File: RewriteContext.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (651 lines) | stat: -rw-r--r-- 22,736 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
//===--- RewriteContext.cpp - Term rewriting allocation arena -------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// The RewriteContext is a global singleton object with three primary
// responsibilities:
//
// - Arena allocation of uniqued immutable Symbols and Terms.
// - Caching requirement machine instances corresponding to generic signatures,
//   used for generic signature queries.
// - Building the graph of protocol connected components, in support of the
//   above.
//
// # Requirement machines for generic signatures
//
// The RewriteContext caches requirement machine instances built from generic
// signatures. When a generic signature is performed for the first time,
// a requirement machine is built for the generic signature by calling the
// RewriteContext::getRequirementMachine() method.
//
// An optimization is performed if this signature was written in source. When
// a new minimal generic signature is built from generic requirements, the
// AbstractGenericSignatureRequest and InferredGenericSignatureRequest requests
// transfer ownership of the requirement machine used for minimization to the
// RewriteContext by calling the installRequirementMachine() method, which
// associates this requirement machine with the newly-built generic signature.
//
// This saves the effort of rebuilding a new requirement machine from this
// signature the first time a query is performed, which typically happens when
// type checking the body of the generic declaration. 
//
// A requirement machine for a generic signature must include rewrite rules
// for all requirements in protocols referenced from this signature as well.
// Instead of rebuilding all of these rules every time a requirement machine
// is created, the rewrite rules for protocols themselves are also cached in
// the RewriteContext.
//
// # Protocol dependency graph
//
// The central concept behind this caching is the protocol dependency graph.
// This graph records which protocols mention other protocols via conformance
// requirements.
//
// Formally, the protocol dependency graph is a (directed) graph where the
// vertices are protocols, and there is an edge from protocol P to a protocol Q
// if P has a conformance requirement with Q on the right hand side.
//
// Consider these definitions:
//
//   protocol P1 : P2 {}
//   protocol P2 { associatedtype T : P3; associatedtype V : P4 }
//   protocol P3 { associatedtype U : P2; associatedtype V : P5 }
//   protocol P4 {}
//
// P1 has a dependency on P2; P2 and P3 depend on each other; P2 depends on P4,
// and finally, P3 depends on P5. The protocol dependency graph looks like this:
//
//             +----+
//             | P1 |
//             +----+
//              /  \
//             /    \
//            /      \
//           /        \
//          /          \
//         /            \
//        v              v
//     +----+  ----->  +----+
//     | P2 |          | P3 |
//     +----+  <-----  +----+
//       |                |
//       v                v
//     +----+          +----+
//     | P4 |          | P5 |
//     +----+          +----+
//
// When building a rewrite system for a generic signature that includes a
// conformance to protocol P2, we must include rewrite rules for P2, as well as
// all protocols reachable from P2 via the protocol dependency graph: P3, P4,
// and P5. Note that the set of all protocols reachable from P2 includes P3,
// and the set of all protocols reachable from P3 includes P2; so if a generic
// signature depends on one, it necessarily depends on the other.
//
// In general, this graph can contain cycles, as with P2 and P3 above. If we
// compute the strongly connected components of the protocol dependency graph,
// we get an acyclic graph:
//
//          +----+
//          | P1 |
//          +----+
//            |
//            v
//        +-------+
//        | P2 P3 |
//        +-------+
//          /   \
//         /     \
//        v       v
//     +----+   +----+
//     | P4 |   | P5 |
//     +----+   +----+
//
// The vertices of this graph are the strongly connected components of the
// original protocol dependency graph. Each connected component is a set of
// protocols that are interdependent and must be considered together as a
// single unit when building a rewrite system.
//
// # Requirement machines for protocol connected components
//
// The RewriteContext computes the protocol dependency graph and the associated
// graph of connected components. When building a rewrite system for a generic
// signature, the RuleBuilder queries the RewriteContext for the set of all
// connected components reachable from all conformance requirements in the
// generic signature.
//
// The RewriteContext associates a requirement machine to each connected
// component. This requirement machine is created when needed by the
// RewriteContext::getRequirementMachine(ProtocolDecl *) method.
//
// The rewrite rules from the requirement machine of each connected component
// are then imported into the newly-built requirement machine for the generic
// signature.
//
// If the protocol definitions in the connected component were parsed from
// source, this requirement machine is constructed when evaluating
// RequirementSignatureRequest, which computes a requirement signature for
// each protocol in the component from user-written requirements, and then
// saves the requirement machine in the RewriteContext by calling the
// installRequirementMachine() method.
//
// If the protocol definitions came from a deserialized module, we build a
// requirement machine from the previously-computed requirement signatures
// of those protocols.
//
//===----------------------------------------------------------------------===//

#include "swift/AST/Decl.h"
#include "swift/AST/Types.h"
#include "RequirementMachine.h"
#include "RewriteSystem.h"
#include "RewriteContext.h"

using namespace swift;
using namespace rewriting;

/// Parse a comma-separated list from the -debug-requirement-machine= frontend
/// flag.
static DebugOptions parseDebugFlags(StringRef debugFlags) {
  DebugOptions result;

  SmallVector<StringRef, 2> debug;
  debugFlags.split(debug, ',');
  for (auto flagStr : debug) {
    auto flag =
        llvm::StringSwitch<std::optional<DebugFlags>>(flagStr)
            .Case("simplify", DebugFlags::Simplify)
            .Case("add", DebugFlags::Add)
            .Case("completion", DebugFlags::Completion)
            .Case("property-map", DebugFlags::PropertyMap)
            .Case("concrete-unification", DebugFlags::ConcreteUnification)
            .Case("concretize-nested-types", DebugFlags::ConcretizeNestedTypes)
            .Case("conditional-requirements",
                  DebugFlags::ConditionalRequirements)
            .Case("homotopy-reduction", DebugFlags::HomotopyReduction)
            .Case("homotopy-reduction-detail",
                  DebugFlags::HomotopyReductionDetail)
            .Case("minimal-conformances", DebugFlags::MinimalConformances)
            .Case("minimal-conformances-detail",
                  DebugFlags::MinimalConformancesDetail)
            .Case("protocol-dependencies", DebugFlags::ProtocolDependencies)
            .Case("minimization", DebugFlags::Minimization)
            .Case("redundant-rules", DebugFlags::RedundantRules)
            .Case("redundant-rules-detail", DebugFlags::RedundantRulesDetail)
            .Case("concrete-contraction", DebugFlags::ConcreteContraction)
            .Case("timers", DebugFlags::Timers)
            .Case("conflicting-rules", DebugFlags::ConflictingRules)
            .Case("split-concrete-equiv-class",
                  DebugFlags::SplitConcreteEquivalenceClass)
            .Default(std::nullopt);
    if (!flag) {
      llvm::errs() << "Unknown debug flag in -debug-requirement-machine "
                   << flagStr << "\n";
      abort();
    }

    result |= *flag;
  }

  return result;
}

RewriteContext::RewriteContext(ASTContext &ctx)
    : TheShapeSymbol(nullptr),
      Context(ctx),
      Stats(ctx.Stats),
      SymbolHistogram(Symbol::NumKinds),
      TermHistogram(4, /*Start=*/1),
      RuleTrieHistogram(16, /*Start=*/1),
      RuleTrieRootHistogram(16),
      PropertyTrieHistogram(16, /*Start=*/1),
      PropertyTrieRootHistogram(16),
      ConformanceRulesHistogram(16),
      MinimalConformancesHistogram(8, /*Start=*/2) {
  auto debugFlags = StringRef(ctx.LangOpts.DebugRequirementMachine);
  if (!debugFlags.empty())
    Debug = parseDebugFlags(debugFlags);
}

void RewriteContext::beginTimer(StringRef name) {
  auto now = std::chrono::system_clock::now();
  auto dur = now.time_since_epoch();

  for (unsigned i = 0; i < Timers.size(); ++i)
    llvm::dbgs() << "| ";
  llvm::dbgs() << "+ started " << name << " ";

  Timers.push_back(std::chrono::duration_cast<std::chrono::microseconds>(dur).count());
}

void RewriteContext::endTimer(StringRef name) {
  auto now = std::chrono::system_clock::now();
  auto dur = now.time_since_epoch();
  auto time = (std::chrono::duration_cast<std::chrono::microseconds>(dur).count()
               - Timers.back());
  Timers.pop_back();

  // If we're nested inside of another timer, don't charge our time to the parent.
  if (!Timers.empty()) {
    Timers.back() += time;
  }

  for (unsigned i = 0; i < Timers.size(); ++i)
    llvm::dbgs() << "| ";

  llvm::dbgs() << "+ ";

  if (time > 100000)
    llvm::dbgs() << "**** SLOW **** ";

  llvm::dbgs() << "finished " << name << " in " << time << "us: ";

}

const llvm::TinyPtrVector<const ProtocolDecl *> &
RewriteContext::getInheritedProtocols(const ProtocolDecl *proto) {
  auto found = AllInherited.find(proto);
  if (found != AllInherited.end())
    return found->second;

  AllInherited.insert(std::make_pair(proto, TinyPtrVector<const ProtocolDecl *>()));

  llvm::SmallDenseSet<const ProtocolDecl *, 4> visited;
  llvm::TinyPtrVector<const ProtocolDecl *> protos;

  for (auto *inheritedProto : proto->getInheritedProtocols()) {
    if (!visited.insert(inheritedProto).second)
      continue;

    protos.push_back(inheritedProto);
    const auto &allInherited = getInheritedProtocols(inheritedProto);

    for (auto *otherProto : allInherited) {
      if (!visited.insert(otherProto).second)
        continue;

      protos.push_back(otherProto);
    }
  }

  auto &result = AllInherited[proto];
  std::swap(protos, result);
  return result;
}

int RewriteContext::compareProtocols(const ProtocolDecl *lhs,
                                     const ProtocolDecl *rhs) {
  unsigned lhsSupport = getInheritedProtocols(lhs).size();
  unsigned rhsSupport = getInheritedProtocols(rhs).size();

  if (lhsSupport != rhsSupport)
    return rhsSupport - lhsSupport;

  return TypeDecl::compare(lhs, rhs);
}

RequirementMachine *RewriteContext::getRequirementMachine(
    CanGenericSignature sig) {
  auto &machine = Machines[sig];
  if (machine) {
    if (!machine->isComplete()) {
      llvm::errs() << "Re-entrant construction of requirement "
                   << "machine for " << sig << "\n";
      abort();
    }

    return machine;
  }

  if (Debug.contains(DebugFlags::Timers)) {
    beginTimer("getRequirementMachine()");
    llvm::dbgs() << sig << "\n";
  }

  // Store this requirement machine before adding the signature,
  // to catch re-entrant construction via initWithGenericSignature()
  // below.
  auto *newMachine = new rewriting::RequirementMachine(*this);
  machine = newMachine;

  // This might re-entrantly invalidate 'machine'.
  auto status = newMachine->initWithGenericSignature(sig);
  newMachine->checkCompletionResult(status.first);

  if (Debug.contains(DebugFlags::Timers)) {
    endTimer("getRequirementMachine()");
    llvm::dbgs() << sig << "\n";
  }

  return newMachine;
}

bool RewriteContext::isRecursivelyConstructingRequirementMachine(
    CanGenericSignature sig) {
  auto found = Machines.find(sig);
  if (found == Machines.end())
    return false;

  return !found->second->isComplete();
}

/// Given a requirement machine that built a minimized signature, attempt to
/// re-use it for subsequent queries against the minimized signature, instead
/// of building a new one later.
void RewriteContext::installRequirementMachine(
    CanGenericSignature sig,
    std::unique_ptr<RequirementMachine> machine) {
  if (!Context.LangOpts.EnableRequirementMachineReuse)
    return;

  auto &entry = Machines[sig];
  if (entry != nullptr)
    return;

  machine->freeze();
  entry = machine.release();
}

/// Implement Tarjan's algorithm to compute strongly-connected components in
/// the protocol dependency graph.
void RewriteContext::getProtocolComponentRec(
    const ProtocolDecl *proto,
    SmallVectorImpl<const ProtocolDecl *> &stack) {
  assert(Protos.count(proto) == 0);

  // Initialize the next component index and push the entry
  // on the stack
  {
    auto &entry = Protos[proto];
    entry.Index = NextComponentIndex;
    entry.LowLink = NextComponentIndex;
    entry.OnStack = 1;
  }

  NextComponentIndex++;
  stack.push_back(proto);

  // Look at each successor.
  auto found = Dependencies.find(proto);
  assert(found != Dependencies.end());

  for (auto *depProto : found->second) {
    auto found = Protos.find(depProto);
    if (found == Protos.end()) {
      // Successor has not yet been visited. Recurse.
      getProtocolComponentRec(depProto, stack);

      auto &entry = Protos[proto];
      assert(Protos.count(depProto) != 0);
      entry.LowLink = std::min(entry.LowLink, Protos[depProto].LowLink);
    } else if (found->second.OnStack) {
      // Successor is on the stack and hence in the current SCC.
      auto &entry = Protos[proto];
      entry.LowLink = std::min(entry.LowLink, found->second.Index);
    }
  }

  auto &entry = Protos[proto];

  // If this a root node, pop the stack and generate an SCC.
  if (entry.LowLink == entry.Index) {
    unsigned id = Components.size();
    SmallVector<const ProtocolDecl *, 3> protos;

    const ProtocolDecl *depProto = nullptr;
    do {
      depProto = stack.back();
      stack.pop_back();

      assert(Protos.count(depProto) != 0);
      Protos[depProto].OnStack = false;
      Protos[depProto].ComponentID = id;

      protos.push_back(depProto);
    } while (depProto != proto);

    if (Debug.contains(DebugFlags::ProtocolDependencies)) {
      llvm::dbgs() << "Connected component: [";
      bool first = true;
      for (auto *depProto : protos) {
        if (!first) {
          llvm::dbgs() << ", ";
        } else {
          first = false;
        }
        llvm::dbgs() << depProto->getName();
      }
      llvm::dbgs() << "]\n";
    }

    Components[id].Protos = Context.AllocateCopy(protos);
  }
}

/// Get the strongly connected component (SCC) of the protocol dependency
/// graph containing the given protocol.
///
/// You must not hold on to this reference across calls to any other
/// Requirement Machine operations, since they might insert new entries
/// into the underlying DenseMap, invalidating the reference.
RewriteContext::ProtocolComponent &
RewriteContext::getProtocolComponentImpl(const ProtocolDecl *proto) {
  {
    // We pre-load protocol dependencies into the Dependencies map
    // because getProtocolDependencies() can trigger recursive calls into
    // the requirement machine in highly-invalid code, which violates
    // invariants in getProtocolComponentRec().
    SmallVector<const ProtocolDecl *, 3> worklist;
    worklist.push_back(proto);

    while (!worklist.empty()) {
      const auto *otherProto = worklist.back();
      worklist.pop_back();

      auto found = Dependencies.find(otherProto);
      if (found != Dependencies.end())
        continue;

      auto protoDeps = otherProto->getProtocolDependencies();
      Dependencies.insert(std::make_pair(otherProto, protoDeps));
      for (auto *nextProto : protoDeps)
        worklist.push_back(nextProto);
    }
  }

  auto found = Protos.find(proto);
  if (found == Protos.end()) {
    if (ProtectProtocolComponentRec) {
      llvm::errs() << "Too much recursion is bad\n";
      abort();
    }

    ProtectProtocolComponentRec = true;

    SmallVector<const ProtocolDecl *, 3> stack;
    getProtocolComponentRec(proto, stack);
    assert(stack.empty());

    found = Protos.find(proto);
    assert(found != Protos.end());

    ProtectProtocolComponentRec = false;
  }

  assert(Components.count(found->second.ComponentID) != 0);
  auto &component = Components[found->second.ComponentID];

  assert(std::find(component.Protos.begin(), component.Protos.end(), proto)
         != component.Protos.end() && "Protocol is in the wrong SCC");
  return component;
}

/// Get the list of protocols in the strongly connected component (SCC)
/// of the protocol dependency graph containing the given protocol.
///
/// This can only be called once, to prevent multiple requirement machines
/// for being built with the same component.
ArrayRef<const ProtocolDecl *>
RewriteContext::startComputingRequirementSignatures(
    const ProtocolDecl *proto) {
  auto &component = getProtocolComponentImpl(proto);

  if (component.ComputingRequirementSignatures) {
    llvm::errs() << "Re-entrant minimization of requirement signatures for: ";
    for (auto *proto : component.Protos)
      llvm::errs() << " " << proto->getName();
    llvm::errs() << "\n";
    abort();
  }

  component.ComputingRequirementSignatures = true;

  return component.Protos;
}

/// Mark the component as having completed, which will ensure that
/// isRecursivelyComputingRequirementMachine() returns false.
void RewriteContext::finishComputingRequirementSignatures(
    const ProtocolDecl *proto) {
  auto &component = getProtocolComponentImpl(proto);

  assert(component.ComputingRequirementSignatures &&
         "Didn't call startComputingRequirementSignatures()");
  component.ComputedRequirementSignatures = true;
}

/// Get the list of protocols in the strongly connected component (SCC)
/// of the protocol dependency graph containing the given protocol.
///
/// This can only be called once, to prevent multiple requirement machines
/// for being built with the same component.
RequirementMachine *RewriteContext::getRequirementMachine(
    const ProtocolDecl *proto) {
  // First, get the requirement signature. If this protocol was written in
  // source, we'll minimize it and install the machine below, saving us the
  // effort of recomputing it.
  (void) proto->getRequirementSignature();

  auto &component = getProtocolComponentImpl(proto);

  if (component.Machine) {
    if (!component.Machine->isComplete()) {
      llvm::errs() << "Re-entrant construction of requirement machine for: ";
      for (auto *proto : component.Protos)
        llvm::errs() << " " << proto->getName();
      llvm::errs() << "\n";
      abort();
    }

    return component.Machine;
  }

  auto protos = component.Protos;

  if (Debug.contains(DebugFlags::Timers)) {
    beginTimer("getRequirementMachine()");
    llvm::dbgs() << "[";
    for (auto *proto : protos)
      llvm::dbgs() << " " << proto->getName();
    llvm::dbgs() << " ]\n";
  }

  // Store this requirement machine before adding the protocols, to catch
  // re-entrant construction via initWithProtocolSignatureRequirements()
  // below.
  auto *newMachine = new rewriting::RequirementMachine(*this);
  component.Machine = newMachine;

  // This might re-entrantly invalidate 'component.Machine'.
  auto status = newMachine->initWithProtocolSignatureRequirements(protos);
  newMachine->checkCompletionResult(status.first);

  if (Debug.contains(DebugFlags::Timers)) {
    endTimer("getRequirementMachine()");
    llvm::dbgs() << "[";
    for (auto *proto : protos)
      llvm::dbgs() << " " << proto->getName();
    llvm::dbgs() << " ]\n";
  }

  return newMachine;
}

/// Note: This doesn't use Evaluator::hasActiveRequest(), because in reality
/// the active request could be for any protocol in the connected component.
///
/// Instead, just check a flag set in the component itself.
bool RewriteContext::isRecursivelyConstructingRequirementMachine(
    const ProtocolDecl *proto) {
  auto found = Protos.find(proto);
  if (found == Protos.end())
    return false;

  auto component = Components.find(found->second.ComponentID);
  if (component == Components.end())
    return false;

  // If we've started but not finished, we're in the middle of computing
  // requirement signatures.
  return (component->second.ComputingRequirementSignatures &&
          !component->second.ComputedRequirementSignatures);
}

/// Given a requirement machine that built the requirement signatures for a
/// protocol connected component, attempt to re-use it for subsequent
/// queries against the connected component, instead of building a new one
/// later.
void RewriteContext::installRequirementMachine(
    const ProtocolDecl *proto,
    std::unique_ptr<RequirementMachine> machine) {
  if (!Context.LangOpts.EnableRequirementMachineReuse)
    return;

  auto &component = getProtocolComponentImpl(proto);
  if (component.Machine != nullptr)
    return;

  machine->freeze();
  component.Machine = machine.release();
}

/// We print stats in the destructor, which should get executed at the end of
/// a compilation job.
RewriteContext::~RewriteContext() {
  for (const auto &pair : Components)
    delete pair.second.Machine;

  Components.clear();

  for (const auto &pair : Machines)
    delete pair.second;

  Machines.clear();

  if (Context.LangOpts.AnalyzeRequirementMachine) {
    llvm::dbgs() << "--- Requirement Machine Statistics ---\n";
    llvm::dbgs() << "\n* Symbol kind:\n";
    SymbolHistogram.dump(llvm::dbgs(), Symbol::Kinds);
    llvm::dbgs() << "\n* Term length:\n";
    TermHistogram.dump(llvm::dbgs());
    llvm::dbgs() << "\n* Rule trie fanout:\n";
    RuleTrieHistogram.dump(llvm::dbgs());
    llvm::dbgs() << "\n* Rule trie root fanout:\n";
    RuleTrieRootHistogram.dump(llvm::dbgs());
    llvm::dbgs() << "\n* Property trie fanout:\n";
    PropertyTrieHistogram.dump(llvm::dbgs());
    llvm::dbgs() << "\n* Property trie root fanout:\n";
    PropertyTrieRootHistogram.dump(llvm::dbgs());
    llvm::dbgs() << "\n* Conformance rules:\n";
    ConformanceRulesHistogram.dump(llvm::dbgs());
    llvm::dbgs() << "\n* Minimal conformance equations:\n";
    MinimalConformancesHistogram.dump(llvm::dbgs());
  }
}