File: RequirementMachineRequests.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (1019 lines) | stat: -rw-r--r-- 39,322 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
//===--- RequirementMachineRequests.cpp - Request evaluator requests ------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the main entry points for computing minimized generic
// signatures using the requirement machine via the request evaluator.
//
// There are three requests:
//
// - RequirementSignatureRequest computes protocol requirement signatures from
//   user-written requirements.
// - AbstractGenericSignatureRequest computes minimal generic signatures from a
//   set of abstract Requirements.
// - InferredGenericSignatureRequest computes minimal generic signatures from a
//   set of user-written requirements on a parsed generic declaration.
//
// Each request begins by constructing some desugared requirements using the
// entry points in RequirementLowering.cpp.
//
// The desugared requirements are fed into a new requirement machine instance,
// which is then asked to produce a minimal set of rewrite rules. These rules
// are converted into minimal canonical Requirements using the entry points in
// RuleBuilder.cpp.
//
// The actual logic for finding a minimal set of rewrite rules is implemented in
// HomotopyReduction.cpp and MinimalConformances.cpp.
//
// Routines for constructing Requirements from Rules are implemented in
// RequirementBuilder.cpp.
//
// This process is actually iterated to implement "concrete equivalence class
// splitting", a compatibility behavior to produce the same results as the
// GenericSignatureBuilder in certain esoteric edge cases:
//
//           ------------------------
//          / Desugared Requirement /
//          ------------------------
//                     |
//                     |  +---------------------+
//                     |  |                     |
//                     v  v                     |
//              +-------------+                 |
//              | RuleBuilder |                 |
//              +-------------+                 |
//                     |                        |
//                     v                        |
//             +--------------+                 |
//             | Minimization |                 |
//             +--------------+                 |
//                     |                        |
//                     v                        |
//          +--------------------+              |
//          | RequirementBuilder |              |
//          +--------------------+              |
//                     |                        |
//                     v                        |
//               --------------                 |
//              / Requirement /                 |
//              --------------                  |
//                     |                        |
//                     v                        |
//  +------------------------------------+      |
//  | Split concrete equivalence classes |  ----+
//  +------------------------------------+
//                     |
//                     v
//               --------------
//              / Requirement /
//              --------------
//
// This transformation is described in splitConcreteEquivalenceClasses() below.
//
//===----------------------------------------------------------------------===//

#include "RequirementMachine.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Decl.h"
#include "swift/AST/DiagnosticsSema.h"
#include "swift/AST/GenericSignature.h"
#include "swift/AST/LazyResolver.h"
#include "swift/AST/Requirement.h"
#include "swift/AST/RequirementSignature.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/AST/TypeRepr.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/Statistic.h"
#include <memory>
#include <vector>
#include "RequirementLowering.h"

using namespace swift;
using namespace rewriting;

/// Hack for GenericSignatureBuilder compatibility. We might end up with a
/// same-type requirement between type parameters where one of them has an
/// implied concrete type requirement. In this case, split it up into two
/// concrete type requirements.
static bool shouldSplitConcreteEquivalenceClass(
    Requirement req,
    const ProtocolDecl *proto,
    const RequirementMachine *machine) {
  return (req.getKind() == RequirementKind::SameType &&
          req.getSecondType()->isTypeParameter() &&
          machine->isConcreteType(req.getSecondType(), proto));
}

/// Returns true if this generic signature contains abstract same-type
/// requirements between concrete type parameters. In this case, we split
/// the abstract same-type requirements into pairs of concrete type
/// requirements, and minimize the signature again.
static bool shouldSplitConcreteEquivalenceClasses(
    ArrayRef<Requirement> requirements,
    const ProtocolDecl *proto,
    const RequirementMachine *machine) {
  for (auto req : requirements) {
    if (shouldSplitConcreteEquivalenceClass(req, proto, machine))
      return true;
  }

  return false;
}

/// Same as the above, but with the requirements of a protocol connected
/// component.
static bool shouldSplitConcreteEquivalenceClasses(
    const llvm::DenseMap<const ProtocolDecl *, RequirementSignature> &protos,
    const RequirementMachine *machine) {
  for (const auto &pair : protos) {
    if (shouldSplitConcreteEquivalenceClasses(pair.second.getRequirements(),
                                              pair.first, machine))
      return true;
  }

  return false;
}

/// Replace each same-type requirement 'T == U' where 'T' (and therefore 'U')
/// is known to equal a concrete type 'C' with a pair of requirements
/// 'T == C' and 'U == C'. We build the signature again in this case, since
/// one of the two requirements will be redundant, but we don't know which
/// ahead of time.
static void splitConcreteEquivalenceClasses(
    ASTContext &ctx,
    ArrayRef<Requirement> requirements,
    const ProtocolDecl *proto,
    const RequirementMachine *machine,
    ArrayRef<GenericTypeParamType *> genericParams,
    SmallVectorImpl<StructuralRequirement> &splitRequirements,
    unsigned &attempt) {
  bool debug = machine->getDebugOptions().contains(
      DebugFlags::SplitConcreteEquivalenceClass);

  unsigned maxAttempts =
      ctx.LangOpts.RequirementMachineMaxSplitConcreteEquivClassAttempts;

  if (attempt >= maxAttempts) {
    llvm::errs() << "Splitting concrete equivalence classes did not "
                 << "reach fixed point after " << attempt << " attempts.\n";
    llvm::errs() << "Last attempt produced these requirements:\n";
    for (auto req : requirements) {
      req.dump(llvm::errs());
      llvm::errs() << "\n";
    }
    machine->dump(llvm::errs());
    abort();
  }

  splitRequirements.clear();

  if (debug) {
    llvm::dbgs() << "\n# Splitting concrete equivalence classes:\n";
  }

  for (auto req : requirements) {
    if (shouldSplitConcreteEquivalenceClass(req, proto, machine)) {
      auto concreteType = machine->getConcreteType(
          req.getSecondType(), genericParams, proto);

      Requirement firstReq(RequirementKind::SameType,
                           req.getFirstType(), concreteType);
      Requirement secondReq(RequirementKind::SameType,
                            req.getSecondType(), concreteType);
      splitRequirements.push_back({firstReq, SourceLoc()});
      splitRequirements.push_back({secondReq, SourceLoc()});

      if (debug) {
        llvm::dbgs() << "- First split: ";
        firstReq.dump(llvm::dbgs());
        llvm::dbgs() << "\n- Second split: ";
        secondReq.dump(llvm::dbgs());
        llvm::dbgs() << "\n";
      }
      continue;
    }

    splitRequirements.push_back({req, SourceLoc()});

    if (debug) {
      llvm::dbgs() << "- Not split: ";
      req.dump(llvm::dbgs());
      llvm::dbgs() << "\n";
    }
  }
}

/// Same as the above, but with the requirements of a protocol connected
/// component.
static void splitConcreteEquivalenceClasses(
    ASTContext &ctx,
    const llvm::DenseMap<const ProtocolDecl *, RequirementSignature> &protos,
    const RequirementMachine *machine,
    llvm::DenseMap<const ProtocolDecl *,
                   SmallVector<StructuralRequirement, 4>> &splitProtos,
    unsigned &attempt) {
  for (const auto &pair : protos) {
    const auto *proto = pair.first;
    auto genericParams = proto->getGenericSignature().getGenericParams();
    splitConcreteEquivalenceClasses(ctx, pair.second.getRequirements(),
                                    proto, machine, genericParams,
                                    splitProtos[proto],
                                    attempt);
  }
}

/// Builds the requirement signatures for each protocol in this strongly
/// connected component.
llvm::DenseMap<const ProtocolDecl *, RequirementSignature>
RequirementMachine::computeMinimalProtocolRequirements() {
  auto protos = System.getProtocols();

  assert(protos.size() > 0 &&
         "Not a protocol connected component rewrite system");

  System.minimizeRewriteSystem(Map);

  if (Dump) {
    llvm::dbgs() << "Minimized rewrite system:\n";
    dump(llvm::dbgs());
  }

  auto rules = System.getMinimizedProtocolRules();

  auto &ctx = Context.getASTContext();

  // Note that we build 'result' by iterating over 'protos' rather than
  // 'rules'; this is intentional, so that even if a protocol has no
  // rules, we still end up creating an entry for it in 'result'.
  llvm::DenseMap<const ProtocolDecl *, RequirementSignature> result;
  for (const auto *proto : protos) {
    auto genericParams = proto->getGenericSignature().getGenericParams();

    const auto &entry = rules[proto];

    std::vector<Requirement> reqs;
    std::vector<ProtocolTypeAlias> aliases;
    buildRequirementsFromRules(entry.Requirements,
                               entry.TypeAliases,
                               genericParams,
                               /*reconstituteSugar=*/true,
                               reqs, aliases);

    result[proto] = RequirementSignature(ctx.AllocateCopy(reqs),
                                         ctx.AllocateCopy(aliases),
                                         getErrors());
  }

  return result;
}

RequirementSignature
RequirementSignatureRequest::evaluate(Evaluator &evaluator,
                                      ProtocolDecl *proto) const {
  ASTContext &ctx = proto->getASTContext();

  // First check if we have a deserializable requirement signature.
  if (proto->hasLazyRequirementSignature()) {
    // FIXME: (transitional) increment the redundant "always-on" counter.
    if (ctx.Stats)
      ++ctx.Stats->getFrontendCounters().NumLazyRequirementSignaturesLoaded;

    auto contextData = static_cast<LazyProtocolData *>(
        ctx.getOrCreateLazyContextData(proto, nullptr));

    SmallVector<Requirement, 2> requirements;
    SmallVector<ProtocolTypeAlias, 2> typeAliases;
    contextData->loader->loadRequirementSignature(
        proto, contextData->requirementSignatureData,
        requirements, typeAliases);
    return RequirementSignature(ctx.AllocateCopy(requirements),
                                ctx.AllocateCopy(typeAliases));
  }

  auto &rewriteCtx = ctx.getRewriteContext();

  // We build requirement signatures for all protocols in a strongly connected
  // component at the same time.
  auto component = rewriteCtx.startComputingRequirementSignatures(proto);

  SWIFT_DEFER {
    rewriteCtx.finishComputingRequirementSignatures(proto);
  };

  SmallVector<RequirementError, 4> errors;

  // Collect user-written requirements from the protocols in this connected
  // component.
  llvm::DenseMap<const ProtocolDecl *,
                 SmallVector<StructuralRequirement, 4>> protos;
  for (const auto *proto : component) {
    auto &requirements = protos[proto];
    for (auto req : proto->getStructuralRequirements())
      requirements.push_back(req);
    for (auto req : proto->getTypeAliasRequirements())
      requirements.push_back({req, SourceLoc()});
  }

  if (rewriteCtx.getDebugOptions().contains(DebugFlags::Timers)) {
    rewriteCtx.beginTimer("RequirementSignatureRequest");
    llvm::dbgs() << "[";
    for (auto *proto : component)
      llvm::dbgs() << " " << proto->getName();
    llvm::dbgs() << " ]\n";
  }

  SWIFT_DEFER {
    if (rewriteCtx.getDebugOptions().contains(DebugFlags::Timers)) {
      rewriteCtx.endTimer("RequirementSignatureRequest");
      llvm::dbgs() << "[";
      for (auto *proto : component)
        llvm::dbgs() << " " << proto->getName();
      llvm::dbgs() << " ]\n";
    }
  };

  unsigned attempt = 0;
  for (;;) {
    for (const auto *otherProto : component) {
      auto &requirements = protos[otherProto];

      // Preprocess requirements to eliminate conformances on type parameters
      // which are made concrete.
      if (ctx.LangOpts.EnableRequirementMachineConcreteContraction) {
        SmallVector<StructuralRequirement, 4> contractedRequirements;

        bool debug = rewriteCtx.getDebugOptions()
                               .contains(DebugFlags::ConcreteContraction);

        if (performConcreteContraction(requirements, contractedRequirements,
                                       errors, debug)) {
          std::swap(contractedRequirements, requirements);
        }
      }
    }

    // Heap-allocate the requirement machine to save stack space.
    std::unique_ptr<RequirementMachine> machine(new RequirementMachine(
        rewriteCtx));

    auto status = machine->initWithProtocolWrittenRequirements(component, protos);

    // If completion failed, diagnose an error and return a dummy signature.
    if (status.first != CompletionResult::Success) {
      // All we can do at this point is diagnose and give each protocol an empty
      // requirement signature.
      for (const auto *otherProto : component) {
        ctx.Diags.diagnose(otherProto->getLoc(),
                           diag::requirement_machine_completion_failed,
                           /*protocol=*/1,
                           unsigned(status.first));

        auto rule = machine->getRuleAsStringForDiagnostics(status.second);
        ctx.Diags.diagnose(otherProto->getLoc(),
                           diag::requirement_machine_completion_rule,
                           rule);

        if (otherProto != proto) {
          ctx.evaluator.cacheOutput(
            RequirementSignatureRequest{const_cast<ProtocolDecl *>(otherProto)},
            RequirementSignature::getPlaceholderRequirementSignature(
                otherProto, GenericSignatureErrorFlags::CompletionFailed));
        }
      }

      return RequirementSignature::getPlaceholderRequirementSignature(
          proto, GenericSignatureErrorFlags::CompletionFailed);
    }

    auto minimalRequirements = machine->computeMinimalProtocolRequirements();

    // Don't bother splitting concrete equivalence classes if there were invalid
    // requirements, because the signature is not going to be ABI anyway.
    if (!machine->getErrors().contains(
          GenericSignatureErrorFlags::HasInvalidRequirements)) {
      if (shouldSplitConcreteEquivalenceClasses(minimalRequirements, machine.get())) {
        ++attempt;
        splitConcreteEquivalenceClasses(ctx, minimalRequirements,
                                        machine.get(), protos, attempt);
        continue;
      }
    }

    bool debug = machine->getDebugOptions().contains(DebugFlags::Minimization);

    // The requirement signature for the actual protocol that the result
    // was kicked off with.
    std::optional<RequirementSignature> result;

    if (debug) {
      llvm::dbgs() << "\nRequirement signatures:\n";
    }

    // Cache the requirement signatures for all other protocols in this
    // connected component.
    for (const auto &pair : minimalRequirements) {
      auto *otherProto = pair.first;
      const auto &reqs = pair.second;

      // Dump the result if requested.
      if (debug) {
        llvm::dbgs() << "- Protocol " << otherProto->getName() << ": ";

        auto sig = GenericSignature::get(
            otherProto->getGenericSignature().getGenericParams(),
            reqs.getRequirements());

        PrintOptions opts;
        opts.ProtocolQualifiedDependentMemberTypes = true;
        sig.print(llvm::dbgs(), opts);
        llvm::dbgs() << "\n";
      }

      // Don't call setRequirementSignature() on the original proto; the
      // request evaluator will do it for us.
      if (otherProto == proto)
        result = reqs;
      else {
        auto temp = reqs;
        ctx.evaluator.cacheOutput(
          RequirementSignatureRequest{const_cast<ProtocolDecl *>(otherProto)},
          std::move(temp));
      }
    }

    // FIXME: We don't have the inverses from desugaring available here!
    SmallVector<InverseRequirement, 2> missingInverses;

    // Diagnose redundant requirements and conflicting requirements.
    machine->computeRequirementDiagnostics(errors, missingInverses,
                                           proto->getLoc());
    diagnoseRequirementErrors(ctx, errors,
                              AllowConcreteTypePolicy::NestedAssocTypes);

    for (auto *protocol : machine->System.getProtocols()) {
      auto selfType = protocol->getSelfInterfaceType();
      auto concrete = machine->getConcreteType(selfType,
                                               machine->getGenericParams(),
                                               protocol);
      if (!concrete || concrete->hasError())
        continue;

      protocol->diagnose(diag::requires_generic_param_made_equal_to_concrete,
                         selfType);
    }

    if (!machine->getErrors()) {
      // If this signature was minimized without errors or non-redundant
      // concrete conformances, we can re-use the requirement machine for
      // subsequent queries, instead of building a new requirement machine
      // from the minimized signature.
      rewriteCtx.installRequirementMachine(proto, std::move(machine));
    }

    // Return the result for the specific protocol this request was kicked off on.
    return *result;
  }
}

/// Builds the top-level generic signature requirements for this rewrite system.
GenericSignature
RequirementMachine::computeMinimalGenericSignature(
    bool reconstituteSugar) {
  assert(!Sig &&
         "Already computed minimal generic signature");
  assert(System.getProtocols().empty() &&
         "Not a top-level generic signature rewrite system");
  assert(!Params.empty() &&
         "Not a from-source top-level generic signature rewrite system");

  System.minimizeRewriteSystem(Map);

  if (Dump) {
    llvm::dbgs() << "Minimized rewrite system:\n";
    dump(llvm::dbgs());
  }

  auto rules = System.getMinimizedGenericSignatureRules();

  std::vector<Requirement> reqs;
  std::vector<ProtocolTypeAlias> aliases;

  buildRequirementsFromRules(rules, ArrayRef<unsigned>(), getGenericParams(),
                             reconstituteSugar, reqs, aliases);
  assert(aliases.empty());

  auto sig = GenericSignature::get(getGenericParams(), reqs);

  // Remember the signature for generic signature queries. In particular,
  // getConformancePath() needs the current requirement machine's
  // generic signature.
  Sig = sig.getCanonicalSignature();

  return sig;
}

/// Check whether the inputs to the \c AbstractGenericSignatureRequest are
/// all canonical.
static bool isCanonicalRequest(GenericSignature baseSignature,
                               ArrayRef<GenericTypeParamType *> genericParams,
                               ArrayRef<Requirement> requirements) {
  if (baseSignature && !baseSignature->isCanonical())
    return false;

  for (auto gp : genericParams) {
    if (!gp->isCanonical())
      return false;
  }

  for (const auto &req : requirements) {
    if (!req.isCanonical())
      return false;
  }

  return true;
}

GenericSignatureWithError
AbstractGenericSignatureRequest::evaluate(
         Evaluator &evaluator,
         const GenericSignatureImpl *baseSignatureImpl,
         SmallVector<GenericTypeParamType *, 2> addedParameters,
         SmallVector<Requirement, 2> addedRequirements,
         bool allowInverses) const {
  GenericSignature baseSignature = GenericSignature{baseSignatureImpl};
  // If nothing is added to the base signature, just return the base
  // signature.
  if (addedParameters.empty() && addedRequirements.empty())
    return GenericSignatureWithError(baseSignature, GenericSignatureErrors());

  ASTContext &ctx = addedParameters.empty()
      ? addedRequirements.front().getFirstType()->getASTContext()
      : addedParameters.front()->getASTContext();

  SmallVector<GenericTypeParamType *, 4> genericParams(
      baseSignature.getGenericParams().begin(),
      baseSignature.getGenericParams().end());
  genericParams.append(
      addedParameters.begin(),
      addedParameters.end());

  // If there are no added requirements, we can form the signature directly
  // with the added parameters.
  if (addedRequirements.empty() && !allowInverses) {
    auto result = GenericSignature::get(genericParams,
                                        baseSignature.getRequirements());
    return GenericSignatureWithError(result, GenericSignatureErrors());
  }

  // If the request is non-canonical, we won't need to build our own
  // generic signature builder.
  if (!isCanonicalRequest(baseSignature, addedParameters, addedRequirements)) {
    // Canonicalize the inputs so we can form the canonical request.
    auto canBaseSignature = baseSignature.getCanonicalSignature();

    SmallVector<GenericTypeParamType *, 2> canAddedParameters;
    canAddedParameters.reserve(addedParameters.size());
    for (auto gp : addedParameters) {
      auto canGP = gp->getCanonicalType()->castTo<GenericTypeParamType>();
      canAddedParameters.push_back(canGP);
    }

    SmallVector<Requirement, 2> canAddedRequirements;
    canAddedRequirements.reserve(addedRequirements.size());
    for (const auto &req : addedRequirements) {
      canAddedRequirements.push_back(req.getCanonical());
    }

    // Build the canonical signature.
    auto canSignatureResult = evaluateOrDefault(
        ctx.evaluator,
        AbstractGenericSignatureRequest{
          canBaseSignature.getPointer(), std::move(canAddedParameters),
          std::move(canAddedRequirements),
          allowInverses},
        GenericSignatureWithError());
    if (!canSignatureResult.getPointer())
      return GenericSignatureWithError();

    // Substitute in the original generic parameters to form the sugared
    // result the original request wanted.
    auto canSignature = canSignatureResult.getPointer();
    SmallVector<GenericTypeParamType *, 2> resugaredParameters;
    resugaredParameters.reserve(canSignature.getGenericParams().size());
    if (baseSignature) {
      resugaredParameters.append(baseSignature.getGenericParams().begin(),
                                 baseSignature.getGenericParams().end());
    }
    resugaredParameters.append(addedParameters.begin(), addedParameters.end());
    assert(resugaredParameters.size() ==
               canSignature.getGenericParams().size());

    SmallVector<Requirement, 2> resugaredRequirements;
    resugaredRequirements.reserve(canSignature.getRequirements().size());
    for (const auto &req : canSignature.getRequirements()) {
      auto resugaredReq = req.subst(
          [&](SubstitutableType *type) {
            if (auto gp = dyn_cast<GenericTypeParamType>(type)) {
              unsigned ordinal = canSignature->getGenericParamOrdinal(gp);
              return Type(resugaredParameters[ordinal]);
            }
            return Type(type);
          },
          MakeAbstractConformanceForGenericType(),
          SubstFlags::AllowLoweredTypes |
          SubstFlags::PreservePackExpansionLevel);
      resugaredRequirements.push_back(resugaredReq);
    }

    return GenericSignatureWithError(
        GenericSignature::get(resugaredParameters, resugaredRequirements),
        canSignatureResult.getInt());
  }

  // Convert the input Requirements into StructuralRequirements by adding
  // empty source locations.
  SmallVector<StructuralRequirement, 2> requirements;
  for (auto req : baseSignature.getRequirements())
    requirements.push_back({req, SourceLoc()});

  // Add the new requirements.
  for (auto req : addedRequirements)
    requirements.push_back({req, SourceLoc()});

  // The requirements passed to this request may have been substituted,
  // meaning the subject type might be a concrete type and not a type
  // parameter.
  //
  // Also, the right hand side of conformance requirements here might be
  // a protocol composition.
  //
  // Desugaring converts these kinds of requirements into "proper"
  // requirements where the subject type is always a type parameter,
  // which is what the RuleBuilder expects.
  SmallVector<RequirementError, 2> errors;
  SmallVector<InverseRequirement, 2> inverses;
  desugarRequirements(requirements, inverses, errors);

  /// Next, we need to expand default requirements and then apply inverses.
  SmallVector<Type, 2> paramsAsTypes;
  if (allowInverses) {
    for (auto *gtpt : addedParameters)
      paramsAsTypes.push_back(gtpt);
  }

  SmallVector<StructuralRequirement, 2> defaults;
  InverseRequirement::expandDefaults(ctx, paramsAsTypes, defaults);
  applyInverses(ctx, paramsAsTypes, inverses, defaults, errors);
  requirements.append(defaults);

  auto &rewriteCtx = ctx.getRewriteContext();

  if (rewriteCtx.getDebugOptions().contains(DebugFlags::Timers)) {
    rewriteCtx.beginTimer("AbstractGenericSignatureRequest");
    llvm::dbgs() << "\n";
  }

  unsigned attempt = 0;
  for (;;) {
    // Preprocess requirements to eliminate conformances on generic parameters
    // which are made concrete.
    if (ctx.LangOpts.EnableRequirementMachineConcreteContraction) {
      SmallVector<StructuralRequirement, 4> contractedRequirements;
      bool debug = rewriteCtx.getDebugOptions()
                             .contains(DebugFlags::ConcreteContraction);
      if (performConcreteContraction(requirements, contractedRequirements,
                                     errors, debug)) {
        std::swap(contractedRequirements, requirements);
      }
    }

    // Heap-allocate the requirement machine to save stack space.
    std::unique_ptr<RequirementMachine> machine(new RequirementMachine(
        rewriteCtx));

    auto status =
        machine->initWithWrittenRequirements(genericParams, requirements);
    machine->checkCompletionResult(status.first);

    // We pass reconstituteSugar=false to ensure that if the original
    // requirements were canonical, the final signature remains canonical.
    auto result = machine->computeMinimalGenericSignature(
          /*reconstituteSugar=*/false);
    auto errorFlags = machine->getErrors();

    // Don't bother splitting concrete equivalence classes if there were invalid
    // requirements, because the signature is not going to be ABI anyway.
    if (!errorFlags.contains(GenericSignatureErrorFlags::HasInvalidRequirements)) {
      if (shouldSplitConcreteEquivalenceClasses(result.getRequirements(),
                                                /*proto=*/nullptr,
                                                machine.get())) {
        ++attempt;
        splitConcreteEquivalenceClasses(ctx, result.getRequirements(),
                                        /*proto=*/nullptr, machine.get(),
                                        result.getGenericParams(),
                                        requirements, attempt);
        continue;
      }
    }

    if (!errorFlags) {
      // If this signature was minimized without errors or non-redundant
      // concrete conformances, we can re-use the requirement machine for
      // subsequent queries, instead of building a new requirement machine
      // from the minimized signature. Do this before verify(), which
      // performs queries.
      rewriteCtx.installRequirementMachine(result.getCanonicalSignature(),
                                           std::move(machine));
    }

    if (!errorFlags.contains(GenericSignatureErrorFlags::HasInvalidRequirements)) {
      // Check invariants.
      result.verify();
    }

    if (rewriteCtx.getDebugOptions().contains(DebugFlags::Timers)) {
      rewriteCtx.endTimer("AbstractGenericSignatureRequest");
      llvm::dbgs() << result << "\n";
    }

    return GenericSignatureWithError(result, errorFlags);
  }
}

/// If completion fails, build a dummy generic signature where everything is
/// Copyable and Escapable, to avoid spurious downstream diagnostics
/// concerning move-only types.
static GenericSignature getPlaceholderGenericSignature(
    ASTContext &ctx, ArrayRef<GenericTypeParamType *> genericParams) {
  SmallVector<Requirement, 2> requirements;
  for (auto param : genericParams) {
    for (auto ip : InvertibleProtocolSet::allKnown()) {
      auto proto = ctx.getProtocol(getKnownProtocolKind(ip));
      requirements.emplace_back(RequirementKind::Conformance, param,
                                proto->getDeclaredInterfaceType());
    }
  }

  return GenericSignature::get(genericParams, requirements);
}

GenericSignatureWithError
InferredGenericSignatureRequest::evaluate(
        Evaluator &evaluator,
        const GenericSignatureImpl *parentSigImpl,
        GenericParamList *genericParamList,
        WhereClauseOwner whereClause,
        SmallVector<Requirement, 2> addedRequirements,
        SmallVector<TypeBase *, 2> inferenceSources,
        SourceLoc loc, bool isExtension, bool allowInverses) const {
  GenericSignature parentSig(parentSigImpl);

  SmallVector<GenericTypeParamType *, 4> genericParams(
      parentSig.getGenericParams().begin(),
      parentSig.getGenericParams().end());

  unsigned numOuterParams = genericParams.size();
  if (isExtension) {
    numOuterParams = 0;
  }

  SmallVector<StructuralRequirement, 2> requirements;
  SmallVector<RequirementError, 2> errors;
  SmallVector<InverseRequirement, 2> inverses;

  for (const auto &req : parentSig.getRequirements())
    requirements.push_back({req, loc});

  DeclContext *lookupDC = nullptr;

  const auto visitRequirement = [&](const Requirement &req,
                                    RequirementRepr *reqRepr) {
    realizeRequirement(lookupDC, req, reqRepr, /*inferRequirements=*/true,
                       requirements, errors);
    return false;
  };

  if (genericParamList) {
    // If we have multiple parameter lists, we're in SIL mode, and there's
    // no parent signature from context.
    assert(genericParamList->getOuterParameters() == nullptr || !parentSig);

    // Collect all outer generic parameter lists.
    SmallVector<GenericParamList *, 2> gpLists;
    for (auto *outerParamList = genericParamList;
         outerParamList != nullptr;
         outerParamList = outerParamList->getOuterParameters()) {
      gpLists.push_back(outerParamList);
    }

    // The generic parameter lists must appear from innermost to outermost.
    // We walk them backwards to order outer parameters before inner
    // parameters.
    for (auto *gpList : llvm::reverse(gpLists)) {
      assert(gpList->size() > 0 &&
             "Parsed an empty generic parameter list?");

      for (auto *gpDecl : *gpList) {
        auto *gpType = gpDecl->getDeclaredInterfaceType()
                             ->castTo<GenericTypeParamType>();
        genericParams.push_back(gpType);

        realizeInheritedRequirements(gpDecl, gpType,
                                     /*inferRequirements=*/true,
                                     requirements, errors);
      }

      lookupDC = (*gpList->begin())->getDeclContext();

      // Add the generic parameter list's 'where' clause to the builder.
      //
      // The only time generic parameter lists have a 'where' clause is
      // in SIL mode; all other generic declarations have a free-standing
      // 'where' clause, which will be visited below.
      WhereClauseOwner(lookupDC, gpList)
        .visitRequirements(TypeResolutionStage::Structural,
                           visitRequirement);
    }
  }

  // Realize all requirements in the free-standing 'where' clause, if there
  // is one.
  if (whereClause) {
    lookupDC = whereClause.dc;

    std::move(whereClause).visitRequirements(
        TypeResolutionStage::Structural,
        visitRequirement);
  }

  auto *moduleForInference = lookupDC->getParentModule();
  auto &ctx = moduleForInference->getASTContext();

  // Perform requirement inference from function parameter and result
  // types and such.
  for (auto source : inferenceSources) {
    inferRequirements(source, moduleForInference, lookupDC, requirements);
  }

  // Finish by adding any remaining requirements. This is used to introduce
  // inferred same-type requirements when building the generic signature of
  // an extension whose extended type is a generic typealias.
  for (const auto &req : addedRequirements)
    requirements.push_back({req, SourceLoc()});

  desugarRequirements(requirements, inverses, errors);

  // After realizing requirements, expand default requirements only for local
  // generic parameters, as the outer parameters have already been expanded.
  SmallVector<Type, 4> paramTypes;
  if (allowInverses) {
    paramTypes.append(genericParams.begin() + numOuterParams,
                      genericParams.end());
  }

  SmallVector<StructuralRequirement, 2> defaults;
  InverseRequirement::expandDefaults(ctx, paramTypes, defaults);
  applyInverses(ctx, paramTypes, inverses, defaults, errors);
  requirements.append(defaults);

  auto &rewriteCtx = ctx.getRewriteContext();

  if (rewriteCtx.getDebugOptions().contains(DebugFlags::Timers)) {
    rewriteCtx.beginTimer("InferredGenericSignatureRequest");

    llvm::dbgs() << "@ ";
    auto &sourceMgr = ctx.SourceMgr;
    loc.print(llvm::dbgs(), sourceMgr);
    llvm::dbgs() << "\n";
  }

  unsigned attempt = 0;
  for (;;) {
    // Preprocess requirements to eliminate conformances on generic parameters
    // which are made concrete.
    if (ctx.LangOpts.EnableRequirementMachineConcreteContraction) {
      SmallVector<StructuralRequirement, 4> contractedRequirements;
      bool debug = rewriteCtx.getDebugOptions()
                             .contains(DebugFlags::ConcreteContraction);
      if (performConcreteContraction(requirements, contractedRequirements,
                                     errors, debug)) {
        std::swap(contractedRequirements, requirements);
      }
    }

    // Heap-allocate the requirement machine to save stack space.
    std::unique_ptr<RequirementMachine> machine(new RequirementMachine(
        rewriteCtx));

    auto status =
        machine->initWithWrittenRequirements(genericParams, requirements);

    // If completion failed, diagnose an error and return a dummy signature.
    if (status.first != CompletionResult::Success) {
      ctx.Diags.diagnose(loc,
                         diag::requirement_machine_completion_failed,
                         /*protocol=*/0,
                         unsigned(status.first));

      auto rule = machine->getRuleAsStringForDiagnostics(status.second);
      ctx.Diags.diagnose(loc,
                         diag::requirement_machine_completion_rule,
                         rule);

      auto result = getPlaceholderGenericSignature(ctx, genericParams);

      if (rewriteCtx.getDebugOptions().contains(DebugFlags::Timers)) {
        rewriteCtx.endTimer("InferredGenericSignatureRequest");
        llvm::dbgs() << result << "\n";
      }

      return GenericSignatureWithError(
          result, GenericSignatureErrorFlags::CompletionFailed);
    }

    auto result = machine->computeMinimalGenericSignature(
          /*reconstituteSugar=*/true);
    auto errorFlags = machine->getErrors();

    // Diagnose redundant requirements and conflicting requirements.
    if (attempt == 0) {
      machine->computeRequirementDiagnostics(errors, inverses, loc);
      diagnoseRequirementErrors(ctx, errors,
                                (isExtension || !genericParamList)
                                ? AllowConcreteTypePolicy::All
                                : AllowConcreteTypePolicy::AssocTypes);
    }

    // Don't bother splitting concrete equivalence classes if there were invalid
    // requirements, because the signature is not going to be ABI anyway.
    if (!errorFlags.contains(GenericSignatureErrorFlags::HasInvalidRequirements)) {
      // Check if we need to rebuild the signature.
      if (shouldSplitConcreteEquivalenceClasses(result.getRequirements(),
                                                /*proto=*/nullptr,
                                                machine.get())) {
        ++attempt;
        splitConcreteEquivalenceClasses(ctx, result.getRequirements(),
                                        /*proto=*/nullptr, machine.get(),
                                        result.getGenericParams(),
                                        requirements, attempt);
        continue;
      }
    }

    if (!errorFlags) {
      // If this signature was minimized without errors or non-redundant
      // concrete conformances, we can re-use the requirement machine for
      // subsequent queries, instead of building a new requirement machine
      // from the minimized signature. Do this before verify(), which
      // performs queries.
      rewriteCtx.installRequirementMachine(result.getCanonicalSignature(),
                                           std::move(machine));
    }

    if (genericParamList && !isExtension) {
      for (auto genericParam : result.getInnermostGenericParams()) {
        auto reduced = result.getReducedType(genericParam);

        if (reduced->hasError() || reduced->isEqual(genericParam))
          continue;

        if (reduced->isTypeParameter()) {
          // If one side is a parameter pack and the other is not, this is a
          // same-element requirement that cannot be expressed with only one
          // type parameter.
          if (genericParam->isParameterPack() != reduced->isParameterPack())
            continue;

          ctx.Diags.diagnose(loc, diag::requires_generic_params_made_equal,
                             genericParam, result->getSugaredType(reduced))
            .warnUntilSwiftVersion(6);
        } else {
          ctx.Diags.diagnose(loc,
                             diag::requires_generic_param_made_equal_to_concrete,
                             genericParam)
            .warnUntilSwiftVersion(6);
        }
      }
    }

    if (!errorFlags.contains(GenericSignatureErrorFlags::HasInvalidRequirements)) {
      // Check invariants.
      result.verify();
    }

    if (rewriteCtx.getDebugOptions().contains(DebugFlags::Timers)) {
      rewriteCtx.endTimer("InferredGenericSignatureRequest");
      llvm::dbgs() << result << "\n";
    }

    return GenericSignatureWithError(result, errorFlags);
  }
}