hasTypeParameter())
    return concreteType;

  return CanType(concreteType.transformWithPosition(
      TypePosition::Invariant,
      [&](Type t, TypePosition pos) -> std::optional<Type> {
        if (!t->isTypeParameter())
          return std::nullopt;

        auto term = getRelativeTermForType(CanType(t), substitutions);

        // PackExpansionType(pattern=T, count=U) becomes
        // PackExpansionType(pattern=τ_0_0, count=τ_0_1) with
        //
        // τ_0_0 := T
        // τ_0_1 := U.[shape]
        if (pos == TypePosition::Shape) {
          assert(false);
          term.add(Symbol::forShape(*this));
        }

        unsigned index = result.size();

        result.push_back(Term::get(term, *this));

        return CanGenericTypeParamType::get(/*isParameterPack=*/false,
                                            /*depth=*/0, index, Context);
      }));
}

/// Given a concrete type that may contain type parameters in structural positions,
/// collect all the structural type parameter components, and replace them all with
/// fresh generic parameters. The fresh generic parameters all have a depth of 0,
/// and the index is an index into the 'result' array.
///
/// For example, given the concrete type Foo<X.Y, Array<Z>>, this produces the
/// result type Foo<τ_0_0, Array<τ_0_1>>, with result array {X.Y, Z}.
CanType
RewriteContext::getSubstitutionSchemaFromType(CanType concreteType,
                                              const ProtocolDecl *proto,
                                              SmallVectorImpl<Term> &result) {
  assert(!concreteType->isTypeParameter() && "Must have a concrete type here");
  assert(!concreteType->is<PackExpansionType>());

  if (!concreteType->hasTypeParameter())
    return concreteType;

  return CanType(concreteType.transformWithPosition(
      TypePosition::Invariant,
      [&](Type t, TypePosition pos) -> std::optional<Type> {
        if (!t->isTypeParameter())
          return std::nullopt;

        // PackExpansionType(pattern=T, count=U) becomes
        // PackExpansionType(pattern=τ_0_0, count=τ_0_1) with
        //
        // τ_0_0 := T
        // τ_0_1 := U.[shape]
        MutableTerm term = getMutableTermForType(CanType(t), proto);
        if (pos == TypePosition::Shape)
          term.add(Symbol::forShape(*this));

        unsigned index = result.size();

        result.push_back(Term::get(term, *this));

        return CanGenericTypeParamType::get(/*isParameterPack=*/false,
                                            /*depth=*/0, index, Context);
      }));
}