File: PropertyUnification.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (758 lines) | stat: -rw-r--r-- 27,553 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
//===--- PropertyUnification.cpp - Rules added w/ building property map ---===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file is the core of the property map construction algorithm.
//
// The primary entry point is the PropertyBag::addProperty() method, which
// unifies multiple layout, superclass and concrete type requirements on a
// single term.
//
// This unification can add new rewrite rules, as well as record rewrite loops
// relating existing rules together. Property map construction is iterated with
// the Knuth-Bendix completion procedure until fixed point.
//
//===----------------------------------------------------------------------===//

#include "swift/AST/Decl.h"
#include "swift/AST/LayoutConstraint.h"
#include "swift/AST/Types.h"
#include <algorithm>
#include <vector>
#include "PropertyMap.h"

using namespace swift;
using namespace rewriting;

/// Returns true if we have not processed this rule before.
bool PropertyMap::checkRuleOnce(unsigned ruleID) {
  return CheckedRules.insert(ruleID).second;
}

/// Returns true if we have not processed this pair of rules before.
bool PropertyMap::checkRulePairOnce(unsigned firstRuleID,
                                    unsigned secondRuleID) {
  return CheckedRulePairs.insert(
      std::make_pair(firstRuleID, secondRuleID)).second;
}

/// Given a key T, a rule (V.[p1] => V) where T == U.V, and a property [p2]
/// where [p1] < [p2], record a rule (T.[p2] => T) that is induced by
/// the original rule (V.[p1] => V).
///
/// This is used to define rewrite loops for relating pairs of rules where
/// one implies another:
///
/// - a more specific layout constraint implies a general layout constraint
/// - a more specific superclass bound implies a less specific superclass bound
/// - a superclass bound implies a layout constraint
/// - a concrete type that is a class implies a superclass bound
/// - a concrete type that is a class implies a layout constraint
///
static void recordRelation(Term key,
                           unsigned lhsRuleID,
                           Symbol rhsProperty,
                           RewriteSystem &system,
                           bool debug) {
  const auto &lhsRule = system.getRule(lhsRuleID);
  auto lhsProperty = lhsRule.getLHS().back();

  assert(key.size() >= lhsRule.getRHS().size());

  assert((lhsProperty.getKind() == Symbol::Kind::Layout &&
          rhsProperty.getKind() == Symbol::Kind::Layout) ||
         (lhsProperty.getKind() == Symbol::Kind::Superclass &&
          rhsProperty.getKind() == Symbol::Kind::Superclass) ||
         (lhsProperty.getKind() == Symbol::Kind::Superclass &&
          rhsProperty.getKind() == Symbol::Kind::Layout) ||
         (lhsProperty.getKind() == Symbol::Kind::ConcreteType &&
          rhsProperty.getKind() == Symbol::Kind::Superclass) ||
         (lhsProperty.getKind() == Symbol::Kind::ConcreteType &&
          rhsProperty.getKind() == Symbol::Kind::Layout));

  if (debug) {
    llvm::dbgs() << "%% Recording relation: ";
    llvm::dbgs() << lhsRule.getLHS() << " < " << rhsProperty << "\n";
  }

  unsigned relationID = system.recordRelation(lhsProperty, rhsProperty);

  // Build the following rewrite path:
  //
  //   U.(V => V.[p1]).[p2] ⊗ U.V.Relation([p1].[p2] => [p1]) ⊗ U.(V.[p1] => V).
  //
  RewritePath path;

  // Starting from U.V.[p2], apply the rule in reverse to get U.V.[p1].[p2].
  path.add(RewriteStep::forRewriteRule(
      /*startOffset=*/key.size() - lhsRule.getRHS().size(),
      /*endOffset=*/1,
      /*ruleID=*/lhsRuleID,
      /*inverse=*/true));

  // U.V.Relation([p1].[p2] => [p1]).
  path.add(RewriteStep::forRelation(/*startOffset=*/key.size(),
                                    relationID, /*inverse=*/false));

  // U.(V.[p1] => V).
  path.add(RewriteStep::forRewriteRule(
      /*startOffset=*/key.size() - lhsRule.getRHS().size(),
      /*endOffset=*/0,
      /*ruleID=*/lhsRuleID,
      /*inverse=*/false));

  // Add the rule (T.[p2] => T) with the above rewrite path.
  MutableTerm lhs(key);
  lhs.add(rhsProperty);

  MutableTerm rhs(key);

  (void) system.addRule(lhs, rhs, &path);
}

/// Given two property rules that conflict because no concrete type
/// can satisfy both, record the conflict. If both have the same kind,
/// mark one or the other as conflicting, but not both.
void RewriteSystem::recordConflict(unsigned existingRuleID,
                                   unsigned newRuleID) {
  auto &existingRule = getRule(existingRuleID);
  auto &newRule = getRule(newRuleID);

  // FIXME: Property map construction shouldn't have to consider imported rules
  // at all. We need to import the property map from each protocol component,
  // just like we import rules.
  if (!isInMinimizationDomain(newRule.getLHS().getRootProtocol()) &&
      !isInMinimizationDomain(existingRule.getLHS().getRootProtocol())) {
    return;
  }

  // Record the conflict for purposes of diagnostics.
  ConflictingRules.emplace_back(existingRuleID, newRuleID);

  if (Debug.contains(DebugFlags::ConflictingRules)) {
    llvm::dbgs() << "Conflicting rules:\n";
    llvm::dbgs() << "- " << existingRule << "\n";
    llvm::dbgs() << "- " << newRule << "\n";
  }

  if (existingRule.getLHS().back().getKind() ==
      newRule.getLHS().back().getKind()) {
    assert(!existingRule.isIdentityConformanceRule() &&
           !newRule.isIdentityConformanceRule());

    // While we don't promise canonical minimization with conflicts,
    // it's not really a big deal to spit out a generic signature with
    // conflicts, as long as we diagnosed an error _somewhere_.
    //
    // However, the requirement lowering doesn't like to see two
    // conflicting rules of the same kind, so we rule that out by
    // marking the shorter rule as the conflict. Otherwise, we just
    // leave both rules in place.
    if (existingRule.getRHS().size() > newRule.getRHS().size() ||
        (existingRule.getRHS().size() == newRule.getRHS().size() &&
         existingRuleID < newRuleID)) {
      existingRule.markConflicting();
    } else {
      newRule.markConflicting();
    }
  }
}

void PropertyMap::addConformanceProperty(
    Term key, Symbol property, unsigned ruleID) {
  auto *props = getOrCreateProperties(key);
  props->ConformsTo.push_back(property.getProtocol());
  props->ConformsToRules.push_back(ruleID);
}

void PropertyMap::addLayoutProperty(
    Term key, Symbol property, unsigned ruleID) {
  auto *props = getOrCreateProperties(key);
  bool debug = Debug.contains(DebugFlags::ConcreteUnification);

  auto newLayout = property.getLayoutConstraint();

  if (!props->Layout) {
    // If we haven't seen a layout requirement before, just record it.
    props->Layout = newLayout;
    props->LayoutRule = ruleID;
    return;
  }

  // Otherwise, compute the intersection.
  assert(props->LayoutRule.has_value());
  auto mergedLayout = props->Layout.merge(property.getLayoutConstraint());

  // If the intersection is invalid, we have a conflict.
  if (!mergedLayout->isKnownLayout()) {
    System.recordConflict(*props->LayoutRule, ruleID);

    // Replace the old layout. Since recordConflict() marks the older rule,
    // this ensures that if we process multiple conflicting layout
    // requirements, all but the final one will be marked conflicting.
    props->Layout = newLayout;
    props->LayoutRule = ruleID;
    return;
  }

  // If the intersection is equal to the existing layout requirement,
  // the new layout requirement is redundant.
  if (mergedLayout == props->Layout) {
    if (checkRulePairOnce(*props->LayoutRule, ruleID)) {
      recordRelation(key, *props->LayoutRule, property, System, debug);
    }

  // If the intersection is equal to the new layout requirement, the
  // existing layout requirement is redundant.
  } else if (mergedLayout == newLayout) {
    if (checkRulePairOnce(ruleID, *props->LayoutRule)) {
      auto oldProperty = System.getRule(*props->LayoutRule).getLHS().back();
      recordRelation(key, ruleID, oldProperty, System, debug);
    }

    props->LayoutRule = ruleID;
  } else {
    llvm::errs() << "Arbitrary intersection of layout requirements is "
                 << "supported yet\n";
    abort();
  }
}

/// Given a term T == U.V, an existing rule (V.[superclass: C] => V), and
/// a superclass declaration D of C, record a new rule (T.[superclass: C'] => T)
/// where C' is the substituted superclass type of C for D.
///
/// For example, suppose we have
///
///    class Derived : Base<Int> {}
///    class Base<T> {}
///
/// Given C == Derived and D == Base, then C' == Base<Int>.
void PropertyMap::recordSuperclassRelation(Term key,
                                           Symbol superclassType,
                                           unsigned superclassRuleID,
                                           const ClassDecl *otherClass) {
  auto derivedType = superclassType.getConcreteType();
  assert(otherClass->isSuperclassOf(derivedType->getClassOrBoundGenericClass()));

  auto baseType = derivedType->getSuperclassForDecl(otherClass)
      ->getCanonicalType();

  SmallVector<Term, 3> baseSubstitutions;
  auto baseSchema = Context.getRelativeSubstitutionSchemaFromType(
      baseType, superclassType.getSubstitutions(),
      baseSubstitutions);

  auto baseSymbol = Symbol::forSuperclass(baseSchema, baseSubstitutions,
                                          Context);

  bool debug = Debug.contains(DebugFlags::ConcreteUnification);
  recordRelation(key, superclassRuleID, baseSymbol, System, debug);
}

/// When a type parameter has two superclasses, we have to both unify the
/// type constructor arguments, and record the most derived superclass.
///
/// For example, if we have this setup:
///
///   class Base<T, T> {}
///   class Middle<U> : Base<T, T> {}
///   class Derived : Middle<Int> {}
///
///   T : Base<U, V>
///   T : Derived
///
/// The most derived superclass requirement is 'T : Derived'.
///
/// The corresponding superclass of 'Derived' is 'Base<Int, Int>', so we
/// unify the type constructor arguments of 'Base<U, V>' and 'Base<Int, Int>',
/// which generates two induced rules:
///
///   U.[concrete: Int] => U
///   V.[concrete: Int] => V
void PropertyMap::addSuperclassProperty(
    Term key, Symbol property, unsigned ruleID) {
  auto *props = getOrCreateProperties(key);
  bool debug = Debug.contains(DebugFlags::ConcreteUnification);

  const auto *superclassDecl = property.getConcreteType()
      ->getClassOrBoundGenericClass();
  assert(superclassDecl != nullptr);

  if (checkRuleOnce(ruleID)) {
    // A rule (T.[superclass: C] => T) induces a rule (T.[layout: L] => T),
    // where L is either AnyObject or _NativeObject.
    auto layout =
        LayoutConstraint::getLayoutConstraint(
          superclassDecl->getLayoutConstraintKind(),
          Context.getASTContext());
    auto layoutSymbol = Symbol::forLayout(layout, Context);

    recordRelation(key, ruleID, layoutSymbol, System, debug);
  }

  // If this is the first superclass requirement we've seen for this term,
  // just record it and we're done.
  if (!props->SuperclassDecl) {
    if (debug) {
      llvm::dbgs() << "% New superclass " << superclassDecl->getName()
                   << " for " << key << "\n";
    }

    props->SuperclassDecl = superclassDecl;

    assert(props->Superclasses.empty());
    auto &req = props->Superclasses[superclassDecl];

    assert(!req.SuperclassType.has_value());
    assert(req.SuperclassRules.empty());

    req.SuperclassType = property;
    req.SuperclassRules.emplace_back(property, ruleID);
    return;
  }

  if (debug) {
    llvm::dbgs() << "% New superclass " << superclassDecl->getName()
                 << " for " << key << " is ";
  }

  // Otherwise, we compare it against the existing superclass requirement.
  assert(!props->Superclasses.empty());

  if (superclassDecl == props->SuperclassDecl) {
    if (debug) {
      llvm::dbgs() << "equal to existing superclass\n";
    }

    // Perform concrete type unification at this level of the class
    // hierarchy.
    auto &req = props->Superclasses[superclassDecl];
    assert(req.SuperclassType.has_value());
    assert(!req.SuperclassRules.empty());

    unifyConcreteTypes(key, req.SuperclassType, req.SuperclassRules,
                       property, ruleID);

  } else if (superclassDecl->isSuperclassOf(props->SuperclassDecl)) {
    if (debug) {
      llvm::dbgs() << "less specific than existing superclass "
                   << props->SuperclassDecl->getName() << "\n";
    }

    // Record a relation where existing superclass implies the new superclass.
    const auto &existingReq = props->Superclasses[props->SuperclassDecl];
    for (auto pair : existingReq.SuperclassRules) {
      if (checkRulePairOnce(pair.second, ruleID)) {
        recordSuperclassRelation(key, pair.first, pair.second,
                                 superclassDecl);
      }
    }

    // Record the new rule at the less specific level of the class
    // hierarchy, performing concrete type unification if we've
    // already seen another rule at that level.
    auto &req = props->Superclasses[superclassDecl];

    unifyConcreteTypes(key, req.SuperclassType, req.SuperclassRules,
                       property, ruleID);

  } else if (props->SuperclassDecl->isSuperclassOf(superclassDecl)) {
    if (debug) {
      llvm::dbgs() << "more specific than existing superclass "
                   << props->SuperclassDecl->getName() << "\n";
    }

    // Record a relation where new superclass implies the existing superclass.
    const auto &existingReq = props->Superclasses[props->SuperclassDecl];
    for (auto pair : existingReq.SuperclassRules) {
      if (checkRulePairOnce(pair.second, ruleID)) {
        recordSuperclassRelation(key, property, ruleID,
                                 props->SuperclassDecl);
      }
    }

    // Record the new rule at the more specific level of the class
    // hierarchy.
    auto &req = props->Superclasses[superclassDecl];
    assert(!req.SuperclassType.has_value());
    assert(req.SuperclassRules.empty());

    req.SuperclassType = property;
    req.SuperclassRules.emplace_back(property, ruleID);

    props->SuperclassDecl = superclassDecl;

  } else {
    if (debug) {
      llvm::dbgs() << "not related to existing superclass "
                   << props->SuperclassDecl->getName() << "\n";
    }

    auto &req = props->Superclasses[props->SuperclassDecl];
    for (const auto &pair : req.SuperclassRules) {
      if (checkRulePairOnce(pair.second, ruleID))
        System.recordConflict(pair.second, ruleID);
    }
  }
}

/// Given two concrete type rules, record a rewrite loop relating them,
/// record induced rules, and relate the induced rules to the concrete
/// type rules.
void PropertyMap::unifyConcreteTypes(Term key,
                                     Symbol lhsProperty, unsigned lhsRuleID,
                                     Symbol rhsProperty, unsigned rhsRuleID) {
  if (!checkRulePairOnce(lhsRuleID, rhsRuleID))
    return;

  auto &lhsRule = System.getRule(lhsRuleID);
  auto &rhsRule = System.getRule(rhsRuleID);

  assert(rhsRule.getRHS() == key);

  bool debug = Debug.contains(DebugFlags::ConcreteUnification);

  if (debug) {
    llvm::dbgs() << "% Unifying " << lhsProperty
                 << " with " << rhsProperty << "\n";
  }

  std::optional<unsigned> lhsDifferenceID;
  std::optional<unsigned> rhsDifferenceID;

  bool conflict = System.computeTypeDifference(key,
                                               lhsProperty,
                                               rhsProperty,
                                               lhsDifferenceID,
                                               rhsDifferenceID);

  if (conflict) {
    // FIXME: Diagnose the conflict
    if (debug) {
      llvm::dbgs() << "%% Concrete type conflict\n";
    }
    System.recordConflict(lhsRuleID, rhsRuleID);
    return;
  }

  // Handle the case where (LHS ∧ RHS) is distinct from both LHS and RHS:
  // - First, record a new rule.
  // - Next, process the LHS -> (LHS ∧ RHS) difference.
  // - Finally, process the RHS -> (LHS ∧ RHS) difference.
  if (lhsDifferenceID && rhsDifferenceID) {
    const auto &lhsDifference = System.getTypeDifference(*lhsDifferenceID);
    const auto &rhsDifference = System.getTypeDifference(*rhsDifferenceID);
    assert(lhsDifference.RHS == rhsDifference.RHS);

    auto newProperty = lhsDifference.RHS;
    assert(newProperty == rhsDifference.RHS);

    MutableTerm rhsTerm(key);
    MutableTerm lhsTerm(key);
    lhsTerm.add(newProperty);

    // This rule does not need a rewrite path because it will be related
    // to the two existing rules by the processTypeDifference() calls below.
    System.addRule(lhsTerm, rhsTerm);

    // Recover a rewrite path from T to T.[LHS ∧ RHS].
    RewritePath path;
    System.buildRewritePathForJoiningTerms(rhsTerm, lhsTerm, &path);

    if (debug) {
      llvm::dbgs() << "%% Induced rule " << lhsTerm
                   << " == " << rhsTerm << "\n";
    }

    // Process LHS -> (LHS ∧ RHS).
    System.processTypeDifference(lhsDifference, *lhsDifferenceID,
                                 lhsRuleID, path);

    // Process RHS -> (LHS ∧ RHS).
    System.processTypeDifference(rhsDifference, *rhsDifferenceID,
                                 rhsRuleID, path);

    return;
  }

  // Handle the case where RHS == (LHS ∧ RHS) by processing LHS -> (LHS ∧ RHS).
  if (lhsDifferenceID) {
    assert(!rhsDifferenceID);

    const auto &lhsDifference = System.getTypeDifference(*lhsDifferenceID);
    assert(lhsProperty == lhsDifference.LHS);
    assert(rhsProperty == lhsDifference.RHS);

    // Build a rewrite path (T.[RHS] => T).
    RewritePath path;

    path.add(RewriteStep::forRewriteRule(
        /*startOffset=*/0, /*endOffset=*/0,
        /*ruleID=*/rhsRuleID, /*inverse=*/false));

    System.processTypeDifference(lhsDifference, *lhsDifferenceID,
                                 lhsRuleID, path);

    return;
  }

  // Handle the case where LHS == (LHS ∧ RHS) by processing RHS -> (LHS ∧ RHS).
  if (rhsDifferenceID) {
    assert(!lhsDifferenceID);

    const auto &rhsDifference = System.getTypeDifference(*rhsDifferenceID);
    assert(rhsProperty == rhsDifference.LHS);
    assert(lhsProperty == rhsDifference.RHS);

    // Build a rewrite path (T.[LHS] => T).
    RewritePath path;

    unsigned lhsPrefix = key.size() - lhsRule.getRHS().size();
    if (lhsPrefix > 0) {
      path.add(RewriteStep::forPrefixSubstitutions(
          lhsPrefix, /*endOffset=*/0, /*inverse=*/true));
    }

    path.add(RewriteStep::forRewriteRule(
        /*startOffset=*/lhsPrefix, /*endOffset=*/0,
        /*ruleID=*/lhsRuleID, /*inverse=*/false));

    System.processTypeDifference(rhsDifference, *rhsDifferenceID,
                                 rhsRuleID, path);

    return;
  }

  assert(lhsProperty == rhsProperty);

  if (lhsRuleID != rhsRuleID) {
    // If the rules are different but the concrete types are identical, then
    // the key is some term U.V, the existing rule is a rule of the form:
    //
    //    V.[concrete: G<...> with <X, Y>]
    //
    // and the new rule is a rule of the form:
    //
    //    U.V.[concrete: G<...> with <U.X, U.Y>]
    //
    // Record a loop relating the two rules via a rewrite step to prefix 'U' to
    // the symbol's substitutions.
    //
    // Since the new rule appears without context, it becomes redundant.
    RewritePath path;
    path.add(RewriteStep::forRewriteRule(
        /*startOffset=*/0, /*endOffset=*/0,
        /*ruleID=*/rhsRuleID, /*inverse=*/false));

    RewritePath unificationPath;
    System.buildRewritePathForUnifier(key, lhsRuleID, path, &unificationPath);
    System.recordRewriteLoop(MutableTerm(rhsRule.getLHS()), unificationPath);
  }
}

/// Relate a concrete type rule to all existing concrete type rules for this
/// key, and recompute the best concrete type property and rule seen so far.
///
/// Used by addSuperclassProperty() and addConcreteTypeProperty().
void PropertyMap::unifyConcreteTypes(
    Term key, std::optional<Symbol> &bestProperty,
    llvm::SmallVectorImpl<std::pair<Symbol, unsigned>> &existingRules,
    Symbol property, unsigned ruleID) {
  // Unify this rule with all other concrete type rules we've seen so far,
  // to record rewrite loops relating the rules and their projections.
  for (auto pair : existingRules) {
    unifyConcreteTypes(key, pair.first, pair.second, property, ruleID);
  }

  // Record the new rule.
  existingRules.emplace_back(property, ruleID);

  // Now, figure out the best concrete type seen so far. If this is the
  // first rule, it's the best one.
  if (!bestProperty) {
    bestProperty = property;
    return;
  }

  // Otherwise, compute the meet with the existing best property.
  std::optional<unsigned> lhsDifferenceID;
  std::optional<unsigned> rhsDifferenceID;

  bool conflict = System.computeTypeDifference(key,
                                               *bestProperty, property,
                                               lhsDifferenceID,
                                               rhsDifferenceID);
  if (conflict)
    return;

  if (lhsDifferenceID) {
    bestProperty = System.getTypeDifference(*lhsDifferenceID).RHS;
  } else if (rhsDifferenceID) {
    bestProperty = System.getTypeDifference(*rhsDifferenceID).RHS;
  } else {
    assert(*bestProperty == property);
  }
}

/// When a type parameter has two concrete types, we have to unify the
/// type constructor arguments.
///
/// For example, suppose that we have two concrete same-type requirements:
///
///   T == Foo<X.Y, Z, String>
///   T == Foo<Int, A.B, W>
///
/// These lower to the following two rules:
///
///   T.[concrete: Foo<τ_0_0, τ_0_1, String> with {X.Y, Z}] => T
///   T.[concrete: Foo<Int, τ_0_0, τ_0_1> with {A.B, W}] => T
///
/// The two concrete type symbols will be added to the property bag of 'T',
/// and we will eventually end up in this method, where we will generate three
/// induced rules:
///
///   X.Y.[concrete: Int] => X.Y
///   A.B => Z
///   W.[concrete: String] => W
void PropertyMap::addConcreteTypeProperty(
    Term key, Symbol property, unsigned ruleID) {
  auto *props = getOrCreateProperties(key);

  unifyConcreteTypes(key,
                     props->ConcreteType,
                     props->ConcreteTypeRules,
                     property, ruleID);
}

/// Record a protocol conformance, layout or superclass constraint on the given
/// key. Must be called in monotonically non-decreasing key order.
void PropertyMap::addProperty(
    Term key, Symbol property, unsigned ruleID) {
  assert(property.isProperty());
  assert(*System.getRule(ruleID).isPropertyRule() == property);

  switch (property.getKind()) {
  case Symbol::Kind::Protocol:
    addConformanceProperty(key, property, ruleID);
    return;

  case Symbol::Kind::Layout:
    addLayoutProperty(key, property, ruleID);
    return;

  case Symbol::Kind::Superclass:
    addSuperclassProperty(key, property, ruleID);
    return;

  case Symbol::Kind::ConcreteType:
    addConcreteTypeProperty(key, property, ruleID);
    return;

  case Symbol::Kind::ConcreteConformance:
    // Concrete conformance rules are not recorded in the property map, since
    // they're not needed for unification, and generic signature queries don't
    // care about them.
    return;

  case Symbol::Kind::Name:
  case Symbol::Kind::GenericParam:
  case Symbol::Kind::AssociatedType:
  case Symbol::Kind::Shape:
    break;
  }

  llvm_unreachable("Bad symbol kind");
}

/// Post-pass to handle unification and conflict checking between pairs of
/// rules of different kinds:
///
/// - concrete vs superclass
/// - concrete vs layout
///
/// Note that we allow a subclass existential 'any C & P' to satisfy a
/// superclass requirement 'C' as long as 'P' is an @objc protocol.
///
/// This is not fully sound because 'any C & P' is not substitutable for
/// 'C' if the code calls static method or required initializers on 'C',
/// but existing code out there relies on this working.
///
/// A more refined check would ensure that 'C' had no required initializers
/// and that 'P' was self-conforming; or we could ban this entirely in a
/// future -swift-version mode.
void PropertyMap::checkConcreteTypeRequirements() {
  bool debug = Debug.contains(DebugFlags::ConcreteUnification);

  for (auto *props : Entries) {
    for (auto pair : props->ConcreteTypeRules) {
      auto concreteType = pair.first;
      unsigned concreteTypeRule = pair.second;

      // If the concrete type is not a class and we have a superclass
      // requirement, we have a conflict.
      if (!concreteType.getConcreteType()->getClassOrBoundGenericClass() &&
          !(concreteType.getConcreteType()->isObjCExistentialType() &&
            concreteType.getConcreteType()->getSuperclass()) &&
          props->hasSuperclassBound()) {
        const auto &req = props->getSuperclassRequirement();
        for (auto pair : req.SuperclassRules) {
          if (checkRulePairOnce(concreteTypeRule, pair.second))
            System.recordConflict(concreteTypeRule, pair.second);
        }
      }

      // If the concrete type does not satisfy a class layout constraint and
      // we have such a layout requirement, we have a conflict.
      if (!concreteType.getConcreteType()->satisfiesClassConstraint() &&
          props->LayoutRule &&
          props->Layout->isClass()) {
        if (checkRulePairOnce(concreteTypeRule, *props->LayoutRule))
          System.recordConflict(concreteTypeRule, *props->LayoutRule);
      }

      if (checkRuleOnce(concreteTypeRule)) {
        if (concreteType.getConcreteType()->satisfiesClassConstraint()) {
          Type superclassType = concreteType.getConcreteType();
          if (!superclassType->getClassOrBoundGenericClass())
            superclassType = superclassType->getSuperclass();

          if (superclassType) {
            // A rule (T.[concrete: C] => T) where C is a class type induces a rule
            // (T.[superclass: C] => T).
            auto superclassSymbol = Symbol::forSuperclass(
                superclassType->getCanonicalType(),
                concreteType.getSubstitutions(),
                Context);

            recordRelation(props->getKey(), concreteTypeRule,
                           superclassSymbol, System, debug);
          }

          // A rule (T.[concrete: C] => T) where C is a class type induces a rule
          // (T.[layout: L] => T), where L is either AnyObject or _NativeObject.
          auto layoutConstraint = LayoutConstraintKind::Class;
          if (superclassType)
            if (auto *classDecl = superclassType->getClassOrBoundGenericClass())
              layoutConstraint = classDecl->getLayoutConstraintKind();

          auto layout =
              LayoutConstraint::getLayoutConstraint(
                layoutConstraint, Context.getASTContext());
          auto layoutSymbol = Symbol::forLayout(layout, Context);

          recordRelation(props->getKey(), concreteTypeRule,
                         layoutSymbol, System, debug);
        }
      }
    }
  }
}