1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
|
//===--- RequirementMachineRequests.cpp - Request evaluator requests ------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the main entry points for computing minimized generic
// signatures using the requirement machine via the request evaluator.
//
// There are three requests:
//
// - RequirementSignatureRequest computes protocol requirement signatures from
// user-written requirements.
// - AbstractGenericSignatureRequest computes minimal generic signatures from a
// set of abstract Requirements.
// - InferredGenericSignatureRequest computes minimal generic signatures from a
// set of user-written requirements on a parsed generic declaration.
//
// Each request begins by constructing some desugared requirements using the
// entry points in RequirementLowering.cpp.
//
// The desugared requirements are fed into a new requirement machine instance,
// which is then asked to produce a minimal set of rewrite rules. These rules
// are converted into minimal canonical Requirements using the entry points in
// RuleBuilder.cpp.
//
// The actual logic for finding a minimal set of rewrite rules is implemented in
// HomotopyReduction.cpp and MinimalConformances.cpp.
//
// Routines for constructing Requirements from Rules are implemented in
// RequirementBuilder.cpp.
//
// This process is actually iterated to implement "concrete equivalence class
// splitting", a compatibility behavior to produce the same results as the
// GenericSignatureBuilder in certain esoteric edge cases:
//
// ------------------------
// / Desugared Requirement /
// ------------------------
// |
// | +---------------------+
// | | |
// v v |
// +-------------+ |
// | RuleBuilder | |
// +-------------+ |
// | |
// v |
// +--------------+ |
// | Minimization | |
// +--------------+ |
// | |
// v |
// +--------------------+ |
// | RequirementBuilder | |
// +--------------------+ |
// | |
// v |
// -------------- |
// / Requirement / |
// -------------- |
// | |
// v |
// +------------------------------------+ |
// | Split concrete equivalence classes | ----+
// +------------------------------------+
// |
// v
// --------------
// / Requirement /
// --------------
//
// This transformation is described in splitConcreteEquivalenceClasses() below.
//
//===----------------------------------------------------------------------===//
#include "RequirementMachine.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Decl.h"
#include "swift/AST/DiagnosticsSema.h"
#include "swift/AST/GenericSignature.h"
#include "swift/AST/LazyResolver.h"
#include "swift/AST/Requirement.h"
#include "swift/AST/RequirementSignature.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/AST/TypeRepr.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/Statistic.h"
#include <memory>
#include <vector>
#include "RequirementLowering.h"
using namespace swift;
using namespace rewriting;
/// Hack for GenericSignatureBuilder compatibility. We might end up with a
/// same-type requirement between type parameters where one of them has an
/// implied concrete type requirement. In this case, split it up into two
/// concrete type requirements.
static bool shouldSplitConcreteEquivalenceClass(
Requirement req,
const ProtocolDecl *proto,
const RequirementMachine *machine) {
return (req.getKind() == RequirementKind::SameType &&
req.getSecondType()->isTypeParameter() &&
machine->isConcreteType(req.getSecondType(), proto));
}
/// Returns true if this generic signature contains abstract same-type
/// requirements between concrete type parameters. In this case, we split
/// the abstract same-type requirements into pairs of concrete type
/// requirements, and minimize the signature again.
static bool shouldSplitConcreteEquivalenceClasses(
ArrayRef<Requirement> requirements,
const ProtocolDecl *proto,
const RequirementMachine *machine) {
for (auto req : requirements) {
if (shouldSplitConcreteEquivalenceClass(req, proto, machine))
return true;
}
return false;
}
/// Same as the above, but with the requirements of a protocol connected
/// component.
static bool shouldSplitConcreteEquivalenceClasses(
const llvm::DenseMap<const ProtocolDecl *, RequirementSignature> &protos,
const RequirementMachine *machine) {
for (const auto &pair : protos) {
if (shouldSplitConcreteEquivalenceClasses(pair.second.getRequirements(),
pair.first, machine))
return true;
}
return false;
}
/// Replace each same-type requirement 'T == U' where 'T' (and therefore 'U')
/// is known to equal a concrete type 'C' with a pair of requirements
/// 'T == C' and 'U == C'. We build the signature again in this case, since
/// one of the two requirements will be redundant, but we don't know which
/// ahead of time.
static void splitConcreteEquivalenceClasses(
ASTContext &ctx,
ArrayRef<Requirement> requirements,
const ProtocolDecl *proto,
const RequirementMachine *machine,
ArrayRef<GenericTypeParamType *> genericParams,
SmallVectorImpl<StructuralRequirement> &splitRequirements,
unsigned &attempt) {
bool debug = machine->getDebugOptions().contains(
DebugFlags::SplitConcreteEquivalenceClass);
unsigned maxAttempts =
ctx.LangOpts.RequirementMachineMaxSplitConcreteEquivClassAttempts;
if (attempt >= maxAttempts) {
llvm::errs() << "Splitting concrete equivalence classes did not "
<< "reach fixed point after " << attempt << " attempts.\n";
llvm::errs() << "Last attempt produced these requirements:\n";
for (auto req : requirements) {
req.dump(llvm::errs());
llvm::errs() << "\n";
}
machine->dump(llvm::errs());
abort();
}
splitRequirements.clear();
if (debug) {
llvm::dbgs() << "\n# Splitting concrete equivalence classes:\n";
}
for (auto req : requirements) {
if (shouldSplitConcreteEquivalenceClass(req, proto, machine)) {
auto concreteType = machine->getConcreteType(
req.getSecondType(), genericParams, proto);
Requirement firstReq(RequirementKind::SameType,
req.getFirstType(), concreteType);
Requirement secondReq(RequirementKind::SameType,
req.getSecondType(), concreteType);
splitRequirements.push_back({firstReq, SourceLoc()});
splitRequirements.push_back({secondReq, SourceLoc()});
if (debug) {
llvm::dbgs() << "- First split: ";
firstReq.dump(llvm::dbgs());
llvm::dbgs() << "\n- Second split: ";
secondReq.dump(llvm::dbgs());
llvm::dbgs() << "\n";
}
continue;
}
splitRequirements.push_back({req, SourceLoc()});
if (debug) {
llvm::dbgs() << "- Not split: ";
req.dump(llvm::dbgs());
llvm::dbgs() << "\n";
}
}
}
/// Same as the above, but with the requirements of a protocol connected
/// component.
static void splitConcreteEquivalenceClasses(
ASTContext &ctx,
const llvm::DenseMap<const ProtocolDecl *, RequirementSignature> &protos,
const RequirementMachine *machine,
llvm::DenseMap<const ProtocolDecl *,
SmallVector<StructuralRequirement, 4>> &splitProtos,
unsigned &attempt) {
for (const auto &pair : protos) {
const auto *proto = pair.first;
auto genericParams = proto->getGenericSignature().getGenericParams();
splitConcreteEquivalenceClasses(ctx, pair.second.getRequirements(),
proto, machine, genericParams,
splitProtos[proto],
attempt);
}
}
/// Builds the requirement signatures for each protocol in this strongly
/// connected component.
llvm::DenseMap<const ProtocolDecl *, RequirementSignature>
RequirementMachine::computeMinimalProtocolRequirements() {
auto protos = System.getProtocols();
assert(protos.size() > 0 &&
"Not a protocol connected component rewrite system");
System.minimizeRewriteSystem(Map);
if (Dump) {
llvm::dbgs() << "Minimized rewrite system:\n";
dump(llvm::dbgs());
}
auto rules = System.getMinimizedProtocolRules();
auto &ctx = Context.getASTContext();
// Note that we build 'result' by iterating over 'protos' rather than
// 'rules'; this is intentional, so that even if a protocol has no
// rules, we still end up creating an entry for it in 'result'.
llvm::DenseMap<const ProtocolDecl *, RequirementSignature> result;
for (const auto *proto : protos) {
auto genericParams = proto->getGenericSignature().getGenericParams();
const auto &entry = rules[proto];
std::vector<Requirement> reqs;
std::vector<ProtocolTypeAlias> aliases;
buildRequirementsFromRules(entry.Requirements,
entry.TypeAliases,
genericParams,
/*reconstituteSugar=*/true,
reqs, aliases);
result[proto] = RequirementSignature(ctx.AllocateCopy(reqs),
ctx.AllocateCopy(aliases),
getErrors());
}
return result;
}
RequirementSignature
RequirementSignatureRequest::evaluate(Evaluator &evaluator,
ProtocolDecl *proto) const {
ASTContext &ctx = proto->getASTContext();
// First check if we have a deserializable requirement signature.
if (proto->hasLazyRequirementSignature()) {
// FIXME: (transitional) increment the redundant "always-on" counter.
if (ctx.Stats)
++ctx.Stats->getFrontendCounters().NumLazyRequirementSignaturesLoaded;
auto contextData = static_cast<LazyProtocolData *>(
ctx.getOrCreateLazyContextData(proto, nullptr));
SmallVector<Requirement, 2> requirements;
SmallVector<ProtocolTypeAlias, 2> typeAliases;
contextData->loader->loadRequirementSignature(
proto, contextData->requirementSignatureData,
requirements, typeAliases);
return RequirementSignature(ctx.AllocateCopy(requirements),
ctx.AllocateCopy(typeAliases));
}
auto &rewriteCtx = ctx.getRewriteContext();
// We build requirement signatures for all protocols in a strongly connected
// component at the same time.
auto component = rewriteCtx.startComputingRequirementSignatures(proto);
SWIFT_DEFER {
rewriteCtx.finishComputingRequirementSignatures(proto);
};
SmallVector<RequirementError, 4> errors;
// Collect user-written requirements from the protocols in this connected
// component.
llvm::DenseMap<const ProtocolDecl *,
SmallVector<StructuralRequirement, 4>> protos;
for (const auto *proto : component) {
auto &requirements = protos[proto];
for (auto req : proto->getStructuralRequirements())
requirements.push_back(req);
for (auto req : proto->getTypeAliasRequirements())
requirements.push_back({req, SourceLoc()});
}
if (rewriteCtx.getDebugOptions().contains(DebugFlags::Timers)) {
rewriteCtx.beginTimer("RequirementSignatureRequest");
llvm::dbgs() << "[";
for (auto *proto : component)
llvm::dbgs() << " " << proto->getName();
llvm::dbgs() << " ]\n";
}
SWIFT_DEFER {
if (rewriteCtx.getDebugOptions().contains(DebugFlags::Timers)) {
rewriteCtx.endTimer("RequirementSignatureRequest");
llvm::dbgs() << "[";
for (auto *proto : component)
llvm::dbgs() << " " << proto->getName();
llvm::dbgs() << " ]\n";
}
};
unsigned attempt = 0;
for (;;) {
for (const auto *otherProto : component) {
auto &requirements = protos[otherProto];
// Preprocess requirements to eliminate conformances on type parameters
// which are made concrete.
if (ctx.LangOpts.EnableRequirementMachineConcreteContraction) {
SmallVector<StructuralRequirement, 4> contractedRequirements;
bool debug = rewriteCtx.getDebugOptions()
.contains(DebugFlags::ConcreteContraction);
if (performConcreteContraction(requirements, contractedRequirements,
errors, debug)) {
std::swap(contractedRequirements, requirements);
}
}
}
// Heap-allocate the requirement machine to save stack space.
std::unique_ptr<RequirementMachine> machine(new RequirementMachine(
rewriteCtx));
auto status = machine->initWithProtocolWrittenRequirements(component, protos);
// If completion failed, diagnose an error and return a dummy signature.
if (status.first != CompletionResult::Success) {
// All we can do at this point is diagnose and give each protocol an empty
// requirement signature.
for (const auto *otherProto : component) {
ctx.Diags.diagnose(otherProto->getLoc(),
diag::requirement_machine_completion_failed,
/*protocol=*/1,
unsigned(status.first));
auto rule = machine->getRuleAsStringForDiagnostics(status.second);
ctx.Diags.diagnose(otherProto->getLoc(),
diag::requirement_machine_completion_rule,
rule);
if (otherProto != proto) {
ctx.evaluator.cacheOutput(
RequirementSignatureRequest{const_cast<ProtocolDecl *>(otherProto)},
RequirementSignature::getPlaceholderRequirementSignature(
otherProto, GenericSignatureErrorFlags::CompletionFailed));
}
}
return RequirementSignature::getPlaceholderRequirementSignature(
proto, GenericSignatureErrorFlags::CompletionFailed);
}
auto minimalRequirements = machine->computeMinimalProtocolRequirements();
// Don't bother splitting concrete equivalence classes if there were invalid
// requirements, because the signature is not going to be ABI anyway.
if (!machine->getErrors().contains(
GenericSignatureErrorFlags::HasInvalidRequirements)) {
if (shouldSplitConcreteEquivalenceClasses(minimalRequirements, machine.get())) {
++attempt;
splitConcreteEquivalenceClasses(ctx, minimalRequirements,
machine.get(), protos, attempt);
continue;
}
}
bool debug = machine->getDebugOptions().contains(DebugFlags::Minimization);
// The requirement signature for the actual protocol that the result
// was kicked off with.
std::optional<RequirementSignature> result;
if (debug) {
llvm::dbgs() << "\nRequirement signatures:\n";
}
// Cache the requirement signatures for all other protocols in this
// connected component.
for (const auto &pair : minimalRequirements) {
auto *otherProto = pair.first;
const auto &reqs = pair.second;
// Dump the result if requested.
if (debug) {
llvm::dbgs() << "- Protocol " << otherProto->getName() << ": ";
auto sig = GenericSignature::get(
otherProto->getGenericSignature().getGenericParams(),
reqs.getRequirements());
PrintOptions opts;
opts.ProtocolQualifiedDependentMemberTypes = true;
sig.print(llvm::dbgs(), opts);
llvm::dbgs() << "\n";
}
// Don't call setRequirementSignature() on the original proto; the
// request evaluator will do it for us.
if (otherProto == proto)
result = reqs;
else {
auto temp = reqs;
ctx.evaluator.cacheOutput(
RequirementSignatureRequest{const_cast<ProtocolDecl *>(otherProto)},
std::move(temp));
}
}
// FIXME: We don't have the inverses from desugaring available here!
SmallVector<InverseRequirement, 2> missingInverses;
// Diagnose redundant requirements and conflicting requirements.
machine->computeRequirementDiagnostics(errors, missingInverses,
proto->getLoc());
diagnoseRequirementErrors(ctx, errors,
AllowConcreteTypePolicy::NestedAssocTypes);
for (auto *protocol : machine->System.getProtocols()) {
auto selfType = protocol->getSelfInterfaceType();
auto concrete = machine->getConcreteType(selfType,
machine->getGenericParams(),
protocol);
if (!concrete || concrete->hasError())
continue;
protocol->diagnose(diag::requires_generic_param_made_equal_to_concrete,
selfType);
}
if (!machine->getErrors()) {
// If this signature was minimized without errors or non-redundant
// concrete conformances, we can re-use the requirement machine for
// subsequent queries, instead of building a new requirement machine
// from the minimized signature.
rewriteCtx.installRequirementMachine(proto, std::move(machine));
}
// Return the result for the specific protocol this request was kicked off on.
return *result;
}
}
/// Builds the top-level generic signature requirements for this rewrite system.
GenericSignature
RequirementMachine::computeMinimalGenericSignature(
bool reconstituteSugar) {
assert(!Sig &&
"Already computed minimal generic signature");
assert(System.getProtocols().empty() &&
"Not a top-level generic signature rewrite system");
assert(!Params.empty() &&
"Not a from-source top-level generic signature rewrite system");
System.minimizeRewriteSystem(Map);
if (Dump) {
llvm::dbgs() << "Minimized rewrite system:\n";
dump(llvm::dbgs());
}
auto rules = System.getMinimizedGenericSignatureRules();
std::vector<Requirement> reqs;
std::vector<ProtocolTypeAlias> aliases;
buildRequirementsFromRules(rules, ArrayRef<unsigned>(), getGenericParams(),
reconstituteSugar, reqs, aliases);
assert(aliases.empty());
auto sig = GenericSignature::get(getGenericParams(), reqs);
// Remember the signature for generic signature queries. In particular,
// getConformancePath() needs the current requirement machine's
// generic signature.
Sig = sig.getCanonicalSignature();
return sig;
}
/// Check whether the inputs to the \c AbstractGenericSignatureRequest are
/// all canonical.
static bool isCanonicalRequest(GenericSignature baseSignature,
ArrayRef<GenericTypeParamType *> genericParams,
ArrayRef<Requirement> requirements) {
if (baseSignature && !baseSignature->isCanonical())
return false;
for (auto gp : genericParams) {
if (!gp->isCanonical())
return false;
}
for (const auto &req : requirements) {
if (!req.isCanonical())
return false;
}
return true;
}
GenericSignatureWithError
AbstractGenericSignatureRequest::evaluate(
Evaluator &evaluator,
const GenericSignatureImpl *baseSignatureImpl,
SmallVector<GenericTypeParamType *, 2> addedParameters,
SmallVector<Requirement, 2> addedRequirements,
bool allowInverses) const {
GenericSignature baseSignature = GenericSignature{baseSignatureImpl};
// If nothing is added to the base signature, just return the base
// signature.
if (addedParameters.empty() && addedRequirements.empty())
return GenericSignatureWithError(baseSignature, GenericSignatureErrors());
ASTContext &ctx = addedParameters.empty()
? addedRequirements.front().getFirstType()->getASTContext()
: addedParameters.front()->getASTContext();
SmallVector<GenericTypeParamType *, 4> genericParams(
baseSignature.getGenericParams().begin(),
baseSignature.getGenericParams().end());
genericParams.append(
addedParameters.begin(),
addedParameters.end());
// If there are no added requirements, we can form the signature directly
// with the added parameters.
if (addedRequirements.empty() && !allowInverses) {
auto result = GenericSignature::get(genericParams,
baseSignature.getRequirements());
return GenericSignatureWithError(result, GenericSignatureErrors());
}
// If the request is non-canonical, we won't need to build our own
// generic signature builder.
if (!isCanonicalRequest(baseSignature, addedParameters, addedRequirements)) {
// Canonicalize the inputs so we can form the canonical request.
auto canBaseSignature = baseSignature.getCanonicalSignature();
SmallVector<GenericTypeParamType *, 2> canAddedParameters;
canAddedParameters.reserve(addedParameters.size());
for (auto gp : addedParameters) {
auto canGP = gp->getCanonicalType()->castTo<GenericTypeParamType>();
canAddedParameters.push_back(canGP);
}
SmallVector<Requirement, 2> canAddedRequirements;
canAddedRequirements.reserve(addedRequirements.size());
for (const auto &req : addedRequirements) {
canAddedRequirements.push_back(req.getCanonical());
}
// Build the canonical signature.
auto canSignatureResult = evaluateOrDefault(
ctx.evaluator,
AbstractGenericSignatureRequest{
canBaseSignature.getPointer(), std::move(canAddedParameters),
std::move(canAddedRequirements),
allowInverses},
GenericSignatureWithError());
if (!canSignatureResult.getPointer())
return GenericSignatureWithError();
// Substitute in the original generic parameters to form the sugared
// result the original request wanted.
auto canSignature = canSignatureResult.getPointer();
SmallVector<GenericTypeParamType *, 2> resugaredParameters;
resugaredParameters.reserve(canSignature.getGenericParams().size());
if (baseSignature) {
resugaredParameters.append(baseSignature.getGenericParams().begin(),
baseSignature.getGenericParams().end());
}
resugaredParameters.append(addedParameters.begin(), addedParameters.end());
assert(resugaredParameters.size() ==
canSignature.getGenericParams().size());
SmallVector<Requirement, 2> resugaredRequirements;
resugaredRequirements.reserve(canSignature.getRequirements().size());
for (const auto &req : canSignature.getRequirements()) {
auto resugaredReq = req.subst(
[&](SubstitutableType *type) {
if (auto gp = dyn_cast<GenericTypeParamType>(type)) {
unsigned ordinal = canSignature->getGenericParamOrdinal(gp);
return Type(resugaredParameters[ordinal]);
}
return Type(type);
},
MakeAbstractConformanceForGenericType(),
SubstFlags::AllowLoweredTypes |
SubstFlags::PreservePackExpansionLevel);
resugaredRequirements.push_back(resugaredReq);
}
return GenericSignatureWithError(
GenericSignature::get(resugaredParameters, resugaredRequirements),
canSignatureResult.getInt());
}
// Convert the input Requirements into StructuralRequirements by adding
// empty source locations.
SmallVector<StructuralRequirement, 2> requirements;
for (auto req : baseSignature.getRequirements())
requirements.push_back({req, SourceLoc()});
// Add the new requirements.
for (auto req : addedRequirements)
requirements.push_back({req, SourceLoc()});
// The requirements passed to this request may have been substituted,
// meaning the subject type might be a concrete type and not a type
// parameter.
//
// Also, the right hand side of conformance requirements here might be
// a protocol composition.
//
// Desugaring converts these kinds of requirements into "proper"
// requirements where the subject type is always a type parameter,
// which is what the RuleBuilder expects.
SmallVector<RequirementError, 2> errors;
SmallVector<InverseRequirement, 2> inverses;
desugarRequirements(requirements, inverses, errors);
/// Next, we need to expand default requirements and then apply inverses.
SmallVector<Type, 2> paramsAsTypes;
if (allowInverses) {
for (auto *gtpt : addedParameters)
paramsAsTypes.push_back(gtpt);
}
SmallVector<StructuralRequirement, 2> defaults;
InverseRequirement::expandDefaults(ctx, paramsAsTypes, defaults);
applyInverses(ctx, paramsAsTypes, inverses, defaults, errors);
requirements.append(defaults);
auto &rewriteCtx = ctx.getRewriteContext();
if (rewriteCtx.getDebugOptions().contains(DebugFlags::Timers)) {
rewriteCtx.beginTimer("AbstractGenericSignatureRequest");
llvm::dbgs() << "\n";
}
unsigned attempt = 0;
for (;;) {
// Preprocess requirements to eliminate conformances on generic parameters
// which are made concrete.
if (ctx.LangOpts.EnableRequirementMachineConcreteContraction) {
SmallVector<StructuralRequirement, 4> contractedRequirements;
bool debug = rewriteCtx.getDebugOptions()
.contains(DebugFlags::ConcreteContraction);
if (performConcreteContraction(requirements, contractedRequirements,
errors, debug)) {
std::swap(contractedRequirements, requirements);
}
}
// Heap-allocate the requirement machine to save stack space.
std::unique_ptr<RequirementMachine> machine(new RequirementMachine(
rewriteCtx));
auto status =
machine->initWithWrittenRequirements(genericParams, requirements);
machine->checkCompletionResult(status.first);
// We pass reconstituteSugar=false to ensure that if the original
// requirements were canonical, the final signature remains canonical.
auto result = machine->computeMinimalGenericSignature(
/*reconstituteSugar=*/false);
auto errorFlags = machine->getErrors();
// Don't bother splitting concrete equivalence classes if there were invalid
// requirements, because the signature is not going to be ABI anyway.
if (!errorFlags.contains(GenericSignatureErrorFlags::HasInvalidRequirements)) {
if (shouldSplitConcreteEquivalenceClasses(result.getRequirements(),
/*proto=*/nullptr,
machine.get())) {
++attempt;
splitConcreteEquivalenceClasses(ctx, result.getRequirements(),
/*proto=*/nullptr, machine.get(),
result.getGenericParams(),
requirements, attempt);
continue;
}
}
if (!errorFlags) {
// If this signature was minimized without errors or non-redundant
// concrete conformances, we can re-use the requirement machine for
// subsequent queries, instead of building a new requirement machine
// from the minimized signature. Do this before verify(), which
// performs queries.
rewriteCtx.installRequirementMachine(result.getCanonicalSignature(),
std::move(machine));
}
if (!errorFlags.contains(GenericSignatureErrorFlags::HasInvalidRequirements)) {
// Check invariants.
result.verify();
}
if (rewriteCtx.getDebugOptions().contains(DebugFlags::Timers)) {
rewriteCtx.endTimer("AbstractGenericSignatureRequest");
llvm::dbgs() << result << "\n";
}
return GenericSignatureWithError(result, errorFlags);
}
}
/// If completion fails, build a dummy generic signature where everything is
/// Copyable and Escapable, to avoid spurious downstream diagnostics
/// concerning move-only types.
static GenericSignature getPlaceholderGenericSignature(
ASTContext &ctx, ArrayRef<GenericTypeParamType *> genericParams) {
SmallVector<Requirement, 2> requirements;
for (auto param : genericParams) {
for (auto ip : InvertibleProtocolSet::allKnown()) {
auto proto = ctx.getProtocol(getKnownProtocolKind(ip));
requirements.emplace_back(RequirementKind::Conformance, param,
proto->getDeclaredInterfaceType());
}
}
return GenericSignature::get(genericParams, requirements);
}
GenericSignatureWithError
InferredGenericSignatureRequest::evaluate(
Evaluator &evaluator,
const GenericSignatureImpl *parentSigImpl,
GenericParamList *genericParamList,
WhereClauseOwner whereClause,
SmallVector<Requirement, 2> addedRequirements,
SmallVector<TypeBase *, 2> inferenceSources,
SourceLoc loc, bool isExtension, bool allowInverses) const {
GenericSignature parentSig(parentSigImpl);
SmallVector<GenericTypeParamType *, 4> genericParams(
parentSig.getGenericParams().begin(),
parentSig.getGenericParams().end());
unsigned numOuterParams = genericParams.size();
if (isExtension) {
numOuterParams = 0;
}
SmallVector<StructuralRequirement, 2> requirements;
SmallVector<RequirementError, 2> errors;
SmallVector<InverseRequirement, 2> inverses;
for (const auto &req : parentSig.getRequirements())
requirements.push_back({req, loc});
DeclContext *lookupDC = nullptr;
const auto visitRequirement = [&](const Requirement &req,
RequirementRepr *reqRepr) {
realizeRequirement(lookupDC, req, reqRepr, /*inferRequirements=*/true,
requirements, errors);
return false;
};
if (genericParamList) {
// If we have multiple parameter lists, we're in SIL mode, and there's
// no parent signature from context.
assert(genericParamList->getOuterParameters() == nullptr || !parentSig);
// Collect all outer generic parameter lists.
SmallVector<GenericParamList *, 2> gpLists;
for (auto *outerParamList = genericParamList;
outerParamList != nullptr;
outerParamList = outerParamList->getOuterParameters()) {
gpLists.push_back(outerParamList);
}
// The generic parameter lists must appear from innermost to outermost.
// We walk them backwards to order outer parameters before inner
// parameters.
for (auto *gpList : llvm::reverse(gpLists)) {
assert(gpList->size() > 0 &&
"Parsed an empty generic parameter list?");
for (auto *gpDecl : *gpList) {
auto *gpType = gpDecl->getDeclaredInterfaceType()
->castTo<GenericTypeParamType>();
genericParams.push_back(gpType);
realizeInheritedRequirements(gpDecl, gpType,
/*inferRequirements=*/true,
requirements, errors);
}
lookupDC = (*gpList->begin())->getDeclContext();
// Add the generic parameter list's 'where' clause to the builder.
//
// The only time generic parameter lists have a 'where' clause is
// in SIL mode; all other generic declarations have a free-standing
// 'where' clause, which will be visited below.
WhereClauseOwner(lookupDC, gpList)
.visitRequirements(TypeResolutionStage::Structural,
visitRequirement);
}
}
// Realize all requirements in the free-standing 'where' clause, if there
// is one.
if (whereClause) {
lookupDC = whereClause.dc;
std::move(whereClause).visitRequirements(
TypeResolutionStage::Structural,
visitRequirement);
}
auto *moduleForInference = lookupDC->getParentModule();
auto &ctx = moduleForInference->getASTContext();
// Perform requirement inference from function parameter and result
// types and such.
for (auto source : inferenceSources) {
inferRequirements(source, moduleForInference, lookupDC, requirements);
}
// Finish by adding any remaining requirements. This is used to introduce
// inferred same-type requirements when building the generic signature of
// an extension whose extended type is a generic typealias.
for (const auto &req : addedRequirements)
requirements.push_back({req, SourceLoc()});
desugarRequirements(requirements, inverses, errors);
// After realizing requirements, expand default requirements only for local
// generic parameters, as the outer parameters have already been expanded.
SmallVector<Type, 4> paramTypes;
if (allowInverses) {
paramTypes.append(genericParams.begin() + numOuterParams,
genericParams.end());
}
SmallVector<StructuralRequirement, 2> defaults;
InverseRequirement::expandDefaults(ctx, paramTypes, defaults);
applyInverses(ctx, paramTypes, inverses, defaults, errors);
requirements.append(defaults);
auto &rewriteCtx = ctx.getRewriteContext();
if (rewriteCtx.getDebugOptions().contains(DebugFlags::Timers)) {
rewriteCtx.beginTimer("InferredGenericSignatureRequest");
llvm::dbgs() << "@ ";
auto &sourceMgr = ctx.SourceMgr;
loc.print(llvm::dbgs(), sourceMgr);
llvm::dbgs() << "\n";
}
unsigned attempt = 0;
for (;;) {
// Preprocess requirements to eliminate conformances on generic parameters
// which are made concrete.
if (ctx.LangOpts.EnableRequirementMachineConcreteContraction) {
SmallVector<StructuralRequirement, 4> contractedRequirements;
bool debug = rewriteCtx.getDebugOptions()
.contains(DebugFlags::ConcreteContraction);
if (performConcreteContraction(requirements, contractedRequirements,
errors, debug)) {
std::swap(contractedRequirements, requirements);
}
}
// Heap-allocate the requirement machine to save stack space.
std::unique_ptr<RequirementMachine> machine(new RequirementMachine(
rewriteCtx));
auto status =
machine->initWithWrittenRequirements(genericParams, requirements);
// If completion failed, diagnose an error and return a dummy signature.
if (status.first != CompletionResult::Success) {
ctx.Diags.diagnose(loc,
diag::requirement_machine_completion_failed,
/*protocol=*/0,
unsigned(status.first));
auto rule = machine->getRuleAsStringForDiagnostics(status.second);
ctx.Diags.diagnose(loc,
diag::requirement_machine_completion_rule,
rule);
auto result = getPlaceholderGenericSignature(ctx, genericParams);
if (rewriteCtx.getDebugOptions().contains(DebugFlags::Timers)) {
rewriteCtx.endTimer("InferredGenericSignatureRequest");
llvm::dbgs() << result << "\n";
}
return GenericSignatureWithError(
result, GenericSignatureErrorFlags::CompletionFailed);
}
auto result = machine->computeMinimalGenericSignature(
/*reconstituteSugar=*/true);
auto errorFlags = machine->getErrors();
// Diagnose redundant requirements and conflicting requirements.
if (attempt == 0) {
machine->computeRequirementDiagnostics(errors, inverses, loc);
diagnoseRequirementErrors(ctx, errors,
(isExtension || !genericParamList)
? AllowConcreteTypePolicy::All
: AllowConcreteTypePolicy::AssocTypes);
}
// Don't bother splitting concrete equivalence classes if there were invalid
// requirements, because the signature is not going to be ABI anyway.
if (!errorFlags.contains(GenericSignatureErrorFlags::HasInvalidRequirements)) {
// Check if we need to rebuild the signature.
if (shouldSplitConcreteEquivalenceClasses(result.getRequirements(),
/*proto=*/nullptr,
machine.get())) {
++attempt;
splitConcreteEquivalenceClasses(ctx, result.getRequirements(),
/*proto=*/nullptr, machine.get(),
result.getGenericParams(),
requirements, attempt);
continue;
}
}
if (!errorFlags) {
// If this signature was minimized without errors or non-redundant
// concrete conformances, we can re-use the requirement machine for
// subsequent queries, instead of building a new requirement machine
// from the minimized signature. Do this before verify(), which
// performs queries.
rewriteCtx.installRequirementMachine(result.getCanonicalSignature(),
std::move(machine));
}
if (genericParamList && !isExtension) {
for (auto genericParam : result.getInnermostGenericParams()) {
auto reduced = result.getReducedType(genericParam);
if (reduced->hasError() || reduced->isEqual(genericParam))
continue;
if (reduced->isTypeParameter()) {
// If one side is a parameter pack and the other is not, this is a
// same-element requirement that cannot be expressed with only one
// type parameter.
if (genericParam->isParameterPack() != reduced->isParameterPack())
continue;
ctx.Diags.diagnose(loc, diag::requires_generic_params_made_equal,
genericParam, result->getSugaredType(reduced))
.warnUntilSwiftVersion(6);
} else {
ctx.Diags.diagnose(loc,
diag::requires_generic_param_made_equal_to_concrete,
genericParam)
.warnUntilSwiftVersion(6);
}
}
}
if (!errorFlags.contains(GenericSignatureErrorFlags::HasInvalidRequirements)) {
// Check invariants.
result.verify();
}
if (rewriteCtx.getDebugOptions().contains(DebugFlags::Timers)) {
rewriteCtx.endTimer("InferredGenericSignatureRequest");
llvm::dbgs() << result << "\n";
}
return GenericSignatureWithError(result, errorFlags);
}
}
|