File: RequirementMachine.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (570 lines) | stat: -rw-r--r-- 20,691 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
//===--- RequirementMachine.cpp - Generics with term rewriting ------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// A requirement machine is constructed from a collection of requirements over
// some set of generic parameters, and consists of a rewrite system together
// with a property map.
//
// The rewrite system and property map are used to answer questions about the
// type parameters expressed by this set of generic requirements. These are
// called "generic signature queries", and are defined as methods on the
// GenericSignature class; for example, two of the more common ones are
// getReducedType() and requiresProtocol().
//
// The terms of the rewrite system describe all possible type parameters that
// can be written -- the generic parameters themselves, together with all nested
// associated types generated by protocol conformances.
//
// The property map describes the requirements imposed on each type parameter,
// either directly by the user or implied by some protocol conformance.
//
// There are two "kinds" of requirement machines:
// - built from canonical, minimal generic signatures, used for queries,
// - built from user-written requirements, used to compute minimal generic
//   signatures.
//
// Ultimately, all minimal generic signatures are built by the second kind of
// requirement machine; the first kind consumes a minimal generic signature
// that was previously constructed, for example from a deserialized module.
//
// The second kind of requirement machine records additional information
// during completion.
//
// The second kind can become the first; after a minimal generic signature has
// been computed, the rewrite loops and other information only needed for
// minimization can be discarded.
//
// # Requirement machine initialization
//
// Requirement machines of the first kind are constructed by:
// - initWithProtocolSignatureRequirements()
// - initWithGenericSignature()
//
// The RewriteContext::getRequirementMachine() methods wrap the above with
// a lazy cache.
//
// Requirement machines of the second kind are constructed by:
// - initWithProtocolWrittenRequirements()
// - initWithWrittenRequirements()
//
// These are used from the implementations of RequirementSignatureRequest,
// AbstractGenericSignatureRequest and InferredGenericSignatureRequest
// in RequirementMachineRequests.cpp.
// 
// Both kinds of requirement machines undergo a multi-stage construction
// process which is best understood as a series of state transitions:
//
//  /--------------------------\
// |  Empty RequirementMachine |
//  \--------------------------/
//               |                      --------------
//               |                     / Requirement /
//               |                     --------------
//               |                           |
//               |                           v
//               |                    +-------------+
//               |                    | RuleBuilder |
//               |                    +-------------+
//               |                           |
//               |                           v
//               |                         -------
//               |                        / Rule /
//               |                        -------
//               |                           |
//               |   +-----------------------+
//               |   |
//               v   v
//      +----------------+
//      | Initialization |
//      +----------------+
//               |
//               v
//   /-----------------------------\
//  |  Initial RequirementMachine   |
//  |   /-----------------------\   |
//  |  |  Initial RewriteSystem  |  |
//  |   \-----------------------/   |
//   \------------------------------/
//               |
//               v
//        +------------+
//        | Completion |
//        +------------+
//               |
//               v
//   /------------------------------------------------------------------------\
//  |                      Complete RequirementMachine                         |
//  |                                                 +------ optional ----+   |
//  |  /-------------------------\   /-------------\  |  /--------------\  |   |
//  | |  Confluent RewriteSystem  | |  PropertyMap  | | |  RewriteLoops  | |   |
//  |  \-------------------------/   \-------------/  |  \--------------/  |   |
//  |                                                 +--------------------+   |
//   \------------------------------------------------------------------------/
//
//
// The RuleBuilder converts desugared requirements into rules. See
// RuleBuilder.cpp and RequirementLowering.cpp.
//
// Completion is an iterated process involving the Knuth-Bendix algorithm and
// property map construction, which are implemented in KnuthBendix.cpp and
// PropertyMap.cpp.
//
// # Requirement machine minimization
//
// A complete RequirementMachine of the second kind -- built from user-written
// requirements, with RewriteLoops recorded -- undergoes an additional state
// transition into a minimized state via a minimization process which identifies
// redundant rules. This is implemented in HomotopyReduction.cpp and
// MinimalConformances.cpp.
//
// After minimization, the remaining non-redundant rules are converted into
// the Requirements of a minimal generic signature by the RequirementBuilder.
// Then, the requirement machine undergoes a final state transition into the
// immutable "frozen" state:
//
//   /-----------------------------\
//  |  Complete RequirementMachine  |
//   \-----------------------------/
//                  |
//                  v
//           +--------------+            -------------------
//           | Minimization |  ------>  / RequirementError /
//           +--------------+           -------------------
//                  |
//                  v
//   /------------------------------\
//  |  Minimized RequirementMachine  |  ---------------+
//   \------------------------------/                  |
//                  |                                  v
//                  |                               -------
//                  |                              / Rule /
//                  v                              -------
//                  |                                  |
//                  |                                  v
//                  |                        +--------------------+
//                  |                        | RequirementBuilder |
//                  |                        +--------------------+
//                  |                                  |
//                  |                                  v
//                  |                            --------------
//                  |                           / Requirement /
//                  v                           --------------
//             +----------+
//             | Freezing |
//             +----------+
//                  |
//                  v
//    /---------------------------\
//   |  Frozen RequirementMachine  |
//    \---------------------------/
//
// # Generic signature queries
//
// Requirement machines of the first kind move into the "frozen" state
// immediately after completion.
//
//   /-----------------------------\
//  |  Complete RequirementMachine  |
//   \-----------------------------/
//                  |
//                  v
//             +----------+
//             | Freezing |
//             +----------+
//                  |
//                  v
//    /---------------------------\
//   |  Frozen RequirementMachine  |
//    \---------------------------/
//
// Once frozen, generic signature queries can be issued against the new
// requirement machine of either kind. These are implemented as methods on
// RequirementMachine in GenericSignatureQueries.cpp.
//
//===----------------------------------------------------------------------===//

#include "RequirementMachine.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Decl.h"
#include "swift/AST/GenericSignature.h"
#include "swift/AST/PrettyStackTrace.h"
#include "swift/AST/Requirement.h"
#include "RequirementLowering.h"
#include "RuleBuilder.h"

using namespace swift;
using namespace rewriting;

RequirementMachine::RequirementMachine(RewriteContext &ctx)
    : Context(ctx), System(ctx), Map(System) {
  auto &langOpts = ctx.getASTContext().LangOpts;
  Dump = langOpts.DumpRequirementMachine;
  MaxRuleCount = langOpts.RequirementMachineMaxRuleCount;
  MaxRuleLength = langOpts.RequirementMachineMaxRuleLength;
  MaxConcreteNesting = langOpts.RequirementMachineMaxConcreteNesting;
  Stats = ctx.getASTContext().Stats;

  if (Stats)
    ++Stats->getFrontendCounters().NumRequirementMachines;
}

RequirementMachine::~RequirementMachine() {}

/// Checks the result of a completion in a context where we can't diagnose
/// failure, either when building a rewrite system from an existing
/// minimal signature (which should have been checked when it was
/// minimized) or from AbstractGenericSignatureRequest (where failure
/// is fatal).
void RequirementMachine::checkCompletionResult(CompletionResult result) const {
  switch (result) {
  case CompletionResult::Success:
    break;

  case CompletionResult::MaxRuleCount:
    llvm::errs() << "Rewrite system exceeded maximum rule count\n";
    dump(llvm::errs());
    abort();

  case CompletionResult::MaxRuleLength:
    llvm::errs() << "Rewrite system exceeded rule length limit\n";
    dump(llvm::errs());
    abort();

  case CompletionResult::MaxConcreteNesting:
    llvm::errs() << "Rewrite system exceeded concrete type nesting depth limit\n";
    dump(llvm::errs());
    abort();
  }
}

/// Build a requirement machine for the previously-computed requirement
/// signatures connected component of protocols.
///
/// This must only be called exactly once, before any other operations are
/// performed on this requirement machine.
///
/// Used by RewriteContext::getRequirementMachine(const ProtocolDecl *).
///
/// Returns failure if completion fails within the configured number of steps.
std::pair<CompletionResult, unsigned>
RequirementMachine::initWithProtocolSignatureRequirements(
    ArrayRef<const ProtocolDecl *> protos) {
  FrontendStatsTracer tracer(Stats, "build-rewrite-system");

  if (Dump) {
    llvm::dbgs() << "Adding protocols";
    for (auto *proto : protos) {
      llvm::dbgs() << " " << proto->getName();
    }
    llvm::dbgs() << " {\n";
  }

  RuleBuilder builder(Context, System.getReferencedProtocols());
  builder.initWithProtocolSignatureRequirements(protos);

  // Add the initial set of rewrite rules to the rewrite system.
  System.initialize(/*recordLoops=*/false, protos,
                    std::move(builder.ImportedRules),
                    std::move(builder.PermanentRules),
                    std::move(builder.RequirementRules));

  auto result = computeCompletion(RewriteSystem::DisallowInvalidRequirements);

  freeze();

  if (Dump) {
    llvm::dbgs() << "}\n";
  }

  return result;
}

/// Build a requirement machine for the requirements of a generic signature.
///
/// In this mode, minimization is not going to be performed, so rewrite loops
/// are not recorded.
///
/// This must only be called exactly once, before any other operations are
/// performed on this requirement machine.
///
/// Used by ASTContext::getOrCreateRequirementMachine().
///
/// Returns failure if completion fails within the configured number of steps.
std::pair<CompletionResult, unsigned>
RequirementMachine::initWithGenericSignature(GenericSignature sig) {
  Sig = sig;
  Params.append(sig.getGenericParams().begin(),
                sig.getGenericParams().end());

  PrettyStackTraceGenericSignature debugStack("building rewrite system for", sig);

  FrontendStatsTracer tracer(Stats, "build-rewrite-system");

  if (Dump) {
    llvm::dbgs() << "Adding generic signature " << sig << " {\n";
  }

  // Collect the top-level requirements, and all transitively-referenced
  // protocol requirement signatures.
  RuleBuilder builder(Context, System.getReferencedProtocols());
  builder.initWithGenericSignature(sig.getGenericParams(),
                                   sig.getRequirements());

  // Add the initial set of rewrite rules to the rewrite system.
  System.initialize(/*recordLoops=*/false,
                    /*protos=*/ArrayRef<const ProtocolDecl *>(),
                    std::move(builder.ImportedRules),
                    std::move(builder.PermanentRules),
                    std::move(builder.RequirementRules));

  auto result = computeCompletion(RewriteSystem::DisallowInvalidRequirements);

  freeze();

  if (Dump) {
    llvm::dbgs() << "}\n";
  }

  return result;
}

/// Build a requirement machine for the user-written requirements of connected
/// component of protocols.
///
/// This is used when actually building the requirement signatures of these
/// protocols. In this mode, minimization will be performed, so rewrite loops
/// are recorded during completion.
///
/// This must only be called exactly once, before any other operations are
/// performed on this requirement machine.
///
/// Used by RequirementSignatureRequest.
///
/// Returns failure if completion fails within the configured number of steps.
std::pair<CompletionResult, unsigned>
RequirementMachine::initWithProtocolWrittenRequirements(
    ArrayRef<const ProtocolDecl *> component,
    const llvm::DenseMap<const ProtocolDecl *,
                         SmallVector<StructuralRequirement, 4>> protos) {
  FrontendStatsTracer tracer(Stats, "build-rewrite-system");

  // For RequirementMachine::verify() when called by generic signature queries;
  // We have a single valid generic parameter at depth 0, index 0.
  Params.push_back(component[0]->getSelfInterfaceType()->castTo<GenericTypeParamType>());

  if (Dump) {
    llvm::dbgs() << "Adding protocols";
    for (auto *proto : component) {
      llvm::dbgs() << " " << proto->getName();
    }
    llvm::dbgs() << " {\n";
  }

  RuleBuilder builder(Context, System.getReferencedProtocols());
  builder.initWithProtocolWrittenRequirements(component, protos);

  // Add the initial set of rewrite rules to the rewrite system.
  System.initialize(/*recordLoops=*/true, component,
                    std::move(builder.ImportedRules),
                    std::move(builder.PermanentRules),
                    std::move(builder.RequirementRules));

  auto result = computeCompletion(RewriteSystem::AllowInvalidRequirements);

  if (Dump) {
    llvm::dbgs() << "}\n";
  }

  return result;
}

/// Build a requirement machine from a set of generic parameters and
/// structural requirements.
///
/// In this mode, minimization will be performed, so rewrite loops are recorded
/// during completion.
///
/// This must only be called exactly once, before any other operations are
/// performed on this requirement machine.
///
/// Used by AbstractGenericSignatureRequest and InferredGenericSignatureRequest.
///
/// Returns failure if completion fails within the configured number of steps.
std::pair<CompletionResult, unsigned>
RequirementMachine::initWithWrittenRequirements(
    ArrayRef<GenericTypeParamType *> genericParams,
    ArrayRef<StructuralRequirement> requirements) {
  Params.append(genericParams.begin(), genericParams.end());

  FrontendStatsTracer tracer(Stats, "build-rewrite-system");

  if (Dump) {
    llvm::dbgs() << "Adding generic parameters:";
    for (auto *paramTy : genericParams)
      llvm::dbgs() << " " << Type(paramTy);
    llvm::dbgs() << "\n";
  }

  // Collect the top-level requirements, and all transitively-referenced
  // protocol requirement signatures.
  RuleBuilder builder(Context, System.getReferencedProtocols());
  builder.initWithWrittenRequirements(genericParams, requirements);

  // Add the initial set of rewrite rules to the rewrite system.
  System.initialize(/*recordLoops=*/true,
                    /*protos=*/ArrayRef<const ProtocolDecl *>(),
                    std::move(builder.ImportedRules),
                    std::move(builder.PermanentRules),
                    std::move(builder.RequirementRules));

  auto result = computeCompletion(RewriteSystem::AllowInvalidRequirements);

  if (Dump) {
    llvm::dbgs() << "}\n";
  }

  return result;
}

/// Attempt to obtain a confluent rewrite system by iterating the Knuth-Bendix
/// completion procedure together with property map construction until fixed
/// point.
///
/// Returns a pair where the first element is the status. If the status is not
/// CompletionResult::Success, the second element of the pair is the rule ID
/// which triggered failure.
std::pair<CompletionResult, unsigned>
RequirementMachine::computeCompletion(RewriteSystem::ValidityPolicy policy) {
  while (true) {
    {
      unsigned ruleCount = System.getRules().size();

      // First, run the Knuth-Bendix algorithm to resolve overlapping rules.
      auto result = System.performKnuthBendix(MaxRuleCount, MaxRuleLength);

      unsigned rulesAdded = (System.getRules().size() - ruleCount);

      if (Stats) {
        Stats->getFrontendCounters()
            .NumRequirementMachineCompletionSteps += rulesAdded;
      }

      // Check for failure.
      if (result.first != CompletionResult::Success)
        return result;

      // Check invariants.
      System.verifyRewriteRules(policy);
    }

    {
      unsigned ruleCount = System.getRules().size();

      // Build the property map, which also performs concrete term
      // unification; if this added any new rules, run the completion
      // procedure again.
      Map.buildPropertyMap();

      unsigned rulesAdded = (System.getRules().size() - ruleCount);

      // If buildPropertyMap() didn't add any new rules, we are done.
      if (rulesAdded == 0)
        break;

      if (Stats) {
        Stats->getFrontendCounters()
          .NumRequirementMachineUnifiedConcreteTerms += rulesAdded;
      }

      // Check new rules added by the property map against configured limits.
      for (unsigned i = 0; i < rulesAdded; ++i) {
        const auto &newRule = System.getRule(ruleCount + i);
        if (newRule.getDepth() > MaxRuleLength + System.getLongestInitialRule()) {
          return std::make_pair(CompletionResult::MaxRuleLength,
                                ruleCount + i);
        }
        if (newRule.getNesting() > MaxConcreteNesting + System.getDeepestInitialRule()) {
          return std::make_pair(CompletionResult::MaxConcreteNesting,
                                ruleCount + i);
        }
      }

      if (System.getLocalRules().size() > MaxRuleCount) {
        return std::make_pair(CompletionResult::MaxRuleCount,
                              System.getRules().size() - 1);
      }
    }
  }

  if (Dump) {
    dump(llvm::dbgs());
  }

  assert(!Complete);
  Complete = true;

  return std::make_pair(CompletionResult::Success, 0);
}

/// Transitions into a "frozen" state, where the requirement machine is now
/// immutable, and generic signature queries may be performed.
void RequirementMachine::freeze() {
  System.freeze();
}

ArrayRef<Rule> RequirementMachine::getLocalRules() const {
  return System.getLocalRules();
}

bool RequirementMachine::isComplete() const {
  return Complete;
}

GenericSignatureErrors RequirementMachine::getErrors() const {
  // FIXME: Assert if we had errors but we didn't emit any diagnostics?
  return System.getErrors();
}

void RequirementMachine::dump(llvm::raw_ostream &out) const {
  out << "Requirement machine for ";
  if (Sig)
    out << Sig;
  else if (!System.getProtocols().empty()) {
    auto protos = System.getProtocols();
    out << "protocols [";
    for (auto *proto : protos) {
      out << " " << proto->getName();
    }
    out << " ]";
  } else {
    out << "fresh signature <";
    for (auto paramTy : Params) {
      out << " " << Type(paramTy);
      if (paramTy->isParameterPack())
        out << "…";
    }
    out << " >";
  }
  out << "\n";

  System.dump(out);
  Map.dump(out);

  out << "Conformance paths: {\n";
  for (auto pair : ConformancePaths) {
    out << "- " << pair.first.first << " : ";
    out << pair.first.second->getName() << " => ";
    pair.second.print(out);
    out << "\n";
  }
  out << "}\n";
}