1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
|
//===--- RequirementLowering.cpp - Requirement inference and desugaring ---===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// The process of constructing a requirement machine from some input requirements
// can be summarized by the following diagram.
//
// ------------------
// / RequirementRepr / <-------- Generic parameter lists, 'where' clauses,
// ------------------ and protocol definitions written in source
// | start here:
// | - InferredGenericSignatureRequest
// | - RequirementSignatureRequest
// v
// +-------------------------+ -------------------
// | Requirement realization | --------> / Sema diagnostics /
// +-------------------------+ -------------------
// |
// | -------------------------------------
// | / Function parameter/result TypeRepr /
// | -------------------------------------
// | |
// | v
// | +-----------------------+
// | | Requirement inference |
// | +-----------------------+
// | |
// | +---------------+
// v v
// ------------------------
// / StructuralRequirement / <---- Minimization of a set of abstract
// ------------------------ requirements internally by the compiler
// | starts here:
// | - AbstractGenericSignatureRequest
// v
// +------------------------+ -------------------
// | Requirement desugaring | -------> / RequirementError /
// +------------------------+ -------------------
// |
// v
// --------------
// / Requirement /
// --------------
// |
// v
// +----------------------+
// | Concrete contraction |
// +----------------------+
// | -------------------------
// v / Existing RewriteSystem /
// -------------- -------------------------
// / Requirement / |
// -------------- v
// | +--------------------------------------------+
// | | Importing rules from protocol dependencies |
// | +--------------------------------------------+
// | |
// | +------------------------------+
// | |
// v v
// +-------------+
// | RuleBuilder | <--- Construction of a rewrite system to answer
// +-------------+ queries about an already-minimized generic
// | signature or connected component of protocol
// v requirement signatures starts here:
// ------- - RewriteContext::getRequirementMachine()
// / Rule /
// -------
//
// This file implements the "requirement realization", "requirement inference"
// and "requirement desugaring" steps above. Concrete contraction is implemented
// in ConcreteContraction.cpp. Building rewrite rules from desugared requirements
// is implemented in RuleBuilder.cpp.
//
// # Requirement realization and inference
//
// Requirement realization takes parsed representations of generic requirements,
// and converts them to StructuralRequirements:
//
// - RequirementReprs in 'where' clauses
// - TypeReprs in generic parameter and associated type inheritance clauses
// - TypeReprs of function parameters and results, for requirement inference
//
// Requirement inference is the language feature where requirements on type
// parameters are inferred from bound generic type applications. For example,
// in the following, 'T : Hashable' is not explicitly stated:
//
// func foo<T>(_: Set<T>) {}
//
// The application of the bound generic type "Set<T>" requires that
// 'T : Hashable', from the generic signature of the declaration of 'Set'.
// Requirement inference, when performed, will introduce this requirement.
//
// Requirement realization calls into Sema' resolveType() and similar operations
// and emits diagnostics that way.
//
// # Requirement desugaring
//
// Requirements in 'where' clauses allow for some unneeded generality that we
// eliminate early. For example:
//
// - The right hand side of a protocol conformance requirement might be a
// protocol composition.
//
// - Same-type requirements involving concrete types can take various forms:
// a) Between a type parameter and a concrete type, eg. 'T == Int'.
// b) Between a concrete type and a type parameter, eg. 'Int == T'.
// c) Between two concrete types, eg 'Array<T> == Array<Int>'.
//
// 'Desugared requirements' take the following special form:
//
// - The subject type of a requirement is always a type parameter.
//
// - The right hand side of a conformance requirement is always a single
// protocol.
//
// - A concrete same-type requirement is always between a type parameter and
// a concrete type.
//
// The desugaring process eliminates requirements where both sides are
// concrete by evaluating them immediately, reporting an error if the
// requirement does not hold, or silently discarding it otherwise.
//
// Conformance requirements with protocol compositions on the right hand side
// are broken down into multiple conformance requirements.
//
// Same-type requirements where both sides are concrete are decomposed by
// walking the two concrete types in parallel. If there is a mismatch in the
// concrete structure, an error is recorded. If a mismatch involves a concrete
// type and a type parameter, a new same-type requirement is recorded.
//
// For example, in the above, 'Array<T> == Array<Int>' is desugared into the
// single requirement 'T == Int'.
//
// Finally, same-type requirements between a type parameter and concrete type
// are oriented so that the type parameter always appears on the left hand side.
//
// Requirement desugaring diagnoses errors by building a list of
// RequirementError values.
//
//===----------------------------------------------------------------------===//
#include "RequirementLowering.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Decl.h"
#include "swift/AST/DiagnosticsSema.h"
#include "swift/AST/Requirement.h"
#include "swift/AST/RequirementSignature.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/AST/TypeMatcher.h"
#include "swift/AST/TypeRepr.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SetVector.h"
#include "Diagnostics.h"
#include "RewriteContext.h"
#include "NameLookup.h"
using namespace swift;
using namespace rewriting;
//
// Requirement desugaring
//
/// Desugar a same-type requirement that possibly has concrete types on either
/// side into a series of same-type and concrete-type requirements where the
/// left hand side is always a type parameter.
static void desugarSameTypeRequirement(
Requirement req,
SourceLoc loc,
SmallVectorImpl<Requirement> &result,
SmallVectorImpl<InverseRequirement> &inverses,
SmallVectorImpl<RequirementError> &errors) {
class Matcher : public TypeMatcher<Matcher> {
SourceLoc loc;
SmallVectorImpl<Requirement> &result;
SmallVectorImpl<RequirementError> &errors;
SmallVector<Position, 2> stack;
public:
explicit Matcher(SourceLoc loc,
SmallVectorImpl<Requirement> &result,
SmallVectorImpl<RequirementError> &errors)
: loc(loc), result(result), errors(errors) {}
bool alwaysMismatchTypeParameters() const { return true; }
void pushPosition(Position pos) {
stack.push_back(pos);
}
void popPosition(Position pos) {
assert(stack.back() == pos);
stack.pop_back();
}
Position getPosition() const {
if (stack.empty()) return Position::Type;
return stack.back();
}
bool mismatch(TypeBase *firstType, TypeBase *secondType,
Type sugaredFirstType) {
RequirementKind kind;
switch (getPosition()) {
case Position::Type:
kind = RequirementKind::SameType;
break;
case Position::Shape:
kind = RequirementKind::SameShape;
break;
}
// If one side is a parameter pack, this is a same-element requirement, which
// is not yet supported.
if (firstType->isParameterPack() != secondType->isParameterPack()) {
errors.push_back(RequirementError::forSameElement(
{kind, sugaredFirstType, secondType}, loc));
return true;
}
if (firstType->isTypeParameter() && secondType->isTypeParameter()) {
result.emplace_back(kind, sugaredFirstType, secondType);
return true;
}
if (firstType->isTypeParameter()) {
result.emplace_back(kind, sugaredFirstType, secondType);
return true;
}
if (secondType->isTypeParameter()) {
result.emplace_back(kind, secondType, sugaredFirstType);
return true;
}
errors.push_back(RequirementError::forConflictingRequirement(
{RequirementKind::SameType, sugaredFirstType, secondType}, loc));
return true;
}
} matcher(loc, result, errors);
(void) matcher.match(req.getFirstType(), req.getSecondType());
}
static void desugarSuperclassRequirement(
Requirement req,
SourceLoc loc,
SmallVectorImpl<Requirement> &result,
SmallVectorImpl<InverseRequirement> &inverses,
SmallVectorImpl<RequirementError> &errors) {
if (req.getFirstType()->isTypeParameter()) {
result.push_back(req);
return;
}
SmallVector<Requirement, 2> subReqs;
switch (req.checkRequirement(subReqs)) {
case CheckRequirementResult::Success:
case CheckRequirementResult::PackRequirement:
break;
case CheckRequirementResult::RequirementFailure:
errors.push_back(RequirementError::forInvalidRequirementSubject(req, loc));
break;
case CheckRequirementResult::SubstitutionFailure:
break;
case CheckRequirementResult::ConditionalConformance:
llvm_unreachable("Unexpected CheckRequirementResult");
}
for (auto subReq : subReqs)
desugarRequirement(subReq, loc, result, inverses, errors);
}
static void desugarLayoutRequirement(
Requirement req,
SourceLoc loc,
SmallVectorImpl<Requirement> &result,
SmallVectorImpl<InverseRequirement> &inverses,
SmallVectorImpl<RequirementError> &errors) {
if (req.getFirstType()->isTypeParameter()) {
result.push_back(req);
return;
}
SmallVector<Requirement, 2> subReqs;
switch (req.checkRequirement(subReqs)) {
case CheckRequirementResult::Success:
case CheckRequirementResult::PackRequirement:
break;
case CheckRequirementResult::RequirementFailure:
errors.push_back(RequirementError::forInvalidRequirementSubject(req, loc));
break;
case CheckRequirementResult::SubstitutionFailure:
break;
case CheckRequirementResult::ConditionalConformance:
llvm_unreachable("Unexpected CheckRequirementResult");
}
for (auto subReq : subReqs)
desugarRequirement(subReq, loc, result, inverses, errors);
}
/// Desugar a protocol conformance requirement by splitting up protocol
/// compositions on the right hand side into conformance and superclass
/// requirements.
static void desugarConformanceRequirement(
Requirement req,
SourceLoc loc,
SmallVectorImpl<Requirement> &result,
SmallVectorImpl<InverseRequirement> &inverses,
SmallVectorImpl<RequirementError> &errors) {
SmallVector<Requirement, 2> subReqs;
auto constraintType = req.getSecondType();
// Fast path.
if (constraintType->is<ProtocolType>()) {
if (req.getFirstType()->isTypeParameter()) {
result.push_back(req);
return;
}
// Check if the subject type actually conforms.
switch (req.checkRequirement(subReqs, /*allowMissing=*/true)) {
case CheckRequirementResult::Success:
case CheckRequirementResult::PackRequirement:
case CheckRequirementResult::ConditionalConformance:
break;
case CheckRequirementResult::RequirementFailure:
errors.push_back(RequirementError::forInvalidRequirementSubject(req, loc));
break;
case CheckRequirementResult::SubstitutionFailure:
break;
}
} else if (auto *paramType = constraintType->getAs<ParameterizedProtocolType>()) {
subReqs.emplace_back(RequirementKind::Conformance, req.getFirstType(),
paramType->getBaseType());
paramType->getRequirements(req.getFirstType(), subReqs);
} else if (auto *compositionType = constraintType->getAs<ProtocolCompositionType>()) {
if (compositionType->hasExplicitAnyObject()) {
subReqs.emplace_back(RequirementKind::Layout, req.getFirstType(),
LayoutConstraint::getLayoutConstraint(
LayoutConstraintKind::Class));
}
for (auto memberType : compositionType->getMembers()) {
subReqs.emplace_back(
memberType->isConstraintType()
? RequirementKind::Conformance
: RequirementKind::Superclass,
req.getFirstType(), memberType);
}
// Check if the composition has any inverses.
if (!compositionType->getInverses().empty()) {
auto subject = req.getFirstType();
if (!subject->isTypeParameter()) {
// Only permit type-parameter subjects.
errors.push_back(
RequirementError::forInvalidRequirementSubject(req, loc));
} else {
// Record and desugar inverses.
auto &ctx = req.getFirstType()->getASTContext();
for (auto ip : compositionType->getInverses())
inverses.push_back({req.getFirstType(),
ctx.getProtocol(getKnownProtocolKind(ip)),
loc});
}
}
}
for (auto subReq : subReqs)
desugarRequirement(subReq, loc, result, inverses, errors);
}
/// Diagnose shape requirements on non-pack types.
static void desugarSameShapeRequirement(
Requirement req,
SourceLoc loc,
SmallVectorImpl<Requirement> &result,
SmallVectorImpl<InverseRequirement> &inverses,
SmallVectorImpl<RequirementError> &errors) {
// For now, only allow shape requirements directly between pack types.
if (!req.getFirstType()->isParameterPack() ||
!req.getSecondType()->isParameterPack()) {
errors.push_back(RequirementError::forInvalidShapeRequirement(
req, loc));
}
result.emplace_back(RequirementKind::SameShape,
req.getFirstType(), req.getSecondType());
}
/// Convert a requirement where the subject type might not be a type parameter,
/// or the constraint type in the conformance requirement might be a protocol
/// composition, into zero or more "proper" requirements which can then be
/// converted into rewrite rules by the RuleBuilder.
void
swift::rewriting::desugarRequirement(
Requirement req,
SourceLoc loc,
SmallVectorImpl<Requirement> &result,
SmallVectorImpl<InverseRequirement> &inverses,
SmallVectorImpl<RequirementError> &errors) {
switch (req.getKind()) {
case RequirementKind::SameShape:
desugarSameShapeRequirement(req, loc, result, inverses, errors);
break;
case RequirementKind::Conformance:
desugarConformanceRequirement(req, loc, result, inverses, errors);
break;
case RequirementKind::Superclass:
desugarSuperclassRequirement(req, loc, result, inverses, errors);
break;
case RequirementKind::Layout:
desugarLayoutRequirement(req, loc, result, inverses, errors);
break;
case RequirementKind::SameType:
desugarSameTypeRequirement(req, loc, result, inverses, errors);
break;
}
}
void swift::rewriting::desugarRequirements(
SmallVector<StructuralRequirement, 2> &reqs,
SmallVectorImpl<InverseRequirement> &inverses,
SmallVectorImpl<RequirementError> &errors) {
SmallVector<StructuralRequirement, 2> result;
for (auto req : reqs) {
SmallVector<Requirement, 2> desugaredReqs;
desugarRequirement(req.req, req.loc, desugaredReqs,
inverses, errors);
for (auto desugaredReq : desugaredReqs)
result.push_back({desugaredReq, req.loc});
}
std::swap(reqs, result);
}
//
// Requirement realization and inference.
//
static void realizeTypeRequirement(DeclContext *dc,
Type subjectType, Type constraintType,
SourceLoc loc,
SmallVectorImpl<StructuralRequirement> &result,
SmallVectorImpl<RequirementError> &errors) {
// The GenericSignatureBuilder allowed the right hand side of a
// conformance or superclass requirement to reference a protocol
// typealias whose underlying type was a protocol or class.
//
// Since protocol typealiases resolve to DependentMemberTypes in
// ::Structural mode, this relied on the GSB's "delayed requirements"
// mechanism.
//
// The RequirementMachine does not have an equivalent, and cannot really
// support that because we need to collect the protocols mentioned on
// the right hand sides of conformance requirements ahead of time.
//
// However, we can support it in simple cases where the typealias is
// defined in the protocol itself and is accessed as a member of 'Self'.
if (auto *proto = dc->getSelfProtocolDecl()) {
if (auto memberType = constraintType->getAs<DependentMemberType>()) {
if (memberType->getBase()->isEqual(proto->getSelfInterfaceType())) {
SmallVector<TypeDecl *, 1> result;
lookupConcreteNestedType(proto, memberType->getName(), result);
auto *typeDecl = findBestConcreteNestedType(result);
if (auto *aliasDecl = dyn_cast_or_null<TypeAliasDecl>(typeDecl)) {
constraintType = aliasDecl->getUnderlyingType();
}
}
}
}
if (constraintType->isConstraintType()) {
result.push_back({Requirement(RequirementKind::Conformance,
subjectType, constraintType),
loc});
} else if (constraintType->getClassOrBoundGenericClass()) {
result.push_back({Requirement(RequirementKind::Superclass,
subjectType, constraintType),
loc});
} else {
errors.push_back(
RequirementError::forInvalidTypeRequirement(subjectType,
constraintType,
loc));
}
}
namespace {
/// AST walker that infers requirements from type representations.
struct InferRequirementsWalker : public TypeWalker {
ModuleDecl *module;
DeclContext *dc;
SmallVectorImpl<StructuralRequirement> &reqs;
explicit InferRequirementsWalker(ModuleDecl *module, DeclContext *dc,
SmallVectorImpl<StructuralRequirement> &reqs)
: module(module), dc(dc), reqs(reqs) {}
Action walkToTypePre(Type ty) override {
// Unbound generic types are the result of recovered-but-invalid code, and
// don't have enough info to do any useful substitutions.
if (ty->is<UnboundGenericType>())
return Action::Stop;
if (!ty->hasTypeParameter())
return Action::SkipNode;
return Action::Continue;
}
Action walkToTypePost(Type ty) override {
// Skip `Sendable` conformance requirements that are inferred from
// `@preconcurrency` declarations.
auto skipRequirement = [&](Requirement req, Decl *fromDecl) {
if (!fromDecl->preconcurrency())
return false;
// If this decl is `@preconcurrency`, include concurrency
// requirements. The explicit annotation directly on the decl
// will still exclude `Sendable` requirements from ABI.
auto *decl = dc->getAsDecl();
if (!decl || decl->preconcurrency())
return false;
return (req.getKind() == RequirementKind::Conformance &&
req.getProtocolDecl()->isSpecificProtocol(KnownProtocolKind::Sendable));
};
// Infer from generic typealiases.
if (auto typeAlias = dyn_cast<TypeAliasType>(ty.getPointer())) {
auto decl = typeAlias->getDecl();
auto subMap = typeAlias->getSubstitutionMap();
for (const auto &rawReq : decl->getGenericSignature().getRequirements()) {
if (skipRequirement(rawReq, decl))
continue;
reqs.push_back({rawReq.subst(subMap), SourceLoc()});
}
return Action::Continue;
}
// Infer same-length requirements between pack references that
// are expanded in parallel.
if (auto packExpansion = ty->getAs<PackExpansionType>()) {
// Get all pack parameters referenced from the pattern.
SmallVector<Type, 2> packReferences;
packExpansion->getPatternType()->getTypeParameterPacks(packReferences);
auto countType = packExpansion->getCountType();
for (auto pack : packReferences)
reqs.push_back({Requirement(RequirementKind::SameShape, countType, pack),
SourceLoc()});
}
// Infer requirements from `@differentiable` function types.
// For all non-`@noDerivative` parameter and result types:
// - `@differentiable`, `@differentiable(_forward)`, or
// `@differentiable(reverse)`: add `T: Differentiable` requirement.
// - `@differentiable(_linear)`: add
// `T: Differentiable`, `T == T.TangentVector` requirements.
if (auto *fnTy = ty->getAs<AnyFunctionType>()) {
// Add a new conformance constraint for a fixed protocol.
auto addConformanceConstraint = [&](Type type, ProtocolDecl *protocol) {
reqs.push_back({Requirement(RequirementKind::Conformance, type,
protocol->getDeclaredInterfaceType()),
SourceLoc()});
};
auto &ctx = module->getASTContext();
auto *differentiableProtocol =
ctx.getProtocol(KnownProtocolKind::Differentiable);
if (differentiableProtocol && fnTy->isDifferentiable()) {
auto addSameTypeConstraint = [&](Type firstType,
AssociatedTypeDecl *assocType) {
auto secondType = assocType->getDeclaredInterfaceType()
->castTo<DependentMemberType>()
->substBaseType(module, firstType);
reqs.push_back({Requirement(RequirementKind::SameType,
firstType, secondType),
SourceLoc()});
};
auto *tangentVectorAssocType =
differentiableProtocol->getAssociatedType(ctx.Id_TangentVector);
auto addRequirements = [&](Type type, bool isLinear) {
addConformanceConstraint(type, differentiableProtocol);
if (isLinear)
addSameTypeConstraint(type, tangentVectorAssocType);
};
auto constrainParametersAndResult = [&](bool isLinear) {
for (auto ¶m : fnTy->getParams())
if (!param.isNoDerivative())
addRequirements(param.getPlainType(), isLinear);
addRequirements(fnTy->getResult(), isLinear);
};
// Add requirements.
constrainParametersAndResult(fnTy->getDifferentiabilityKind() ==
DifferentiabilityKind::Linear);
}
// Infer that the thrown error type of a function type conforms to Error.
if (auto thrownError = fnTy->getThrownError()) {
if (auto errorProtocol = ctx.getErrorDecl()) {
addConformanceConstraint(thrownError, errorProtocol);
}
}
}
if (!ty->isSpecialized())
return Action::Continue;
// Infer from generic nominal types.
auto decl = ty->getAnyNominal();
if (!decl) return Action::Continue;
auto genericSig = decl->getGenericSignature();
if (!genericSig)
return Action::Continue;
/// Retrieve the substitution.
auto subMap = ty->getContextSubstitutionMap(module, decl);
// Handle the requirements.
// FIXME: Inaccurate TypeReprs.
for (const auto &rawReq : genericSig.getRequirements()) {
if (skipRequirement(rawReq, decl))
continue;
reqs.push_back({rawReq.subst(subMap), SourceLoc()});
}
return Action::Continue;
}
};
}
/// Infer requirements from applications of BoundGenericTypes to type
/// parameters. For example, given a function declaration
///
/// func union<T>(_ x: Set<T>, _ y: Set<T>)
///
/// We automatically infer 'T : Hashable' from the fact that 'struct Set'
/// declares a Hashable requirement on its generic parameter.
void swift::rewriting::inferRequirements(
Type type, ModuleDecl *module, DeclContext *dc,
SmallVectorImpl<StructuralRequirement> &result) {
if (!type)
return;
InferRequirementsWalker walker(module, dc, result);
type.walk(walker);
}
/// Perform requirement inference from the type representations in the
/// requirement itself (eg, `T == Set<U>` infers `U: Hashable`).
void swift::rewriting::realizeRequirement(
DeclContext *dc,
Requirement req, RequirementRepr *reqRepr,
bool shouldInferRequirements,
SmallVectorImpl<StructuralRequirement> &result,
SmallVectorImpl<RequirementError> &errors) {
auto loc = (reqRepr ? reqRepr->getSeparatorLoc() : SourceLoc());
auto *moduleForInference = dc->getParentModule();
switch (req.getKind()) {
case RequirementKind::SameShape:
llvm_unreachable("Same-shape requirement not supported here");
case RequirementKind::Superclass:
case RequirementKind::Conformance: {
auto firstType = req.getFirstType();
auto secondType = req.getSecondType();
if (shouldInferRequirements) {
inferRequirements(firstType, moduleForInference, dc, result);
inferRequirements(secondType, moduleForInference, dc, result);
}
realizeTypeRequirement(dc, firstType, secondType, loc, result, errors);
break;
}
case RequirementKind::Layout: {
if (shouldInferRequirements) {
auto firstType = req.getFirstType();
inferRequirements(firstType, moduleForInference, dc, result);
}
result.push_back({req, loc});
break;
}
case RequirementKind::SameType: {
if (shouldInferRequirements) {
auto firstType = req.getFirstType();
inferRequirements(firstType, moduleForInference, dc, result);
auto secondType = req.getSecondType();
inferRequirements(secondType, moduleForInference, dc, result);
}
result.push_back({req, loc});
break;
}
}
}
void swift::rewriting::applyInverses(
ASTContext &ctx,
ArrayRef<Type> gps,
ArrayRef<InverseRequirement> inverseList,
SmallVectorImpl<StructuralRequirement> &result,
SmallVectorImpl<RequirementError> &errors) {
// No inverses to even validate.
if (inverseList.empty())
return;
const bool allowInverseOnAssocType =
ctx.LangOpts.hasFeature(Feature::SuppressedAssociatedTypes);
// Summarize the inverses and diagnose ones that are incorrect.
llvm::DenseMap<CanType, InvertibleProtocolSet> inverses;
for (auto inverse : inverseList) {
auto canSubject = inverse.subject->getCanonicalType();
// Inverses on associated types are experimental.
if (!allowInverseOnAssocType && canSubject->is<DependentMemberType>()) {
// Special exception: allow if we're building the stdlib.
if (!ctx.MainModule->isStdlibModule()) {
errors.push_back(RequirementError::forInvalidInverseSubject(inverse));
continue;
}
}
// Noncopyable checking support for parameter packs is not implemented yet.
if (canSubject->isParameterPack()) {
errors.push_back(RequirementError::forInvalidInverseSubject(inverse));
continue;
}
// WARNING: possible quadratic behavior, but should be OK in practice.
auto notInScope = llvm::none_of(gps, [=](Type t) {
return t->getCanonicalType() == canSubject;
});
// If the inverse is on a subject that wasn't permitted by our caller, then
// remove and diagnose as an error. This can happen when an inner context
// has a constraint on some outer generic parameter, e.g.,
//
// protocol P {
// func f() where Self: ~Copyable
// }
//
if (notInScope) {
errors.push_back(
RequirementError::forInvalidInverseOuterSubject(inverse));
continue;
}
auto state = inverses.getOrInsertDefault(canSubject);
// Check if this inverse has already been seen.
auto inverseKind = inverse.getKind();
if (state.contains(inverseKind))
continue;
state.insert(inverseKind);
inverses[canSubject] = state;
}
// Fast-path: if there are no valid inverses, then there are no requirements
// to be removed.
if (inverses.empty())
return;
// Scan the structural requirements and cancel out any inferred requirements
// based on the inverses we saw.
result.erase(llvm::remove_if(result, [&](StructuralRequirement structReq) {
auto req = structReq.req;
if (req.getKind() != RequirementKind::Conformance)
return false;
// Only consider requirements involving an invertible protocol.
auto proto = req.getProtocolDecl()->getInvertibleProtocolKind();
if (!proto)
return false;
// See if this subject is in-scope.
auto subject = req.getFirstType()->getCanonicalType();
auto result = inverses.find(subject);
if (result == inverses.end())
return false;
// We now have found the inferred constraint 'Subject : Proto'.
// So, remove it if we have recorded a 'Subject : ~Proto'.
auto recordedInverses = result->getSecond();
return recordedInverses.contains(*proto);
}), result.end());
}
/// Collect structural requirements written in the inheritance clause of an
/// AssociatedTypeDecl, GenericTypeParamDecl, or ProtocolDecl.
void swift::rewriting::realizeInheritedRequirements(
TypeDecl *decl, Type type, bool shouldInferRequirements,
SmallVectorImpl<StructuralRequirement> &result,
SmallVectorImpl<RequirementError> &errors) {
auto inheritedTypes = decl->getInherited();
auto *dc = decl->getInnermostDeclContext();
auto *moduleForInference = dc->getParentModule();
for (auto index : inheritedTypes.getIndices()) {
Type inheritedType =
inheritedTypes.getResolvedType(index, TypeResolutionStage::Structural);
if (!inheritedType) continue;
if (shouldInferRequirements) {
inferRequirements(inheritedType, moduleForInference,
decl->getInnermostDeclContext(), result);
}
auto *typeRepr = inheritedTypes.getTypeRepr(index);
SourceLoc loc = (typeRepr ? typeRepr->getStartLoc() : SourceLoc());
realizeTypeRequirement(dc, type, inheritedType, loc, result, errors);
}
// Also check for `SynthesizedProtocolAttr`s with additional constraints added
// by ClangImporter. This is how imported protocols are marked `Sendable`
// without changing their inheritance lists.
auto attrs = decl->getAttrs().getAttributes<SynthesizedProtocolAttr>();
for (auto attr : attrs) {
auto inheritedType = attr->getProtocol()->getDeclaredType();
auto loc = attr->getLocation();
realizeTypeRequirement(dc, type, inheritedType, loc, result, errors);
}
}
/// StructuralRequirementsRequest realizes all the user-written requirements
/// on the associated type declarations inside of a protocol.
///
/// This request is invoked by RequirementSignatureRequest for each protocol
/// in the connected component.
ArrayRef<StructuralRequirement>
StructuralRequirementsRequest::evaluate(Evaluator &evaluator,
ProtocolDecl *proto) const {
assert(!proto->hasLazyRequirementSignature());
SmallVector<StructuralRequirement, 2> result;
SmallVector<RequirementError, 2> errors;
SmallVector<InverseRequirement> inverses;
SmallVector<Type, 4> needsDefaultRequirements;
needsDefaultRequirements.push_back(proto->getSelfInterfaceType());
for (auto *assocTypeDecl : proto->getAssociatedTypeMembers())
needsDefaultRequirements.push_back(assocTypeDecl->getDeclaredInterfaceType());
auto &ctx = proto->getASTContext();
auto selfTy = proto->getSelfInterfaceType();
unsigned errorCount = errors.size();
realizeInheritedRequirements(proto, selfTy,
/*inferRequirements=*/false,
result, errors);
if (errors.size() > errorCount) {
// Add requirements from inherited protocols, which are obtained via
// getDirectlyInheritedNominalTypeDecls(). Normally this duplicates
// the information found in the resolved types from the inheritance
// clause, except when type resolution fails and returns an ErrorType.
//
// For example, in 'protocol P: Q & Blah', where 'Blah' does not exist,
// the type 'Q & Blah' resolves to an ErrorType, while the simpler
// mechanism in getDirectlyInheritedNominalTypeDecls() still finds 'Q'.
for (auto *inheritedProto : proto->getInheritedProtocols()) {
result.push_back({
Requirement(RequirementKind::Conformance,
selfTy, inheritedProto->getDeclaredInterfaceType()),
SourceLoc()});
}
}
// Add requirements from the protocol's own 'where' clause.
WhereClauseOwner(proto).visitRequirements(TypeResolutionStage::Structural,
[&](const Requirement &req, RequirementRepr *reqRepr) {
realizeRequirement(proto, req, reqRepr,
/*inferRequirements=*/false,
result, errors);
return false;
});
// Remaining logic is not relevant to @objc protocols.
if (proto->isObjC()) {
// @objc protocols have an implicit AnyObject requirement on Self.
auto layout = LayoutConstraint::getLayoutConstraint(
LayoutConstraintKind::Class, ctx);
result.push_back({Requirement(RequirementKind::Layout, selfTy, layout),
SourceLoc()});
desugarRequirements(result, inverses, errors);
SmallVector<StructuralRequirement, 2> defaults;
InverseRequirement::expandDefaults(ctx, needsDefaultRequirements, defaults);
applyInverses(ctx, needsDefaultRequirements, inverses, defaults, errors);
result.append(defaults);
diagnoseRequirementErrors(ctx, errors,
AllowConcreteTypePolicy::NestedAssocTypes);
return ctx.AllocateCopy(result);
}
// Add requirements for each associated type.
llvm::SmallDenseSet<Identifier, 2> assocTypes;
for (auto *assocTypeDecl : proto->getAssociatedTypeMembers()) {
assocTypes.insert(assocTypeDecl->getName());
// Add requirements placed directly on this associated type.
auto assocType = assocTypeDecl->getDeclaredInterfaceType();
realizeInheritedRequirements(assocTypeDecl, assocType,
/*inferRequirements=*/false,
result, errors);
// Add requirements from this associated type's where clause.
WhereClauseOwner(assocTypeDecl).visitRequirements(
TypeResolutionStage::Structural,
[&](const Requirement &req, RequirementRepr *reqRepr) {
realizeRequirement(proto, req, reqRepr,
/*inferRequirements=*/false,
result, errors);
return false;
});
}
// Add requirements for each typealias.
for (auto *decl : proto->getMembers()) {
// Protocol typealiases are modeled as same-type requirements
// where the left hand side is 'Self.X' for some unresolved
// DependentMemberType X, and the right hand side is the
// underlying type of the typealias.
if (auto *typeAliasDecl = dyn_cast<TypeAliasDecl>(decl)) {
if (!typeAliasDecl->isGeneric()) {
// Ignore the typealias if we have an associated type with the same name
// in the same protocol. This is invalid anyway, but it's just here to
// ensure that we produce the same requirement signature on some tests
// with -requirement-machine-protocol-signatures=verify.
if (assocTypes.contains(typeAliasDecl->getName()))
continue;
// The structural type of a typealias will always be a TypeAliasType,
// so unwrap it to avoid a requirement that prints as 'Self.T == Self.T'
// in diagnostics.
auto underlyingType = typeAliasDecl->getStructuralType();
if (auto *aliasType = dyn_cast<TypeAliasType>(underlyingType.getPointer()))
underlyingType = aliasType->getSinglyDesugaredType();
if (underlyingType->is<UnboundGenericType>())
continue;
auto subjectType = DependentMemberType::get(
selfTy, typeAliasDecl->getName());
Requirement req(RequirementKind::SameType, subjectType,
underlyingType);
result.push_back({req, typeAliasDecl->getLoc()});
}
}
}
desugarRequirements(result, inverses, errors);
SmallVector<StructuralRequirement, 2> defaults;
// We do not expand defaults for invertible protocols themselves.
// HACK: We don't expand for Sendable either. This shouldn't be needed after
// Swift 6.0
if (!proto->getInvertibleProtocolKind()
&& !proto->isSpecificProtocol(KnownProtocolKind::Sendable))
InverseRequirement::expandDefaults(ctx, needsDefaultRequirements, defaults);
applyInverses(ctx, needsDefaultRequirements, inverses, defaults, errors);
result.append(defaults);
diagnoseRequirementErrors(ctx, errors,
AllowConcreteTypePolicy::NestedAssocTypes);
return ctx.AllocateCopy(result);
}
/// This request primarily emits diagnostics about typealiases and associated
/// type declarations that override another associated type, and can better be
/// expressed as requirements in the 'where' clause.
///
/// It also implements a compatibility behavior where sometimes typealiases in
/// protocol extensions would introduce requirements in the
/// GenericSignatureBuilder, if they had the same name as an inherited
/// associated type.
ArrayRef<Requirement>
TypeAliasRequirementsRequest::evaluate(Evaluator &evaluator,
ProtocolDecl *proto) const {
// @objc protocols don't have associated types, so all of the below
// becomes a trivial no-op.
if (proto->isObjC())
return ArrayRef<Requirement>();
assert(!proto->hasLazyRequirementSignature());
SmallVector<Requirement, 2> result;
SmallVector<RequirementError, 2> errors;
SmallVector<InverseRequirement, 4> ignoredInverses;
auto &ctx = proto->getASTContext();
auto getStructuralType = [](TypeDecl *typeDecl) -> Type {
if (auto typealias = dyn_cast<TypeAliasDecl>(typeDecl)) {
// If the type alias was parsed from a user-written type representation,
// request a structural type to avoid unnecessary type checking work.
if (typealias->getUnderlyingTypeRepr() != nullptr)
return typealias->getStructuralType();
return typealias->getUnderlyingType();
}
return typeDecl->getDeclaredInterfaceType();
};
// Collect all typealiases from inherited protocols recursively.
llvm::MapVector<Identifier, TinyPtrVector<TypeDecl *>> inheritedTypeDecls;
for (auto *inheritedProto : ctx.getRewriteContext().getInheritedProtocols(proto)) {
for (auto req : inheritedProto->getMembers()) {
if (auto *typeReq = dyn_cast<TypeDecl>(req)) {
// Ignore generic types.
if (auto genReq = dyn_cast<GenericTypeDecl>(req))
if (genReq->getGenericParams())
continue;
// Ignore typealiases with UnboundGenericType, since they
// are like generic typealiases.
if (auto *typeAlias = dyn_cast<TypeAliasDecl>(req))
if (getStructuralType(typeAlias)->is<UnboundGenericType>())
continue;
inheritedTypeDecls[typeReq->getName()].push_back(typeReq);
}
}
}
// An inferred same-type requirement between the two type declarations
// within this protocol or a protocol it inherits.
auto recordInheritedTypeRequirement = [&](TypeDecl *first, TypeDecl *second) {
desugarRequirement(Requirement(RequirementKind::SameType,
getStructuralType(first),
getStructuralType(second)),
SourceLoc(), result, ignoredInverses, errors);
};
// Local function to find the insertion point for the protocol's "where"
// clause, as well as the string to start the insertion ("where" or ",");
auto getProtocolWhereLoc = [&]() -> Located<const char *> {
// Already has a trailing where clause.
if (auto trailing = proto->getTrailingWhereClause())
return { ", ", trailing->getRequirements().back().getSourceRange().End };
// Inheritance clause.
return { " where ", proto->getInherited().getEndLoc() };
};
// Retrieve the set of requirements that a given associated type declaration
// produces, in the form that would be seen in the where clause.
const auto getAssociatedTypeReqs = [&](const AssociatedTypeDecl *assocType,
const char *start) {
std::string result;
{
llvm::raw_string_ostream out(result);
out << start;
llvm::interleave(
assocType->getInherited().getEntries(),
[&](TypeLoc inheritedType) {
out << assocType->getName() << ": ";
if (auto inheritedTypeRepr = inheritedType.getTypeRepr())
inheritedTypeRepr->print(out);
else
inheritedType.getType().print(out);
},
[&] { out << ", "; });
if (const auto whereClause = assocType->getTrailingWhereClause()) {
if (!assocType->getInherited().empty())
out << ", ";
whereClause->print(out, /*printWhereKeyword*/false);
}
}
return result;
};
// Retrieve the requirement that a given typealias introduces when it
// overrides an inherited associated type with the same name, as a string
// suitable for use in a where clause.
auto getConcreteTypeReq = [&](TypeDecl *type, const char *start) {
std::string result;
{
llvm::raw_string_ostream out(result);
out << start;
out << type->getName() << " == ";
if (auto typealias = dyn_cast<TypeAliasDecl>(type)) {
if (auto underlyingTypeRepr = typealias->getUnderlyingTypeRepr())
underlyingTypeRepr->print(out);
else
typealias->getUnderlyingType().print(out);
} else {
type->print(out);
}
}
return result;
};
for (auto assocTypeDecl : proto->getAssociatedTypeMembers()) {
// Check whether we inherited any types with the same name.
auto knownInherited =
inheritedTypeDecls.find(assocTypeDecl->getName());
if (knownInherited == inheritedTypeDecls.end()) continue;
bool shouldWarnAboutRedeclaration =
!assocTypeDecl->getAttrs().hasAttribute<NonOverrideAttr>() &&
!assocTypeDecl->getAttrs().hasAttribute<OverrideAttr>() &&
!assocTypeDecl->hasDefaultDefinitionType() &&
(!assocTypeDecl->getInherited().empty() ||
assocTypeDecl->getTrailingWhereClause() ||
ctx.LangOpts.WarnImplicitOverrides);
for (auto inheritedType : knownInherited->second) {
// If we have inherited associated type...
if (auto inheritedAssocTypeDecl =
dyn_cast<AssociatedTypeDecl>(inheritedType)) {
// Complain about the first redeclaration.
if (shouldWarnAboutRedeclaration) {
auto inheritedFromProto = inheritedAssocTypeDecl->getProtocol();
auto fixItWhere = getProtocolWhereLoc();
ctx.Diags.diagnose(assocTypeDecl,
diag::inherited_associated_type_redecl,
assocTypeDecl->getName(),
inheritedFromProto->getDeclaredInterfaceType())
.fixItInsertAfter(
fixItWhere.Loc,
getAssociatedTypeReqs(assocTypeDecl, fixItWhere.Item))
.fixItRemove(assocTypeDecl->getSourceRange());
ctx.Diags.diagnose(inheritedAssocTypeDecl, diag::decl_declared_here,
inheritedAssocTypeDecl);
shouldWarnAboutRedeclaration = false;
}
continue;
}
// We inherited a type; this associated type will be identical
// to that typealias.
auto inheritedOwningDecl =
inheritedType->getDeclContext()->getSelfNominalTypeDecl();
ctx.Diags.diagnose(assocTypeDecl,
diag::associated_type_override_typealias,
assocTypeDecl->getName(),
inheritedOwningDecl->getDescriptiveKind(),
inheritedOwningDecl->getDeclaredInterfaceType());
recordInheritedTypeRequirement(assocTypeDecl, inheritedType);
}
inheritedTypeDecls.erase(knownInherited);
}
// Check all remaining inherited type declarations to determine if
// this protocol has a non-associated-type type with the same name.
inheritedTypeDecls.remove_if(
[&](const std::pair<Identifier, TinyPtrVector<TypeDecl *>> &inherited) {
const auto name = inherited.first;
for (auto found : proto->lookupDirect(name)) {
// We only want concrete type declarations.
auto type = dyn_cast<TypeDecl>(found);
if (!type || isa<AssociatedTypeDecl>(type)) continue;
// Ignore nominal types. They're always invalid declarations.
if (isa<NominalTypeDecl>(type))
continue;
// ... from the same module as the protocol.
if (type->getModuleContext() != proto->getModuleContext()) continue;
// Ignore types defined in constrained extensions; their equivalence
// to the associated type would have to be conditional, which we cannot
// model.
if (auto ext = dyn_cast<ExtensionDecl>(type->getDeclContext())) {
// FIXME: isConstrainedExtension() can cause request cycles because it
// computes a generic signature. getTrailingWhereClause() should be good
// enough for protocol extensions, which cannot specify constraints in
// any other way right now (eg, via requirement inference or by
// extending a bound generic type).
if (ext->getTrailingWhereClause()) continue;
}
// We found something.
bool shouldWarnAboutRedeclaration = true;
for (auto inheritedType : inherited.second) {
// If we have inherited associated type...
if (auto inheritedAssocTypeDecl =
dyn_cast<AssociatedTypeDecl>(inheritedType)) {
// Infer a same-type requirement between the typealias' underlying
// type and the inherited associated type.
recordInheritedTypeRequirement(inheritedAssocTypeDecl, type);
// Warn that one should use where clauses for this.
if (shouldWarnAboutRedeclaration) {
auto inheritedFromProto = inheritedAssocTypeDecl->getProtocol();
auto fixItWhere = getProtocolWhereLoc();
ctx.Diags.diagnose(type,
diag::typealias_override_associated_type,
name,
inheritedFromProto->getDeclaredInterfaceType())
.fixItInsertAfter(fixItWhere.Loc,
getConcreteTypeReq(type, fixItWhere.Item))
.fixItRemove(type->getSourceRange());
ctx.Diags.diagnose(inheritedAssocTypeDecl, diag::decl_declared_here,
inheritedAssocTypeDecl);
shouldWarnAboutRedeclaration = false;
}
continue;
}
// Two typealiases that should be the same.
recordInheritedTypeRequirement(inheritedType, type);
}
// We can remove this entry.
return true;
}
return false;
});
// Infer same-type requirements among inherited type declarations.
for (auto &entry : inheritedTypeDecls) {
if (entry.second.size() < 2) continue;
auto firstDecl = entry.second.front();
for (auto otherDecl : ArrayRef<TypeDecl *>(entry.second).slice(1)) {
recordInheritedTypeRequirement(firstDecl, otherDecl);
}
}
diagnoseRequirementErrors(ctx, errors,
AllowConcreteTypePolicy::NestedAssocTypes);
return ctx.AllocateCopy(result);
}
ArrayRef<ProtocolDecl *>
ProtocolDependenciesRequest::evaluate(Evaluator &evaluator,
ProtocolDecl *proto) const {
auto &ctx = proto->getASTContext();
llvm::SmallSetVector<ProtocolDecl *, 4> result;
// If we have a serialized requirement signature, deserialize it and
// look at conformance requirements.
if (proto->hasLazyRequirementSignature()) {
for (auto req : proto->getRequirementSignature().getRequirements()) {
if (req.getKind() == RequirementKind::Conformance) {
result.insert(req.getProtocolDecl());
}
}
return ctx.AllocateCopy(result);
}
// Otherwise, we can't ask for the requirement signature, because
// this request is used as part of *building* the requirement
// signature. Look at the structural requirements instead.
for (auto req : proto->getStructuralRequirements()) {
if (req.req.getKind() == RequirementKind::Conformance)
result.insert(req.req.getProtocolDecl());
}
return ctx.AllocateCopy(result);
}
|