1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
|
//===--- KnuthBendix.cpp - Confluent completion procedure -----------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This implements completion in the rewriting system sense, not code
// completion.
//
// We use a variation of the Knuth-Bendix algorithm
// (https://en.wikipedia.org/wiki/Knuth–Bendix_completion_algorithm).
//
// The goal is to find 'overlapping' rules which would allow the same term to
// be rewritten in two different ways. These two different irreducible
// reductions are called a 'critical pair'; the completion procedure introduces
// new rewrite rules to eliminate critical pairs by rewriting one side of the
// pair to the other. This can introduce more overlaps with existing rules, and
// the process iterates until fixed point.
//
// When completion records a new rewrite rule, it also constructs a rewrite loop
// describing how this rule is derived from existing rules. See RewriteLoop.cpp
// for a discussion of rewrite loops.
//
//===----------------------------------------------------------------------===//
#include "swift/Basic/Range.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <deque>
#include <vector>
#include "RewriteContext.h"
#include "RewriteSystem.h"
using namespace swift;
using namespace rewriting;
/// For a superclass or concrete type symbol
///
/// [concrete: Foo<X1, ..., Xn>]
/// [superclass: Foo<X1, ..., Xn>]
///
/// Return a new symbol where the prefix T is prepended to each of the
/// substitutions:
///
/// [concrete: Foo<T.X1, ..., T.Xn>]
/// [superclass: Foo<T.X1, ..., T.Xn>]
///
/// Asserts if this is not a superclass or concrete type symbol.
Symbol Symbol::prependPrefixToConcreteSubstitutions(
const MutableTerm &prefix,
RewriteContext &ctx) const {
if (prefix.empty())
return *this;
return transformConcreteSubstitutions(
[&](Term term) -> Term {
MutableTerm mutTerm;
mutTerm.append(prefix);
mutTerm.append(term);
return Term::get(mutTerm, ctx);
}, ctx);
}
/// Compute a critical pair from the left hand sides of two rewrite rules,
/// where \p rhs begins at \p from, which must be an iterator pointing
/// into \p lhs.
///
/// The resulting pair, together with a rewrite path relating them is
/// pushed onto \p pairs only if it is non-trivial, that is, the left
/// hand side and right hand side are not equal.
///
/// Otherwise, we record a rewrite loop in \p loops.
///
/// Returns true if the pair was non-trivial, false if it was trivial.
///
/// There are two cases:
///
/// 1) lhs == TUV -> X, rhs == U -> Y. The overlapped term is TUV;
/// applying lhs and rhs, respectively, yields the critical pair
/// (X, TYV).
///
/// 2) lhs == TU -> X, rhs == UV -> Y. The overlapped term is once
/// again TUV; applying lhs and rhs, respectively, yields the
/// critical pair (XV, TY).
///
/// If lhs and rhs have identical left hand sides, either case could
/// apply, but we arbitrarily pick case 1.
///
/// There is also an additional wrinkle. If we're in case 2, and the
/// last symbol of V is a superclass or concrete type symbol A, we prepend
/// T to each substitution of A.
///
/// For example, suppose we have the following two rules:
///
/// A.B -> C
/// B.[concrete: Foo<X>] -> B
///
/// The overlapped term is A.B.[concrete: Foo<X>], so the critical pair
/// is (C.[concrete: Foo<A.X>], A.B). We prepended 'A' to the
/// concrete substitution 'X' to get 'A.X'; the new concrete term
/// is now rooted at the same level as A.B in the rewrite system,
/// not just B.
bool
RewriteSystem::computeCriticalPair(ArrayRef<Symbol>::const_iterator from,
const Rule &lhs, const Rule &rhs,
std::vector<CriticalPair> &pairs,
std::vector<RewriteLoop> &loops) const {
auto end = lhs.getLHS().end();
if (from + rhs.getLHS().size() < end) {
// lhs == TUV -> X, rhs == U -> Y.
// Note: This includes the case where the two rules have exactly
// equal left hand sides; that is, lhs == U -> X, rhs == U -> Y.
//
// In this case, T and V are both empty.
// Compute the terms T and V.
MutableTerm t(lhs.getLHS().begin(), from);
MutableTerm v(from + rhs.getLHS().size(), lhs.getLHS().end());
// Compute the term TYV.
MutableTerm tyv(t);
tyv.append(rhs.getRHS());
tyv.append(v);
MutableTerm x(lhs.getRHS());
// Compute a path from X to TYV: (X => TUV) ⊗ T.(U => Y).V
RewritePath path;
// (1) First, apply the left hand side rule in the reverse direction:
//
// (X => TUV)
path.add(RewriteStep::forRewriteRule(/*startOffset=*/0,
/*endOffset=*/0,
getRuleID(lhs),
/*inverse=*/true));
// (2) Now, apply the right hand side in the forward direction:
//
// T.(U => Y).V
path.add(RewriteStep::forRewriteRule(t.size(), v.size(),
getRuleID(rhs),
/*inverse=*/false));
// If X == TYV, we have a trivial overlap.
if (x == tyv) {
loops.emplace_back(x, path);
return false;
}
// If X == TUW for some W, then the critical pair is (TUW, TYV),
// and we have
// - lhs == (TUV => TUW)
// - rhs == (U => Y).
//
// We explicitly apply the rewrite step (Y => U) to the beginning of the
// rewrite path, transforming the critical pair to (TYW, TYV).
//
// In particular, if V == W.[P] for some protocol P, then we in fact have
// a property rule and a same-type rule:
//
// - lhs == (TUW.[P] => TUW)
// - rhs == (U => Y)
//
// Without this hack, the critical pair would be:
//
// (TUW => TYW.[P])
//
// With this hack, the critical pair becomes:
//
// (TYW.[P] => TYW)
//
// This ensures that the newly-added rule is itself a property rule;
// otherwise, this would only be the case if addRule() reduced TUW
// into TYW without immediately reducing some subterm of TUW first.
//
// While completion will eventually simplify all such rules down into
// property rules, their existence in the first place breaks subtle
// invariants in the minimal conformances algorithm, which expects
// homotopy generators describing redundant protocol conformance rules
// to have a certain structure.
if (t.size() + rhs.getLHS().size() <= x.size() &&
std::equal(rhs.getLHS().begin(),
rhs.getLHS().end(),
x.begin() + t.size())) {
// We have a path from TUW to TYV. Invert to get a path from TYV to
// TUW.
path.invert();
// Compute the term W.
MutableTerm w(x.begin() + t.size() + rhs.getLHS().size(), x.end());
// Now add a rewrite step T.(U => Y).W to get a path from TYV to
// TYW.
path.add(RewriteStep::forRewriteRule(/*startOffset=*/t.size(),
/*endOffset=*/w.size(),
getRuleID(rhs),
/*inverse=*/false));
// Compute the term TYW.
MutableTerm tyw(t);
tyw.append(rhs.getRHS());
tyw.append(w);
// Add the pair (TYV, TYW).
pairs.emplace_back(tyv, tyw, path);
} else {
// Add the pair (X, TYV).
pairs.emplace_back(x, tyv, path);
}
} else {
// lhs == TU -> X, rhs == UV -> Y.
// Compute the terms T and V.
MutableTerm t(lhs.getLHS().begin(), from);
MutableTerm v(rhs.getLHS().begin() + (lhs.getLHS().end() - from),
rhs.getLHS().end());
// Compute the term XV.
MutableTerm xv(lhs.getRHS());
xv.append(v);
// Compute the term TY.
MutableTerm ty(t);
ty.append(rhs.getRHS());
// Compute a path from XV to TY: (X => TU).V ⊗ (σ - T) ⊗ T.(UV => Y)
RewritePath path;
// (1) First, apply the left hand side rule in the reverse direction:
//
// (X => TU).V
path.add(RewriteStep::forRewriteRule(/*startOffset=*/0, v.size(),
getRuleID(lhs),
/*inverse=*/true));
// (2) Next, if the right hand side rule ends with a superclass or concrete
// type symbol, remove the prefix 'T' from each substitution in the symbol.
//
// (σ - T)
if (xv.back().hasSubstitutions() &&
!xv.back().getSubstitutions().empty() &&
t.size() > 0) {
path.add(RewriteStep::forPrefixSubstitutions(t.size(), /*endOffset=*/0,
/*inverse=*/true));
xv.back() = xv.back().prependPrefixToConcreteSubstitutions(
t, Context);
}
// (3) Finally, apply the right hand side in the forward direction:
//
// T.(UV => Y)
path.add(RewriteStep::forRewriteRule(t.size(), /*endOffset=*/0,
getRuleID(rhs),
/*inverse=*/false));
// If XV == TY, we have a trivial overlap.
if (xv == ty) {
loops.emplace_back(xv, path);
return false;
}
// If Y == UW for some W, then the critical pair is (XV, TUW),
// and we have
// - lhs == (TU -> X)
// - rhs == (UV -> UW).
//
// We explicitly apply the rewrite step (TU => X) to the rewrite path,
// transforming the critical pair to (XV, XW).
//
// In particular, if T == X, U == [P] for some protocol P, and
// V == W.[p] for some property symbol p, then we in fact have a pair
// of property rules:
//
// - lhs == (T.[P] => T)
// - rhs == ([P].W.[p] => [P].W)
//
// Without this hack, the critical pair would be:
//
// (T.W.[p] => T.[P].W)
//
// With this hack, the critical pair becomes:
//
// (T.W.[p] => T.W)
//
// This ensures that the newly-added rule is itself a property rule;
// otherwise, this would only be the case if addRule() reduced T.[P].W
// into T.W without immediately reducing some subterm of T first.
//
// While completion will eventually simplify all such rules down into
// property rules, their existence in the first place breaks subtle
// invariants in the minimal conformances algorithm, which expects
// homotopy generators describing redundant protocol conformance rules
// to have a certain structure.
if (lhs.getLHS().size() <= ty.size() &&
std::equal(lhs.getLHS().begin(),
lhs.getLHS().end(),
ty.begin())) {
unsigned endOffset = ty.size() - lhs.getLHS().size();
path.add(RewriteStep::forRewriteRule(/*startOffset=*/0,
endOffset,
getRuleID(lhs),
/*inverse=*/false));
// Compute the term XW.
MutableTerm xw(lhs.getRHS());
xw.append(ty.end() - endOffset, ty.end());
pairs.emplace_back(xv, xw, path);
} else {
pairs.emplace_back(xv, ty, path);
}
}
return true;
}
/// Runs the Knuth-Bendix algorithm and returns a pair consisting of a
/// status code and code-specific result.
///
/// The status is CompletionResult::MaxRuleCount if we add more than
/// \p maxRuleCount rules.
///
/// The status is CompletionResult::MaxRuleLength if we produce a rewrite rule
/// whose left hand side has a length exceeding \p maxRuleLength.
///
/// In the above two cases, the second element of the pair is a rule ID.
///
/// Otherwise, the status is CompletionResult::Success and the second element
/// is zero.
std::pair<CompletionResult, unsigned>
RewriteSystem::performKnuthBendix(unsigned maxRuleCount,
unsigned maxRuleLength) {
assert(Initialized);
assert(!Minimized);
assert(!Frozen);
// Complete might already be set, if we're re-running completion after
// adding new rules in the property map's concrete type unification procedure.
Complete = 1;
unsigned ruleCount;
std::vector<CriticalPair> resolvedCriticalPairs;
std::vector<RewriteLoop> resolvedLoops;
do {
ruleCount = Rules.size();
// For every rule, looking for other rules that overlap with this rule.
for (unsigned i = FirstLocalRule, e = Rules.size(); i < e; ++i) {
const auto &lhs = getRule(i);
if (lhs.isLHSSimplified() ||
lhs.isRHSSimplified() ||
lhs.isSubstitutionSimplified())
continue;
// Look up every suffix of this rule in the trie using findAll(). This
// will find both kinds of overlap:
//
// 1) rules whose left hand side is fully contained in [from,to)
// 2) rules whose left hand side has a prefix equal to [from,to)
auto from = lhs.getLHS().begin();
auto to = lhs.getLHS().end();
while (from < to) {
Trie.findAll(from, to, [&](unsigned j) {
const auto &rhs = getRule(j);
if (rhs.isLHSSimplified() ||
rhs.isRHSSimplified() ||
rhs.isSubstitutionSimplified())
return;
if (from == lhs.getLHS().begin()) {
// While every rule will have an overlap of the first kind
// with itself, it's not useful to consider since the
// resulting critical pair is always trivial.
if (i == j)
return;
// If the first rule's left hand side is a proper prefix
// of the second rule's left hand side, don't do anything.
//
// We will find the 'opposite' overlap later, where the two
// rules are swapped around. Then it becomes an overlap of
// the first kind, and will be handled as such.
if (rhs.getLHS().size() > lhs.getLHS().size())
return;
}
// We don't have to consider the same pair of rules more than once,
// since those critical pairs were already resolved.
if (!CheckedOverlaps.insert(std::make_pair(i, j)).second)
return;
// Try to repair the confluence violation by adding a new rule.
if (computeCriticalPair(from, lhs, rhs,
resolvedCriticalPairs,
resolvedLoops)) {
if (Debug.contains(DebugFlags::Completion)) {
const auto &pair = resolvedCriticalPairs.back();
llvm::dbgs() << "$ Overlapping rules: (#" << i << ") ";
llvm::dbgs() << lhs << "\n";
llvm::dbgs() << " -vs- (#" << j << ") ";
llvm::dbgs() << rhs << ":\n";
llvm::dbgs() << "$$ First term of critical pair is "
<< pair.LHS << "\n";
llvm::dbgs() << "$$ Second term of critical pair is "
<< pair.RHS << "\n\n";
llvm::dbgs() << "$$ Resolved via path: ";
pair.Path.dump(llvm::dbgs(), pair.LHS, *this);
llvm::dbgs() << "\n\n";
}
} else {
if (Debug.contains(DebugFlags::Completion)) {
const auto &loop = resolvedLoops.back();
llvm::dbgs() << "$ Trivially overlapping rules: (#" << i << ") ";
llvm::dbgs() << lhs << "\n";
llvm::dbgs() << " -vs- (#" << j << ") ";
llvm::dbgs() << rhs << ":\n";
llvm::dbgs() << "$$ Loop: ";
loop.dump(llvm::dbgs(), *this);
llvm::dbgs() << "\n\n";
}
}
});
++from;
}
}
assert(ruleCount == Rules.size());
simplifyLeftHandSides();
for (const auto &pair : resolvedCriticalPairs) {
// Check if we've already done too much work.
if (getLocalRules().size() > maxRuleCount)
return std::make_pair(CompletionResult::MaxRuleCount, Rules.size() - 1);
if (!addRule(pair.LHS, pair.RHS, &pair.Path))
continue;
// Check if the new rule is too long.
if (Rules.back().getDepth() > maxRuleLength + getLongestInitialRule())
return std::make_pair(CompletionResult::MaxRuleLength, Rules.size() - 1);
}
for (const auto &loop : resolvedLoops) {
recordRewriteLoop(loop.Basepoint, loop.Path);
}
resolvedCriticalPairs.clear();
resolvedLoops.clear();
simplifyRightHandSides();
simplifyLeftHandSideSubstitutions(/*map=*/nullptr);
} while (Rules.size() > ruleCount);
return std::make_pair(CompletionResult::Success, 0);
}
|