1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
|
//===--- MinimalConformances.cpp - Reasoning about conformance rules ------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements an algorithm to find a minimal set of conformance
// rules (V1.[P1] => V1), ..., (Vn.[Pn] => Vn) whose left hand sides
// _generate_ the set of conformance-valid terms.
//
// That is, any valid term of the form T.[P] where T.[P] reduces to T can be
// written as a product of terms (Vi.[Pi]), where each Vi.[Pi] is a left hand
// side of a minimal conformance.
//
// A "conformance-valid" rewrite system is one where if we can write
// T == U.V for arbitrary non-empty U and V, then U.[domain(V)] is joinable
// with U.
//
// If this holds, then starting with a term T.[P] that is joinable with T, we
// can reduce T to canonical form T', and find the unique rule (V.[P] => V) such
// that T' == U.V. Then we repeat this process with U.[domain(V)], which is
// known to be joinable with U, since T is conformance-valid.
//
// Iterating this process produces a decomposition of T.[P] as a product of
// left hand sides of conformance rules. Some of those rules are not minimal;
// they are added by completion, or they are redundant rules written by the
// user.
//
// Using the rewrite loops that generate the homotopy relation on rewrite paths,
// decompositions can be found for all "derived" conformance rules, producing
// a set of minimal conformances.
//
// There are two small complications to handle implementation details of
// Swift generics:
//
// 1) Inherited witness tables must be derivable by following other protocol
// refinement requirements only, without looking at non-Self associated
// types. This is expressed by saying that the minimal conformance
// equations for a protocol refinement can only be written in terms of
// other protocol refinements; conformance paths involving non-Self
// associated types are not considered.
//
// 2) The subject type of each conformance requirement must be derivable at
// runtime as well, so for each minimal conformance, it must be
// possible to write down a conformance path for the parent type without
// using any minimal conformance recursively in the parent path of
// itself.
//
// The minimal conformances algorithm finds fewer conformance requirements to be
// redundant than homotopy reduction, which is why homotopy reduction only
// deletes non-protocol conformance requirements.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/Decl.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/Range.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include "RewriteContext.h"
#include "RewriteSystem.h"
using namespace swift;
using namespace rewriting;
namespace {
/// Utility class to encapsulate some shared state.
class MinimalConformances {
const RewriteSystem &System;
RewriteContext &Context;
DebugOptions Debug;
// All conformance rules in the current minimization domain, sorted by
// (isExplicit(), getLHS()), with non-explicit rules with longer left hand
// sides coming first.
//
// The idea here is that we want less canonical rules to be eliminated first,
// but we prefer to eliminate non-explicit rules, in an attempt to keep protocol
// conformance rules in the same protocol as they were originally defined in.
SmallVector<unsigned, 4> ConformanceRules;
// Maps a conformance rule in the current minimization domain to a conformance
// path deriving the subject type's base type. For example, consider the
// following conformance rule:
//
// T.[P:A].[Q:B].[R] => T.[P:A].[Q:B]
//
// The subject type is T.[P:A].[Q:B]; in order to derive the metadata, we need
// the witness table for T.[P:A] : [Q] first, by computing a conformance access
// path for the term T.[P:A].[Q], known as the 'parent path'.
llvm::MapVector<unsigned, SmallVector<unsigned, 2>> ParentPaths;
// Maps a conformance rule in the current minimization domain to a list of paths.
// Each path in the list is a unique derivation of the conformance in terms of
// other conformance rules.
llvm::MapVector<unsigned, std::vector<SmallVector<unsigned, 2>>> ConformancePaths;
// The set of conformance rules (from all minimization domains) which are protocol
// refinements, that is rules of the form [P].[Q] => [P].
llvm::DenseSet<unsigned> ProtocolRefinements;
// This is the computed result set of redundant conformance rules in the current
// minimization domain.
llvm::DenseSet<unsigned> &RedundantConformances;
bool isConformanceRuleRecoverable(
llvm::SmallDenseSet<unsigned, 4> &visited,
unsigned ruleID) const;
bool isDerivedViaCircularConformanceRule(
const std::vector<SmallVector<unsigned, 2>> &paths) const;
bool isValidConformancePath(
llvm::SmallDenseSet<unsigned, 4> &visited,
const llvm::SmallVectorImpl<unsigned> &path) const;
bool isValidRefinementPath(
const llvm::SmallVectorImpl<unsigned> &path) const;
void dumpConformancePath(
llvm::raw_ostream &out,
const SmallVectorImpl<unsigned> &path) const;
void dumpMinimalConformanceEquation(
llvm::raw_ostream &out,
unsigned baseRuleID,
const std::vector<SmallVector<unsigned, 2>> &paths) const;
public:
explicit MinimalConformances(const RewriteSystem &system,
llvm::DenseSet<unsigned> &redundantConformances)
: System(system),
Context(system.getRewriteContext()),
Debug(system.getDebugOptions()),
RedundantConformances(redundantConformances) {}
void collectConformanceRules();
void computeCandidateConformancePaths(const PropertyMap &map);
void dumpMinimalConformanceEquations(llvm::raw_ostream &out) const;
void verifyMinimalConformanceEquations() const;
void computeMinimalConformances();
void verifyMinimalConformances() const;
void dumpMinimalConformances(llvm::raw_ostream &out) const;
};
} // end namespace
/// Write the term as a product of left hand sides of protocol conformance
/// rules.
///
/// The term should be irreducible, except for a protocol symbol at the end.
void
RewriteSystem::decomposeTermIntoConformanceRuleLeftHandSides(
MutableTerm term, SmallVectorImpl<unsigned> &result) const {
assert(term.back().getKind() == Symbol::Kind::Protocol);
// If T is canonical and T.[P] => T, then by confluence, T.[P]
// reduces to T in a single step, via a rule V.[P] => V, where
// T == U.V.
RewritePath steps;
bool simplified = simplify(term, &steps);
if (!simplified) {
llvm::errs() << "Term does not conform to protocol: " << term << "\n";
dump(llvm::errs());
abort();
}
assert(steps.size() == 1 &&
"Canonical conformance term should simplify in one step");
const auto &step = *steps.begin();
const auto &rule = getRule(step.getRuleID());
assert(rule.isAnyConformanceRule());
// The identity conformance ([P].[P] => [P]) decomposes to an empty
// conformance path.
if (rule.isIdentityConformanceRule())
return;
assert(step.Kind == RewriteStep::Rule);
assert(step.EndOffset == 0);
assert(!step.Inverse);
// If |U| > 0, recurse with the term U.[domain(V)]. Since T is
// canonical, we know that U is canonical as well.
if (step.StartOffset > 0) {
// Build the term U.
MutableTerm prefix(term.begin(), term.begin() + step.StartOffset);
decomposeTermIntoConformanceRuleLeftHandSides(
prefix, step.getRuleID(), result);
} else {
result.push_back(step.getRuleID());
}
}
/// Given a term U and a rule (V.[P] => V), write U.[domain(V)] as a
/// product of left hand sides of conformance rules. The term U should
/// be irreducible.
void
RewriteSystem::decomposeTermIntoConformanceRuleLeftHandSides(
MutableTerm term, unsigned ruleID,
SmallVectorImpl<unsigned> &result) const {
const auto &rule = getRule(ruleID);
assert(rule.isAnyConformanceRule());
assert(!rule.isIdentityConformanceRule());
// Compute domain(V).
const auto &lhs = rule.getLHS();
auto protocol = Symbol::forProtocol(lhs[0].getProtocol(), Context);
// A same-type requirement of the form 'Self.Foo == Self' can induce a
// conformance rule [P].[P] => [P], and we can end up with a minimal
// conformance decomposition of the form
//
// (V.[Q] => V) := [P].(V'.[Q] => V'),
//
// where domain(V) == [P]. Don't recurse on [P].[P] here since it won't
// yield anything useful, instead just return with (V'.[Q] => V').
if (term.size() == 1 && term[0] == protocol) {
result.push_back(ruleID);
return;
}
// Build the term U.[domain(V)].
term.add(protocol);
decomposeTermIntoConformanceRuleLeftHandSides(term, result);
// Add the rule V => V.[P].
result.push_back(ruleID);
}
static const ProtocolDecl *getParentConformanceForTerm(Term lhs) {
// The last element is a protocol symbol, because this is the left hand side
// of a conformance rule.
assert(lhs.back().getKind() == Symbol::Kind::Protocol ||
lhs.back().getKind() == Symbol::Kind::ConcreteConformance);
// The second to last symbol is either an associated type, protocol or generic
// parameter symbol.
assert(lhs.size() >= 2);
auto parentSymbol = lhs[lhs.size() - 2];
switch (parentSymbol.getKind()) {
case Symbol::Kind::AssociatedType: {
// In a conformance rule of the form [P:T].[Q] => [P:T], the parent type is
// trivial.
if (lhs.size() == 2)
return nullptr;
// If we have a rule of the form X.[P:Y].[Q] => X.[P:Y] with non-empty X,
// then the parent type is X.[P].
return parentSymbol.getProtocol();
}
case Symbol::Kind::GenericParam:
case Symbol::Kind::Protocol:
// The parent type is trivial (either a generic parameter, or the protocol
// 'Self' type).
return nullptr;
case Symbol::Kind::Name:
case Symbol::Kind::Layout:
case Symbol::Kind::Superclass:
case Symbol::Kind::ConcreteType:
case Symbol::Kind::ConcreteConformance:
case Symbol::Kind::Shape:
break;
}
llvm::errs() << "Bad symbol in " << lhs << "\n";
abort();
}
/// Collect conformance rules and parent paths, and record an initial
/// equation where each conformance is equivalent to itself.
void MinimalConformances::collectConformanceRules() {
// Prepare the initial set of equations.
for (unsigned ruleID : indices(System.getRules())) {
const auto &rule = System.getRule(ruleID);
if (rule.isPermanent())
continue;
if (rule.isRedundant())
continue;
if (rule.isRHSSimplified() ||
rule.isSubstitutionSimplified())
continue;
if (rule.containsUnresolvedSymbols())
continue;
if (!rule.isAnyConformanceRule())
continue;
// Save protocol refinement relations in a side table.
if (rule.isProtocolRefinementRule(Context))
ProtocolRefinements.insert(ruleID);
if (!System.isInMinimizationDomain(rule.getLHS().getRootProtocol()))
continue;
ConformanceRules.push_back(ruleID);
auto lhs = rule.getLHS();
// Record a parent path if the subject type itself requires a non-trivial
// conformance path to derive.
if (auto *parentProto = getParentConformanceForTerm(lhs)) {
MutableTerm mutTerm(lhs.begin(), lhs.end() - 2);
assert(!mutTerm.empty());
mutTerm.add(Symbol::forProtocol(parentProto, Context));
// Get a conformance path for X.[P] and record it.
System.decomposeTermIntoConformanceRuleLeftHandSides(
mutTerm, ParentPaths[ruleID]);
}
}
// Sort the list of conformance rules in reverse order; we're going to try
// to minimize away less canonical rules first.
std::stable_sort(ConformanceRules.begin(), ConformanceRules.end(),
[&](unsigned lhs, unsigned rhs) -> bool {
const auto &lhsRule = System.getRule(lhs);
const auto &rhsRule = System.getRule(rhs);
if (lhsRule.isExplicit() != rhsRule.isExplicit())
return !lhsRule.isExplicit();
auto result = lhsRule.getLHS().compare(rhsRule.getLHS(), Context);
// Concrete conformance rules are unordered if they name the
// same protocol but have different types. This can come up
// if we have a class inheritance relationship 'Derived : Base',
// and Base conforms to a protocol:
//
// T.[Base : P] => T
// T.[Derived : P] => T
return (result ? *result > 0 : 0);
});
Context.ConformanceRulesHistogram.add(ConformanceRules.size());
}
void MinimalConformances::computeCandidateConformancePaths(
const PropertyMap &map) {
System.computeCandidateConformancePaths(map, ConformancePaths);
}
/// Use homotopy information to discover all ways of writing the left hand side
/// of each conformance rule as a product of left hand sides of other conformance
/// rules.
///
/// Each conformance rule (Vi.[P] => Vi) can always be written in terms of itself,
/// so the first term of each disjunction is always (Vi.[P] => Vi).
///
/// Conformance rules can also be circular, so not every choice of disjunctions
/// produces a valid result; for example, if you have these definitions:
///
/// protocol P {
/// associatedtype T : P
/// }
///
/// struct G<X, Y> where X : P, X.T == Y, Y : P, Y.T == X {}
///
/// We have three conformance rules:
///
/// [P:T].[P] => [P:T]
/// <X>.[P] => <X>
/// <Y>.[P] => <Y>
///
/// The first rule, <X>.[P] => <X> has an alternate conformance path:
///
/// (<Y>.[P]).([P:T].[P])
///
/// The second rule similarly has an alternate conformance path:
///
/// (<X>.[P]).([P:T].[P])
///
/// This gives us the following initial set of candidate conformance paths:
///
/// [P:T].[P] := ([P:T].[P])
/// <X>.[P] := (<X>.[P]) ∨ (<Y>.[P]).([P:T].[P])
/// <Y>.[P] := (<Y>.[P]) ∨ (<X>.[P]).([P:T].[P])
///
/// One valid solution is the following set of assignments:
///
/// [P:T].[P] := ([P:T].[P])
/// <X>.[P] := (<X>.[P])
/// <Y>.[P] := (<X>.[P]).([P:T].[P])
///
/// That is, we can choose to eliminate <X>.[P], but not <Y>.[P], or vice
/// versa; but it is never valid to eliminate both.
void RewriteSystem::computeCandidateConformancePaths(
const PropertyMap &map,
llvm::MapVector<unsigned, std::vector<SmallVector<unsigned, 2>>> &paths) const {
// For every rule, look for other rules that overlap with this rule.
for (unsigned i = FirstLocalRule, e = Rules.size(); i < e; ++i) {
const auto &lhs = getRule(i);
if (lhs.isRHSSimplified() ||
lhs.isSubstitutionSimplified() ||
lhs.isIdentityConformanceRule() ||
lhs.containsUnresolvedSymbols())
continue;
if (!lhs.isAnyConformanceRule() &&
lhs.isLHSSimplified())
continue;
// A rule of the form ([P].[P:X] => [P:X]) overlaps will all
// conformance rules ([P:X].T.[Q] => [P:X].T), and simply
// produces the equation
//
// ([P:X].T.[Q]) := ([P:X].T.[Q])
//
// So we can just ignore them.
if (lhs.getLHS().size() == 2 &&
lhs.getLHS()[0].getKind() == Symbol::Kind::Protocol &&
lhs.getLHS()[1].getKind() == Symbol::Kind::AssociatedType &&
lhs.getLHS()[0].getProtocol() == lhs.getLHS()[1].getProtocol()) {
if (Debug.contains(DebugFlags::MinimalConformancesDetail)) {
llvm::dbgs() << "Skipping " << lhs << "\n";
}
continue;
}
// A concrete conformance rule (T.[concrete: C : P] => T) implies
// the existence of a conformance rule (V.[P] => V) where T == U.V.
//
// Record an equation allowing the concrete conformance to be
// expressed in terms of the abstract conformance:
//
// (T.[concrete: C : P]) := (U.[domain(V)])(V.[P])
//
// and also vice versa in the case |V| == 0:
//
// (T.[P]) := (T.[concrete: C : P])
if (lhs.isAnyConformanceRule() &&
lhs.getLHS().back().getKind() == Symbol::Kind::ConcreteConformance) {
MutableTerm t(lhs.getLHS().begin(), lhs.getLHS().end() - 1);
t.add(Symbol::forProtocol(lhs.getLHS().back().getProtocol(), Context));
if (Debug.contains(DebugFlags::MinimalConformancesDetail)) {
llvm::dbgs() << "Concrete conformance rule has abstract path\n";
llvm::dbgs() << "LHS: " << lhs << "\n";
llvm::dbgs() << "T: " << t << "\n";
}
SmallVector<unsigned, 2> path;
decomposeTermIntoConformanceRuleLeftHandSides(t, path);
paths[i].push_back(path);
if (path.size() == 1) {
SmallVector<unsigned, 2> otherPath;
otherPath.push_back(i);
if (Debug.contains(DebugFlags::MinimalConformancesDetail)) {
llvm::dbgs() << "Conformance rule has concrete path\n";
llvm::dbgs() << "LHS: " << lhs << "\n";
llvm::dbgs() << "T: " << t << "\n";
}
paths[path[0]].push_back(otherPath);
}
}
// Look up every suffix of this rule in the trie using findAll(). This
// will find both kinds of overlap:
//
// 1) rules whose left hand side is fully contained in [from,to)
// 2) rules whose left hand side has a prefix equal to [from,to)
auto from = lhs.getLHS().begin();
auto to = lhs.getLHS().end();
while (from < to) {
Trie.findAll(from, to, [&](unsigned j) {
const auto &rhs = getRule(j);
if (rhs.isRHSSimplified() ||
rhs.isSubstitutionSimplified() ||
rhs.isIdentityConformanceRule() ||
rhs.containsUnresolvedSymbols())
return;
if (!rhs.isAnyConformanceRule() &&
rhs.isLHSSimplified())
return;
// Case 1: (U.V.[P] => U.V) vs (V.[P] => V) with |U| > 0.
//
// This records the equation:
//
// (U.V.[P]) := (U.[domain(V)]) * (V.[P] => V)
if (lhs.isAnyConformanceRule() &&
from != lhs.getLHS().begin() &&
(from - lhs.getLHS().begin() + rhs.getLHS().size() ==
lhs.getLHS().size())) {
if (Debug.contains(DebugFlags::MinimalConformancesDetail)) {
llvm::dbgs() << "Case 1: suffix\n";
llvm::dbgs() << "LHS: " << lhs << "\n";
llvm::dbgs() << "RHS: " << rhs << "\n";
}
// If the LHS rule is a conformance rule and the RHS rule is
// a suffix of the LHS rule, the RHS rule must also be a
// conformance rule.
assert(rhs.isAnyConformanceRule());
// Build the term U.
MutableTerm u(lhs.getLHS().begin(), from);
if (Debug.contains(DebugFlags::MinimalConformancesDetail)) {
llvm::dbgs() << "- U := " << u << "\n";
}
// Get the conformance path for (U.[domain(V)] => U).
SmallVector<unsigned, 2> path;
decomposeTermIntoConformanceRuleLeftHandSides(u, j, path);
// Record the equation (U.V.[P]) := (U.[domain(V)]) * (V.[P]).
paths[i].push_back(path);
// Case 2: (U.V => X) vs (V.W.[P] => V.W), with |U| > 0 and
// |V| > 0. W may be empty.
//
// This records the equation:
//
// (Y.[P]) := (U.[domain(V)]) * (V.W.[P])
//
// where Y is the simplified form of X.W.
} else if (rhs.isAnyConformanceRule() &&
(unsigned)(lhs.getLHS().end() - from) < rhs.getLHS().size()) {
if (Debug.contains(DebugFlags::MinimalConformancesDetail)) {
llvm::dbgs() << "Case 2: same-type suffix\n";
llvm::dbgs() << "LHS: " << lhs << "\n";
llvm::dbgs() << "RHS: " << rhs << "\n";
}
// Build the term U.
MutableTerm u(lhs.getLHS().begin(), from);
if (Debug.contains(DebugFlags::MinimalConformancesDetail)) {
llvm::dbgs() << "- U := " << u << "\n";
}
// Build the term X.W.
MutableTerm xw(lhs.getRHS());
xw.append(rhs.getRHS().begin() + (lhs.getLHS().end() - from),
rhs.getRHS().end());
if (Debug.contains(DebugFlags::MinimalConformancesDetail)) {
llvm::dbgs() << "- X.W := " << xw << "\n";
}
// Simplify X.W to Y.
MutableTerm y(xw);
(void) simplify(y);
if (Debug.contains(DebugFlags::MinimalConformancesDetail)) {
llvm::dbgs() << "- Y := " << y << "\n";
}
// Get the symbol [P].
auto p = rhs.getLHS().back();
if (p.getKind() == Symbol::Kind::ConcreteConformance) {
if (Debug.contains(DebugFlags::MinimalConformancesDetail)) {
llvm::dbgs() << "- P is a concrete conformance: " << p << "\n";
llvm::dbgs() << "- Prepending U := " << u << "\n";
}
p = p.prependPrefixToConcreteSubstitutions(u, Context);
auto simplified = const_cast<RewriteSystem *>(this)
->simplifySubstitutions(Term::get(y, Context), p, &map);
if (simplified) {
p = getTypeDifference(*simplified).RHS;
if (Debug.contains(DebugFlags::MinimalConformancesDetail)) {
llvm::dbgs() << "- Simplified P := " << p << "\n";
}
}
}
// Build the term Y.[P].
MutableTerm yp(y);
yp.add(p);
// Simplify Y.[P] to Y. It must simplify to Y via a single
// rewrite step, but possibly via some other rule (Z.[P] => Z)
// where Z is a suffix of Y. In this case, no equation
// is recorded.
RewritePath rewritePath;
bool result = simplify(yp, &rewritePath);
if (!result) {
llvm::errs() << "Does not conform to protocol: " << yp << "\n";
dump(llvm::errs());
abort();
}
if (rewritePath.size() != 1) {
llvm::errs() << "Funny rewrite path: ";
yp = y;
yp.add(rhs.getLHS().back());
rewritePath.dump(llvm::errs(), yp, *this);
llvm::errs() << "\n";
abort();
}
if (rewritePath.begin()->StartOffset == 0) {
// Get the conformance path for (U.[domain(V)] => U).
SmallVector<unsigned, 2> path;
decomposeTermIntoConformanceRuleLeftHandSides(u, j, path);
// Record the equation (Y.[P]) := (U.[domain(V)]) * (V.W.[P]).
paths[rewritePath.begin()->getRuleID()].push_back(path);
}
}
});
++from;
}
}
for (const auto &pair : paths) {
if (pair.second.size() > 1)
Context.MinimalConformancesHistogram.add(pair.second.size());
}
}
/// If \p ruleID is redundant, determines if it can be expressed without
/// without any of the conformance rules determined to be redundant so far.
///
/// If the rule is not redundant, determines if its parent path can
/// also be recovered.
bool MinimalConformances::isConformanceRuleRecoverable(
llvm::SmallDenseSet<unsigned, 4> &visited,
unsigned ruleID) const {
if (RedundantConformances.count(ruleID)) {
SWIFT_DEFER {
visited.erase(ruleID);
};
visited.insert(ruleID);
auto found = ConformancePaths.find(ruleID);
if (found == ConformancePaths.end())
return false;
bool foundValidConformancePath = false;
for (const auto &otherPath : found->second) {
if (isValidConformancePath(visited, otherPath)) {
foundValidConformancePath = true;
break;
}
}
if (!foundValidConformancePath)
return false;
} else {
auto found = ParentPaths.find(ruleID);
if (found != ParentPaths.end()) {
SWIFT_DEFER {
visited.erase(ruleID);
};
visited.insert(ruleID);
// If 'req' is based on some other conformance requirement
// `T.[P.]A : Q', we want to make sure that we have a
// non-redundant derivation for 'T : P'.
if (!isValidConformancePath(visited, found->second))
return false;
}
}
return true;
}
/// Determines if \p path can be expressed without any of the conformance
/// rules determined to be redundant so far, by possibly substituting
/// any occurrences of the redundant rules with alternate definitions
/// appearing in the set of known conformancePaths.
///
/// The conformance path map sends conformance rules to a list of
/// disjunctions, where each disjunction is a product of other conformance
/// rules.
bool MinimalConformances::isValidConformancePath(
llvm::SmallDenseSet<unsigned, 4> &visited,
const llvm::SmallVectorImpl<unsigned> &path) const {
for (unsigned ruleID : path) {
if (visited.count(ruleID) > 0)
return false;
if (!isConformanceRuleRecoverable(visited, ruleID))
return false;
}
return true;
}
/// Rules of the form [P].[Q] => [P] encode protocol refinement and can only
/// be redundant if they're equivalent to a sequence of other protocol
/// refinements.
///
/// This helps ensure that the inheritance clause of a protocol is complete
/// and correct, allowing name lookup to find associated types of inherited
/// protocols while building the protocol requirement signature.
bool MinimalConformances::isValidRefinementPath(
const llvm::SmallVectorImpl<unsigned> &path) const {
for (unsigned ruleID : path) {
if (ProtocolRefinements.count(ruleID) == 0)
return false;
}
return true;
}
void MinimalConformances::dumpMinimalConformanceEquations(
llvm::raw_ostream &out) const {
out << "Initial set of equations:\n";
for (const auto &pair : ConformancePaths) {
out << "- ";
dumpMinimalConformanceEquation(out, pair.first, pair.second);
out << "\n";
}
out << "Parent paths:\n";
for (const auto &pair : ParentPaths) {
out << "- " << System.getRule(pair.first).getLHS() << ": ";
dumpConformancePath(out, pair.second);
out << "\n";
}
}
void MinimalConformances::dumpConformancePath(
llvm::raw_ostream &out,
const SmallVectorImpl<unsigned> &path) const {
if (path.empty()) {
out << "1";
return;
}
for (unsigned ruleID : path)
out << "(" << System.getRule(ruleID).getLHS() << ")";
}
void MinimalConformances::dumpMinimalConformanceEquation(
llvm::raw_ostream &out,
unsigned baseRuleID,
const std::vector<SmallVector<unsigned, 2>> &paths) const {
out << System.getRule(baseRuleID).getLHS() << " := ";
bool first = true;
for (const auto &path : paths) {
if (!first)
out << " ∨ ";
else
first = false;
dumpConformancePath(out, path);
}
}
void MinimalConformances::verifyMinimalConformanceEquations() const {
for (const auto &pair : ConformancePaths) {
const auto &rule = System.getRule(pair.first);
auto *proto = rule.getLHS().back().getProtocol();
MutableTerm baseTerm(rule.getRHS());
(void) System.simplify(baseTerm);
for (const auto &path : pair.second) {
if (path.empty())
continue;
const auto &otherRule = System.getRule(path.back());
auto *otherProto = otherRule.getLHS().back().getProtocol();
if (proto != otherProto) {
llvm::errs() << "Invalid equation: ";
dumpMinimalConformanceEquation(llvm::errs(),
pair.first, pair.second);
llvm::errs() << "\n";
llvm::errs() << "Mismatched conformance:\n";
llvm::errs() << "Base rule: " << rule << "\n";
llvm::errs() << "Final rule: " << otherRule << "\n\n";
dumpMinimalConformanceEquations(llvm::errs());
abort();
}
MutableTerm otherTerm;
for (unsigned i : indices(path)) {
unsigned otherRuleID = path[i];
const auto &rule = System.getRule(otherRuleID);
bool isLastElement = (i == path.size() - 1);
if ((isLastElement && !rule.isAnyConformanceRule()) ||
(!isLastElement && !rule.isProtocolConformanceRule())) {
llvm::errs() << "Equation term is not a conformance rule: ";
dumpMinimalConformanceEquation(llvm::errs(),
pair.first, pair.second);
llvm::errs() << "\n";
llvm::errs() << "Term: " << rule << "\n";
dumpMinimalConformanceEquations(llvm::errs());
abort();
}
otherTerm.append(rule.getRHS());
}
(void) System.simplify(otherTerm);
if (baseTerm != otherTerm) {
llvm::errs() << "Invalid equation: ";
dumpMinimalConformanceEquation(llvm::errs(),
pair.first, pair.second);
llvm::errs() << "\n";
llvm::errs() << "Invalid conformance path:\n";
llvm::errs() << "Expected: " << baseTerm << "\n";
llvm::errs() << "Got: " << otherTerm << "\n\n";
dumpMinimalConformanceEquations(llvm::errs());
abort();
}
}
}
}
bool MinimalConformances::isDerivedViaCircularConformanceRule(
const std::vector<SmallVector<unsigned, 2>> &paths) const {
for (const auto &path : paths) {
if (!path.empty() &&
System.getRule(path.back()).isCircularConformanceRule())
return true;
}
return false;
}
/// Find a set of minimal conformances by marking all non-minimal
/// conformances redundant.
///
/// In the first pass, we only consider conformance requirements that are
/// made redundant by concrete conformances.
void MinimalConformances::computeMinimalConformances() {
// First, mark any concrete conformances derived via a circular
// conformance as redundant upfront. See the comment at the top of
// Rule::isCircularConformanceRule() for an explanation of this.
for (unsigned ruleID : ConformanceRules) {
auto found = ConformancePaths.find(ruleID);
if (found == ConformancePaths.end())
continue;
const auto &paths = found->second;
if (System.getRule(ruleID).isProtocolConformanceRule())
continue;
if (isDerivedViaCircularConformanceRule(paths))
RedundantConformances.insert(ruleID);
}
// Now, visit each conformance rule, trying to make it redundant by
// deriving a path in terms of other non-redundant conformance rules.
//
// Note that the ConformanceRules vector is sorted in descending
// canonical term order, so less canonical rules are eliminated first.
for (unsigned ruleID : ConformanceRules) {
auto found = ConformancePaths.find(ruleID);
if (found == ConformancePaths.end())
continue;
const auto &rule = System.getRule(ruleID);
const auto &paths = found->second;
bool isProtocolRefinement = ProtocolRefinements.count(ruleID) > 0;
for (const auto &path : paths) {
// Only consider a protocol refinement rule to be redundant if it is
// witnessed by a composition of other protocol refinement rules.
if (isProtocolRefinement && !isValidRefinementPath(path)) {
if (Debug.contains(DebugFlags::MinimalConformancesDetail)) {
llvm::dbgs() << "Not a refinement path: ";
dumpConformancePath(llvm::errs(), path);
llvm::dbgs() << "\n";
}
continue;
}
llvm::SmallDenseSet<unsigned, 4> visited;
visited.insert(ruleID);
if (isValidConformancePath(visited, path)) {
if (Debug.contains(DebugFlags::MinimalConformancesDetail)) {
llvm::dbgs() << "Redundant rule: ";
llvm::dbgs() << rule.getLHS();
llvm::dbgs() << "\n";
llvm::dbgs() << "-- via valid path: ";
dumpConformancePath(llvm::errs(), path);
llvm::dbgs() << "\n";
}
RedundantConformances.insert(ruleID);
break;
}
}
}
}
/// Check invariants.
void MinimalConformances::verifyMinimalConformances() const {
for (const auto &pair : ConformancePaths) {
unsigned ruleID = pair.first;
const auto &rule = System.getRule(ruleID);
if (RedundantConformances.count(ruleID) > 0) {
// Check that redundant conformances are recoverable via
// minimal conformances.
llvm::SmallDenseSet<unsigned, 4> visited;
if (!isConformanceRuleRecoverable(visited, ruleID)) {
llvm::errs() << "Redundant conformance is not recoverable:\n";
llvm::errs() << rule << "\n\n";
dumpMinimalConformanceEquations(llvm::errs());
dumpMinimalConformances(llvm::errs());
abort();
}
continue;
}
if (rule.containsUnresolvedSymbols()) {
llvm::errs() << "Minimal conformance contains unresolved symbols: ";
llvm::errs() << rule << "\n\n";
dumpMinimalConformanceEquations(llvm::errs());
dumpMinimalConformances(llvm::errs());
abort();
}
}
}
void MinimalConformances::dumpMinimalConformances(
llvm::raw_ostream &out) const {
out << "Minimal conformances:\n";
for (unsigned ruleID : ConformanceRules) {
if (RedundantConformances.count(ruleID) > 0)
continue;
out << "- " << System.getRule(ruleID) << "\n";
}
}
/// Computes minimal conformances, assuming that homotopy reduction has
/// already eliminated all redundant rewrite rules that are not
/// conformance rules.
void RewriteSystem::computeMinimalConformances(
const PropertyMap &map,
llvm::DenseSet<unsigned> &redundantConformances) const {
MinimalConformances builder(*this, redundantConformances);
builder.collectConformanceRules();
builder.computeCandidateConformancePaths(map);
if (Debug.contains(DebugFlags::MinimalConformances)) {
builder.dumpMinimalConformanceEquations(llvm::dbgs());
}
builder.verifyMinimalConformanceEquations();
builder.computeMinimalConformances();
builder.verifyMinimalConformances();
if (Debug.contains(DebugFlags::MinimalConformances)) {
builder.dumpMinimalConformances(llvm::dbgs());
}
}
|