1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
|
//===--- RequirementBuilder.cpp - Building requirements from rules --------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the final step in generic signature minimization,
// building requirements from a set of minimal, canonical rewrite rules.
//
// The main entry point is RequirementMachine::buildRequirementsFromRules(),
// called from the RequirementSignatureRequest, AbstractGenericSignatureRequest
// and InferredGenericSignatureRequest requests defined in
// RequirementMachineRequests.cpp.
//
//===----------------------------------------------------------------------===//
#include "RequirementMachine.h"
#include "swift/AST/Decl.h"
#include "swift/AST/Requirement.h"
#include "swift/AST/RequirementSignature.h"
#include "swift/AST/Types.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include <vector>
using namespace swift;
using namespace rewriting;
namespace {
/// Represents a set of types related by same-type requirements, and an
/// optional concrete type requirement.
struct ConnectedComponent {
llvm::SmallVector<Type, 2> Members;
llvm::SmallVector<Identifier, 1> Aliases;
Type ConcreteType;
void buildRequirements(Type subjectType,
RequirementKind kind,
std::vector<Requirement> &reqs,
std::vector<ProtocolTypeAlias> &aliases);
};
/// Case 1: A set of rewrite rules of the form:
///
/// B => A
/// C => A
/// D => A
///
/// Become a series of same-type requirements
///
/// A == B, B == C, C == D
///
/// Case 2: A set of rewrite rules of the form:
///
/// A.[concrete: X] => A
/// B => A
/// C => A
/// D => A
///
/// Become a series of same-type requirements
///
/// A == X, B == X, C == X, D == X
void ConnectedComponent::buildRequirements(Type subjectType,
RequirementKind kind,
std::vector<Requirement> &reqs,
std::vector<ProtocolTypeAlias> &aliases) {
std::sort(Members.begin(), Members.end(),
[](Type first, Type second) -> bool {
return compareDependentTypes(first, second) < 0;
});
if (!ConcreteType) {
for (auto name : Aliases) {
aliases.emplace_back(name, subjectType);
}
for (auto constraintType : Members) {
reqs.emplace_back(kind, subjectType, constraintType);
subjectType = constraintType;
}
} else {
// Shape requirements cannot be concrete.
assert(kind == RequirementKind::SameType);
// If there are multiple protocol typealiases in the connected component,
// lower them all to a series of identical concrete-type aliases.
for (auto name : Aliases) {
aliases.emplace_back(name, ConcreteType);
}
// If the most canonical representative in the connected component is an
// unresolved DependentMemberType, it must be of the form 'Self.A'
// where 'A' is an alias. Emit the concrete-type alias itself.
if (auto *memberTy = subjectType->getAs<DependentMemberType>()) {
if (memberTy->getAssocType() == nullptr) {
auto *paramTy = memberTy->getBase()->castTo<GenericTypeParamType>();
assert(paramTy->getDepth() == 0 && paramTy->getIndex() == 0);
(void) paramTy;
aliases.emplace_back(memberTy->getName(), ConcreteType);
assert(Members.empty());
return;
}
}
// Otherwise, the most canonical representative must be a resolved
// associated type. Emit a requirement.
reqs.emplace_back(RequirementKind::SameType,
subjectType, ConcreteType);
// Finally, emit a concrete type requirement for all resolved type members
// of the connected component.
for (auto constraintType : Members) {
reqs.emplace_back(RequirementKind::SameType,
constraintType, ConcreteType);
}
}
}
/// Once we're done with minimization, we turn the minimal rules into requirements.
/// This is in a sense the inverse of RuleBuilder in RequirementLowering.cpp.
class RequirementBuilder {
// Input parameters.
const RewriteSystem &System;
const PropertyMap ⤅
ArrayRef<GenericTypeParamType *> GenericParams;
bool ReconstituteSugar;
bool Debug;
// Temporary state populated by addRequirementRules() and
// addTypeAliasRules().
llvm::SmallDenseMap<Term, ConnectedComponent> Components;
public:
// Results.
std::vector<Requirement> Reqs;
std::vector<ProtocolTypeAlias> Aliases;
RequirementBuilder(const RewriteSystem &system, const PropertyMap &map,
ArrayRef<GenericTypeParamType *> genericParams,
bool reconstituteSugar)
: System(system), Map(map),
GenericParams(genericParams),
ReconstituteSugar(reconstituteSugar),
Debug(System.getDebugOptions().contains(DebugFlags::Minimization)) {}
void addRequirementRules(ArrayRef<unsigned> rules);
void addTypeAliasRules(ArrayRef<unsigned> rules);
void processConnectedComponents();
void sortRequirements();
void sortTypeAliases();
};
} // end namespace
static Type replaceTypeParametersWithErrorTypes(Type type) {
return type.transformRec([](Type t) -> std::optional<Type> {
if (t->isTypeParameter())
return ErrorType::get(t->getASTContext());
return std::nullopt;
});
}
void RequirementBuilder::addRequirementRules(ArrayRef<unsigned> rules) {
// Convert a rewrite rule into a requirement.
auto createRequirementFromRule = [&](const Rule &rule) {
if (auto prop = rule.isPropertyRule()) {
auto subjectType = Map.getTypeForTerm(rule.getRHS(), GenericParams);
switch (prop->getKind()) {
case Symbol::Kind::Protocol:
Reqs.emplace_back(RequirementKind::Conformance,
subjectType,
prop->getProtocol()->getDeclaredInterfaceType());
return;
case Symbol::Kind::Layout:
Reqs.emplace_back(RequirementKind::Layout,
subjectType,
prop->getLayoutConstraint());
return;
case Symbol::Kind::Superclass:
case Symbol::Kind::ConcreteType: {
bool containsUnresolvedSymbols = false;
for (auto term : prop->getSubstitutions()) {
containsUnresolvedSymbols |= term.containsUnresolvedSymbols();
}
Type concreteType = Map.getTypeFromSubstitutionSchema(
prop->getConcreteType(),
prop->getSubstitutions(),
GenericParams, MutableTerm());
if (containsUnresolvedSymbols || rule.isRecursive())
concreteType = replaceTypeParametersWithErrorTypes(concreteType);
if (ReconstituteSugar)
concreteType = concreteType->reconstituteSugar(/*recursive=*/true);
if (prop->getKind() == Symbol::Kind::Superclass) {
Reqs.emplace_back(RequirementKind::Superclass,
subjectType, concreteType);
} else {
auto &component = Components[rule.getRHS()];
assert(!component.ConcreteType);
component.ConcreteType = concreteType;
}
return;
}
case Symbol::Kind::ConcreteConformance:
// "Concrete conformance requirements" are not recorded in the generic
// signature.
return;
case Symbol::Kind::Name:
case Symbol::Kind::AssociatedType:
case Symbol::Kind::GenericParam:
case Symbol::Kind::Shape:
break;
}
llvm_unreachable("Invalid symbol kind");
}
assert(rule.getLHS().back().getKind() != Symbol::Kind::Protocol);
MutableTerm constraintTerm(rule.getLHS());
if (constraintTerm.back().getKind() == Symbol::Kind::Shape) {
assert(rule.getRHS().back().getKind() == Symbol::Kind::Shape);
// Strip off the shape symbol from the constraint term.
constraintTerm = MutableTerm(constraintTerm.begin(),
constraintTerm.end() - 1);
}
auto constraintType = Map.getTypeForTerm(constraintTerm, GenericParams);
Components[rule.getRHS()].Members.push_back(constraintType);
};
if (Debug) {
llvm::dbgs() << "\nMinimized rules:\n";
}
// Build the list of requirements, storing same-type requirements off
// to the side.
for (unsigned ruleID : rules) {
const auto &rule = System.getRule(ruleID);
if (Debug) {
llvm::dbgs() << "- " << rule << "\n";
}
createRequirementFromRule(rule);
}
}
void RequirementBuilder::addTypeAliasRules(ArrayRef<unsigned> rules) {
for (unsigned ruleID : rules) {
const auto &rule = System.getRule(ruleID);
auto name = *rule.isProtocolTypeAliasRule();
if (auto prop = rule.isPropertyRule()) {
assert(prop->getKind() == Symbol::Kind::ConcreteType);
// Requirements containing unresolved name symbols originate from
// invalid code and should not appear in the generic signature.
for (auto term : prop->getSubstitutions()) {
if (term.containsUnresolvedSymbols())
continue;
}
Type concreteType = Map.getTypeFromSubstitutionSchema(
prop->getConcreteType(),
prop->getSubstitutions(),
GenericParams, MutableTerm());
if (rule.isRecursive())
concreteType = replaceTypeParametersWithErrorTypes(concreteType);
if (ReconstituteSugar)
concreteType = concreteType->reconstituteSugar(/*recursive=*/true);
auto &component = Components[rule.getRHS()];
assert(!component.ConcreteType);
(void) component;
Components[rule.getRHS()].ConcreteType = concreteType;
} else {
Components[rule.getRHS()].Aliases.push_back(name);
}
}
}
void RequirementBuilder::processConnectedComponents() {
// Now, convert each connected component into a series of same-type
// requirements.
for (auto &pair : Components) {
MutableTerm subjectTerm(pair.first);
RequirementKind kind;
if (subjectTerm.back().getKind() == Symbol::Kind::Shape) {
kind = RequirementKind::SameShape;
// Strip off the shape symbol from the subject term.
subjectTerm = MutableTerm(subjectTerm.begin(), subjectTerm.end() - 1);
} else {
kind = RequirementKind::SameType;
}
auto subjectType = Map.getTypeForTerm(subjectTerm, GenericParams);
pair.second.buildRequirements(subjectType, kind, Reqs, Aliases);
}
}
void RequirementBuilder::sortRequirements() {
llvm::array_pod_sort(Reqs.begin(), Reqs.end(),
[](const Requirement *lhs, const Requirement *rhs) -> int {
return lhs->compare(*rhs);
});
if (Debug) {
llvm::dbgs() << "Requirements:\n";
for (const auto &req : Reqs) {
req.dump(llvm::dbgs());
llvm::dbgs() << "\n";
}
}
}
void RequirementBuilder::sortTypeAliases() {
llvm::array_pod_sort(Aliases.begin(), Aliases.end(),
[](const ProtocolTypeAlias *lhs,
const ProtocolTypeAlias *rhs) -> int {
return lhs->getName().compare(rhs->getName());
});
if (Debug) {
llvm::dbgs() << "\nMinimized type aliases:\n";
for (const auto &alias : Aliases) {
PrintOptions opts;
opts.ProtocolQualifiedDependentMemberTypes = true;
llvm::dbgs() << "- " << alias.getName() << " == ";
alias.getUnderlyingType().print(llvm::dbgs(), opts);
llvm::dbgs() << "\n";
}
}
}
/// Convert a list of non-permanent, non-redundant rewrite rules into a list of
/// requirements sorted in canonical order. The \p genericParams are used to
/// produce sugared types.
void
RequirementMachine::buildRequirementsFromRules(
ArrayRef<unsigned> requirementRules,
ArrayRef<unsigned> typeAliasRules,
ArrayRef<GenericTypeParamType *> genericParams,
bool reconstituteSugar,
std::vector<Requirement> &reqs,
std::vector<ProtocolTypeAlias> &aliases) const {
RequirementBuilder builder(System, Map, genericParams, reconstituteSugar);
builder.addRequirementRules(requirementRules);
builder.addTypeAliasRules(typeAliasRules);
builder.processConnectedComponents();
builder.sortRequirements();
builder.sortTypeAliases();
reqs = std::move(builder.Reqs);
aliases = std::move(builder.Aliases);
}
|