1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
|
//===--- RewriteLoop.cpp - Identities between rewrite rules ---------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file defines data types used for representing redundancies among
// rewrite rules. The information encoded in these types is ultimately used
// for generic signature minimization.
//
// A RewriteStep is a single primitive transformation; the canonical example is
// the application of a rewrite rule, possibly to a subterm.
//
// A RewritePath is a composition of RewriteSteps describing the transformation
// of a term into another term. One place where a RewritePath originates is
// RewriteSystem::simplify(); that method takes an optional RewritePath argument
// to which the series of RewriteSteps performed during simplification are
// appended. If the term was already canonical, the resulting path is empty,
// otherwise it will consist of at least one RewriteStep.
//
// Simplification always applies rules by replacing a subterm equal to the LHS
// with the RHS where LHS > RHS, so the RewriteSteps constructed there always
// make the term shorter. However, more generally, RewriteSteps can also
// express the inverse rewrite, where RHS is replaced with LHS, making the term
// longer.
//
// Inverted RewriteSteps are constructed in the Knuth-Bendix completion
// algorithm. A simple example is where two rules (U.V => X) and (V.W => Y)
// overlap on the term U.V.W. Then the induced rule (X.W => U.Y) (assuming that
// X.W > U.Y) can be described by a RewritePath which begins at X.W, applies
// the inverted rule (X => U.V) to the subterm X to obtain U.V.W, then applies
// the rule (V.W => Y) to the subterm V.W to obtain U.Y.
//
// A RewriteLoop is a path that begins and ends at the same term. A RewriteLoop
// describes a _redundancy_. For example, when completion adds a new rule to
// resolve an overlap, it constructs a RewritePath describing this new rule in
// terms of existing rules; by adding an additional rewrite step corresponding
// to the new rule, we get a loop that begins and ends at the same point, or in
// other words, a RewriteLoop.
//
// In the above example, we have a RewritePath from X.W to U.Y via the two
// existing rewrite rules with the overlap term U.V.W in the middle. If we then
// add a third rewrite step for the new rule inverted, (U.Y => X.W), we get a
// loop that begins and ends at X.W. This loop encodes that the new rule
// (X.W => U.Y) is redundant because it can be expressed in terms of other rules.
//
// The homotopy reduction algorithm in HomotopyReduction.cpp uses rewrite loops
// to find a minimal set of rewrite rules, which are then used to construct a
// minimal generic signature.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/Type.h"
#include "swift/Basic/Range.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include "RewriteSystem.h"
using namespace swift;
using namespace rewriting;
/// Dumps the rewrite step that was applied to \p term. Mutates \p term to
/// reflect the application of the rule.
void RewriteStep::dump(llvm::raw_ostream &out,
RewritePathEvaluator &evaluator,
const RewriteSystem &system) const {
switch (Kind) {
case Rule: {
auto result = evaluator.applyRewriteRule(*this, system);
if (!result.prefix.empty()) {
out << result.prefix;
out << ".";
}
out << "(" << result.lhs << " => " << result.rhs << ")";
if (!result.suffix.empty()) {
out << ".";
out << result.suffix;
}
break;
}
case PrefixSubstitutions: {
auto pair = evaluator.applyPrefixSubstitutions(*this, system);
out << "(σ";
out << (Inverse ? " - " : " + ");
out << pair.first << ")";
if (!pair.second.empty())
out << "." << pair.second;
break;
}
case Shift: {
evaluator.applyShift(*this, system);
out << (Inverse ? "B>A" : "A>B");
break;
}
case Decompose: {
evaluator.applyDecompose(*this, system);
out << (Inverse ? "Compose(" : "Decompose(");
out << Arg << ")";
break;
}
case Relation: {
auto result = evaluator.applyRelation(*this, system);
if (!result.prefix.empty()) {
out << result.prefix;
out << ".";
}
out << "(" << result.lhs << " =>> " << result.rhs << ")";
if (!result.suffix.empty()) {
out << ".";
out << result.suffix;
}
break;
}
case DecomposeConcrete: {
evaluator.applyDecomposeConcrete(*this, system);
out << (Inverse ? "ComposeConcrete(" : "DecomposeConcrete(");
const auto &difference = system.getTypeDifference(Arg);
out << difference.LHS << " : " << difference.RHS << ")";
break;
}
case LeftConcreteProjection: {
evaluator.applyLeftConcreteProjection(*this, system);
out << "LeftConcrete" << (Inverse ? "In" : "Pro") << "jection(";
const auto &difference = system.getTypeDifference(
getTypeDifferenceID());
out << difference.LHS << " : " << difference.RHS << ")";
break;
}
case RightConcreteProjection: {
evaluator.applyRightConcreteProjection(*this, system);
out << "RightConcrete" << (Inverse ? "In" : "Pro") << "jection(";
const auto &difference = system.getTypeDifference(
getTypeDifferenceID());
out << difference.LHS << " : " << difference.RHS << ")";
break;
}
}
}
/// Invert a rewrite path, producing a path that rewrites the original path's
/// destination back to the original path's source.
void RewritePath::invert() {
std::reverse(Steps.begin(), Steps.end());
for (auto &step : Steps)
step.invert();
}
/// Given a rewrite rule which appears exactly once in a loop
/// without context, return a new definition for this rewrite rule.
/// The new definition is the path obtained by deleting the
/// rewrite rule from the loop.
RewritePath RewritePath::splitCycleAtRule(unsigned ruleID) const {
// A cycle is a path from the basepoint to the basepoint.
// Somewhere in this path, an application of \p ruleID
// appears in an empty context.
// First, we split the cycle into two paths:
//
// (1) A path from the basepoint to the rule's
// left hand side,
RewritePath basepointToLhs;
// (2) And a path from the rule's right hand side
// to the basepoint.
RewritePath rhsToBasepoint;
// Because the rule only appears once, we know that basepointToLhs
// and rhsToBasepoint do not involve the rule itself.
// If the rule is inverted, we have to invert the whole thing
// again at the end.
bool ruleWasInverted = false;
bool sawRule = false;
for (auto step : Steps) {
switch (step.Kind) {
case RewriteStep::Rule: {
if (step.getRuleID() != ruleID)
break;
assert(!sawRule && "Rule appears more than once?");
assert(!step.isInContext() && "Rule appears in context?");
ruleWasInverted = step.Inverse;
sawRule = true;
continue;
}
case RewriteStep::PrefixSubstitutions:
case RewriteStep::Shift:
case RewriteStep::Decompose:
case RewriteStep::Relation:
case RewriteStep::DecomposeConcrete:
case RewriteStep::LeftConcreteProjection:
case RewriteStep::RightConcreteProjection:
break;
}
if (sawRule)
rhsToBasepoint.add(step);
else
basepointToLhs.add(step);
}
// Build a path from the rule's lhs to the rule's rhs via the
// basepoint.
RewritePath result = rhsToBasepoint;
result.append(basepointToLhs);
// We want a path from the lhs to the rhs, so invert it unless
// the rewrite step was also inverted.
if (!ruleWasInverted)
result.invert();
return result;
}
/// Replace every rewrite step involving the given rewrite rule with
/// either the replacement path (or its inverse, if the step was
/// inverted).
///
/// The replacement path is re-contextualized at each occurrence of a
/// rewrite step involving the given rule.
///
/// Returns true if any rewrite steps were replaced; false means the
/// rule did not appear in this path.
bool RewritePath::replaceRulesWithPaths(
llvm::function_ref<const RewritePath *(unsigned)> fn) {
bool foundAny = false;
for (const auto &step : Steps) {
if (step.Kind == RewriteStep::Rule &&
fn(step.getRuleID()) != nullptr) {
foundAny = true;
break;
}
}
if (!foundAny)
return false;
SmallVector<RewriteStep, 4> newSteps;
for (const auto &step : Steps) {
switch (step.Kind) {
case RewriteStep::Rule: {
auto *replacementPath = fn(step.getRuleID());
if (replacementPath == nullptr) {
newSteps.push_back(step);
break;
}
// Ok, we found a rewrite step referencing a redundant rule.
// Replace this step with the provided path. If this rewrite step has
// context, the path's own steps must be re-contextualized.
// Keep track of rewrite step pairs which push and pop the stack. Any
// rewrite steps enclosed with a push/pop are not re-contextualized.
unsigned pushCount = 0;
auto recontextualizeStep = [&](RewriteStep newStep) {
bool inverse = newStep.Inverse ^ step.Inverse;
if (newStep.pushesTermsOnStack() && inverse) {
assert(pushCount > 0);
--pushCount;
}
if (pushCount == 0) {
newStep.StartOffset += step.StartOffset;
newStep.EndOffset += step.EndOffset;
}
newStep.Inverse = inverse;
newSteps.push_back(newStep);
if (newStep.pushesTermsOnStack() && !inverse) {
++pushCount;
}
};
// If this rewrite step is inverted, invert the entire path.
if (step.Inverse) {
for (auto newStep : llvm::reverse(*replacementPath))
recontextualizeStep(newStep);
} else {
for (auto newStep : *replacementPath)
recontextualizeStep(newStep);
}
// Rewrite steps which push and pop the stack must come in balanced pairs.
assert(pushCount == 0);
break;
}
case RewriteStep::PrefixSubstitutions:
case RewriteStep::Shift:
case RewriteStep::Decompose:
case RewriteStep::Relation:
case RewriteStep::DecomposeConcrete:
case RewriteStep::LeftConcreteProjection:
case RewriteStep::RightConcreteProjection:
newSteps.push_back(step);
break;
}
}
std::swap(newSteps, Steps);
return true;
}
bool RewritePath::replaceRuleWithPath(unsigned ruleID,
const RewritePath &path) {
return replaceRulesWithPaths(
[&](unsigned otherRuleID) -> const RewritePath * {
if (ruleID == otherRuleID)
return &path;
return nullptr;
});
}
SmallVector<unsigned, 1>
RewritePath::findRulesAppearingOnceInEmptyContext(const MutableTerm &term,
const RewriteSystem &system) const {
// Rules appearing in empty context (possibly more than once).
llvm::SmallDenseSet<unsigned, 2> rulesInEmptyContext;
// The number of times each rule appears (with or without context).
llvm::SmallDenseMap<unsigned, unsigned, 2> ruleFrequency;
RewritePathEvaluator evaluator(term);
for (auto step : Steps) {
switch (step.Kind) {
case RewriteStep::Rule: {
if (!step.isInContext() && !evaluator.isInContext())
rulesInEmptyContext.insert(step.getRuleID());
++ruleFrequency[step.getRuleID()];
break;
}
case RewriteStep::LeftConcreteProjection:
case RewriteStep::Decompose:
case RewriteStep::PrefixSubstitutions:
case RewriteStep::Shift:
case RewriteStep::Relation:
case RewriteStep::DecomposeConcrete:
case RewriteStep::RightConcreteProjection:
break;
}
evaluator.apply(step, system);
}
// Collect all rules that we saw exactly once in empty context.
SmallVector<unsigned, 1> rulesOnceInEmptyContext;
for (auto rule : rulesInEmptyContext) {
auto found = ruleFrequency.find(rule);
assert(found != ruleFrequency.end());
if (found->second == 1)
rulesOnceInEmptyContext.push_back(rule);
}
return rulesOnceInEmptyContext;
}
/// Dumps a series of rewrite steps applied to \p term.
void RewritePath::dump(llvm::raw_ostream &out,
MutableTerm term,
const RewriteSystem &system) const {
RewritePathEvaluator evaluator(term);
bool first = true;
for (const auto &step : Steps) {
if (!first) {
out << " ⊗ ";
} else {
first = false;
}
step.dump(out, evaluator, system);
}
}
void RewritePath::dumpLong(llvm::raw_ostream &out,
MutableTerm term,
const RewriteSystem &system) const {
RewritePathEvaluator evaluator(term);
for (const auto &step : Steps) {
evaluator.dump(out);
evaluator.apply(step, system);
out << "\n";
}
evaluator.dump(out);
}
void RewriteLoop::verify(const RewriteSystem &system) const {
RewritePathEvaluator evaluator(Basepoint);
for (const auto &step : Path) {
evaluator.apply(step, system);
}
if (evaluator.getCurrentTerm() != Basepoint) {
llvm::errs() << "Not a loop: ";
dump(llvm::errs(), system);
llvm::errs() << "\n";
abort();
}
if (evaluator.isInContext()) {
llvm::errs() << "Leftover terms on evaluator stack\n";
evaluator.dump(llvm::errs());
abort();
}
}
/// Recompute various cached values if needed.
void RewriteLoop::recompute(const RewriteSystem &system) {
if (!Dirty)
return;
Dirty = 0;
Useful = 0;
ProjectionCount = 0;
DecomposeCount = 0;
HasConcreteTypeAliasRule = 0;
RewritePathEvaluator evaluator(Basepoint);
for (auto step : Path) {
switch (step.Kind) {
case RewriteStep::Rule: {
Useful |= (!step.isInContext() && !evaluator.isInContext());
const auto &rule = system.getRule(step.getRuleID());
if (rule.isDerivedFromConcreteProtocolTypeAliasRule())
HasConcreteTypeAliasRule = 1;
break;
}
case RewriteStep::LeftConcreteProjection:
++ProjectionCount;
break;
case RewriteStep::Decompose:
++DecomposeCount;
break;
case RewriteStep::PrefixSubstitutions:
case RewriteStep::Shift:
case RewriteStep::Relation:
case RewriteStep::DecomposeConcrete:
case RewriteStep::RightConcreteProjection:
break;
}
evaluator.apply(step, system);
}
RulesInEmptyContext =
Path.findRulesAppearingOnceInEmptyContext(Basepoint, system);
}
/// A rewrite rule is redundant if it appears exactly once in a loop
/// without context.
ArrayRef<unsigned>
RewriteLoop::findRulesAppearingOnceInEmptyContext(
const RewriteSystem &system) const {
const_cast<RewriteLoop *>(this)->recompute(system);
return RulesInEmptyContext;
}
/// The number of LeftConcreteProjection steps, used by the elimination order to
/// prioritize loops that are not concrete unification projections.
unsigned RewriteLoop::getProjectionCount(
const RewriteSystem &system) const {
const_cast<RewriteLoop *>(this)->recompute(system);
return ProjectionCount;
}
/// The number of Decompose steps, used by the elimination order to prioritize
/// loops that are not concrete simplifications.
unsigned RewriteLoop::getDecomposeCount(
const RewriteSystem &system) const {
const_cast<RewriteLoop *>(this)->recompute(system);
return DecomposeCount;
}
/// Returns true if the loop contains at least one concrete protocol typealias rule.
/// See Rule::isDerivedFromConcreteProtocolTypeAliasRule().
bool RewriteLoop::hasConcreteTypeAliasRule(
const RewriteSystem &system) const {
const_cast<RewriteLoop *>(this)->recompute(system);
return HasConcreteTypeAliasRule;
}
/// Returns true if the loop contains any rules in empty context.
bool RewriteLoop::isUseful(
const RewriteSystem &system) const {
const_cast<RewriteLoop *>(this)->recompute(system);
return Useful;
}
void RewriteLoop::dump(llvm::raw_ostream &out,
const RewriteSystem &system) const {
out << Basepoint << ": ";
Path.dump(out, Basepoint, system);
if (isDeleted())
out << " [deleted]";
}
void RewritePathEvaluator::dump(llvm::raw_ostream &out) const {
for (unsigned i = 0, e = Primary.size(); i < e; ++i) {
if (i == Primary.size() - 1)
out << "-> ";
else
out << " ";
out << Primary[i] << "\n";
}
for (unsigned i = 0, e = Secondary.size(); i < e; ++i) {
out << " " << Secondary[Secondary.size() - i - 1] << "\n";
}
}
void RewritePathEvaluator::checkPrimary() const {
if (Primary.empty()) {
llvm::errs() << "Empty primary stack\n";
dump(llvm::errs());
abort();
}
}
void RewritePathEvaluator::checkSecondary() const {
if (Secondary.empty()) {
llvm::errs() << "Empty secondary stack\n";
dump(llvm::errs());
abort();
}
}
MutableTerm &RewritePathEvaluator::getCurrentTerm() {
checkPrimary();
return Primary.back();
}
AppliedRewriteStep
RewritePathEvaluator::applyRewriteRule(const RewriteStep &step,
const RewriteSystem &system) {
auto &term = getCurrentTerm();
assert(step.Kind == RewriteStep::Rule);
const auto &rule = system.getRule(step.getRuleID());
auto lhs = (step.Inverse ? rule.getRHS() : rule.getLHS());
auto rhs = (step.Inverse ? rule.getLHS() : rule.getRHS());
auto bug = [&](StringRef msg) {
llvm::errs() << msg << "\n";
llvm::errs() << "- Term: " << term << "\n";
llvm::errs() << "- StartOffset: " << step.StartOffset << "\n";
llvm::errs() << "- EndOffset: " << step.EndOffset << "\n";
llvm::errs() << "- Expected subterm: " << lhs << "\n";
abort();
};
if (term.size() != step.StartOffset + lhs.size() + step.EndOffset) {
bug("Invalid whiskering");
}
if (!std::equal(term.begin() + step.StartOffset,
term.begin() + step.StartOffset + lhs.size(),
lhs.begin())) {
bug("Invalid subterm");
}
MutableTerm prefix(term.begin(), term.begin() + step.StartOffset);
MutableTerm suffix(term.end() - step.EndOffset, term.end());
term = prefix;
term.append(rhs);
term.append(suffix);
return {lhs, rhs, prefix, suffix};
}
std::pair<MutableTerm, MutableTerm>
RewritePathEvaluator::applyPrefixSubstitutions(const RewriteStep &step,
const RewriteSystem &system) {
assert(step.Arg != 0);
auto &term = getCurrentTerm();
assert(step.Kind == RewriteStep::PrefixSubstitutions);
auto &ctx = system.getRewriteContext();
MutableTerm prefix(term.begin() + step.StartOffset,
term.begin() + step.StartOffset + step.Arg);
MutableTerm suffix(term.end() - step.EndOffset - 1, term.end());
// We're either adding or removing the prefix to each concrete substitution.
Symbol &last = *(term.end() - step.EndOffset - 1);
if (!last.hasSubstitutions()) {
llvm::errs() << "Invalid rewrite path\n";
llvm::errs() << "- Term: " << term << "\n";
llvm::errs() << "- Start offset: " << step.StartOffset << "\n";
llvm::errs() << "- End offset: " << step.EndOffset << "\n";
abort();
}
last = last.transformConcreteSubstitutions(
[&](Term t) -> Term {
if (step.Inverse) {
if (!std::equal(t.begin(),
t.begin() + step.Arg,
prefix.begin())) {
llvm::errs() << "Invalid rewrite path\n";
llvm::errs() << "- Term: " << term << "\n";
llvm::errs() << "- Substitution: " << t << "\n";
llvm::errs() << "- Start offset: " << step.StartOffset << "\n";
llvm::errs() << "- End offset: " << step.EndOffset << "\n";
llvm::errs() << "- Expected subterm: " << prefix << "\n";
abort();
}
MutableTerm mutTerm(t.begin() + step.Arg, t.end());
return Term::get(mutTerm, ctx);
} else {
MutableTerm mutTerm(prefix);
mutTerm.append(t);
return Term::get(mutTerm, ctx);
}
}, ctx);
return std::make_pair(prefix, suffix);
}
void RewritePathEvaluator::applyShift(const RewriteStep &step,
const RewriteSystem &system) {
assert(step.Kind == RewriteStep::Shift);
assert(step.StartOffset == 0);
assert(step.EndOffset == 0);
assert(step.Arg == 0);
if (!step.Inverse) {
// Move top of primary stack to secondary stack.
checkPrimary();
Secondary.push_back(Primary.back());
Primary.pop_back();
} else {
// Move top of secondary stack to primary stack.
checkSecondary();
Primary.push_back(Secondary.back());
Secondary.pop_back();
}
}
void RewritePathEvaluator::applyDecompose(const RewriteStep &step,
const RewriteSystem &system) {
assert(step.Kind == RewriteStep::Decompose);
unsigned numSubstitutions = step.Arg;
if (!step.Inverse) {
// The input term takes the form U.[concrete: C].V or U.[superclass: C].V,
// where |V| == EndOffset.
const auto &term = getCurrentTerm();
auto symbol = *(term.end() - step.EndOffset - 1);
if (!symbol.hasSubstitutions()) {
llvm::errs() << "Expected term with superclass or concrete type symbol"
<< " on primary stack\n";
dump(llvm::errs());
abort();
}
// The symbol must have the expected number of substitutions.
if (symbol.getSubstitutions().size() != numSubstitutions) {
llvm::errs() << "Expected " << numSubstitutions << " substitutions\n";
dump(llvm::errs());
abort();
}
// Push each substitution on the primary stack.
for (auto substitution : symbol.getSubstitutions()) {
Primary.push_back(MutableTerm(substitution));
}
} else {
// The primary stack must store the number of substitutions, together with
// a term that takes the form U.[concrete: C].V or U.[superclass: C].V,
// where |V| == EndOffset.
if (Primary.size() < numSubstitutions + 1) {
llvm::errs() << "Not enough terms on primary stack\n";
dump(llvm::errs());
abort();
}
// The term immediately underneath the substitutions is the one we're
// updating with new substitutions.
const auto &term = *(Primary.end() - numSubstitutions - 1);
auto symbol = *(term.end() - step.EndOffset - 1);
// The symbol at the end of this term must have the expected number of
// substitutions.
if (symbol.getSubstitutions().size() != numSubstitutions) {
llvm::errs() << "Expected " << numSubstitutions << " substitutions\n";
dump(llvm::errs());
abort();
}
for (unsigned i = 0; i < numSubstitutions; ++i) {
const auto &substitution = *(Primary.end() - numSubstitutions + i);
if (MutableTerm(symbol.getSubstitutions()[i]) != substitution) {
llvm::errs() << "Expected " << symbol.getSubstitutions()[i] << "\n";
llvm::errs() << "Got " << substitution << "\n";
dump(llvm::errs());
abort();
}
}
// Pop the substitutions from the primary stack.
Primary.resize(Primary.size() - numSubstitutions);
}
}
AppliedRewriteStep
RewritePathEvaluator::applyRelation(const RewriteStep &step,
const RewriteSystem &system) {
assert(step.Kind == RewriteStep::Relation);
auto relation = system.getRelation(step.Arg);
auto &term = getCurrentTerm();
auto lhs = (step.Inverse ? relation.second : relation.first);
auto rhs = (step.Inverse ? relation.first : relation.second);
auto bug = [&](StringRef msg) {
llvm::errs() << msg << "\n";
llvm::errs() << "- Term: " << term << "\n";
llvm::errs() << "- StartOffset: " << step.StartOffset << "\n";
llvm::errs() << "- EndOffset: " << step.EndOffset << "\n";
llvm::errs() << "- Expected subterm: " << lhs << "\n";
abort();
};
if (term.size() != step.StartOffset + lhs.size() + step.EndOffset) {
bug("Invalid whiskering");
}
if (!std::equal(term.begin() + step.StartOffset,
term.begin() + step.StartOffset + lhs.size(),
lhs.begin())) {
bug("Invalid subterm");
}
MutableTerm prefix(term.begin(), term.begin() + step.StartOffset);
MutableTerm suffix(term.end() - step.EndOffset, term.end());
term = prefix;
term.append(rhs);
term.append(suffix);
return {lhs, rhs, prefix, suffix};
}
void RewritePathEvaluator::applyDecomposeConcrete(const RewriteStep &step,
const RewriteSystem &system) {
assert(step.Kind == RewriteStep::DecomposeConcrete);
const auto &difference = system.getTypeDifference(step.Arg);
auto bug = [&](StringRef msg) {
llvm::errs() << msg << "\n";
llvm::errs() << "- StartOffset: " << step.StartOffset << "\n";
llvm::errs() << "- EndOffset: " << step.EndOffset << "\n";
llvm::errs() << "- DifferenceID: " << step.Arg << "\n";
llvm::errs() << "\nType difference:\n";
difference.dump(llvm::errs());
llvm::errs() << "\nEvaluator state:\n";
dump(llvm::errs());
abort();
};
auto substitutions = difference.LHS.getSubstitutions();
if (!step.Inverse) {
auto &term = getCurrentTerm();
auto concreteSymbol = *(term.end() - step.EndOffset - 1);
if (concreteSymbol != difference.RHS)
bug("Concrete symbol not equal to expected RHS");
MutableTerm newTerm(term.begin(), term.end() - step.EndOffset - 1);
newTerm.add(difference.LHS);
newTerm.append(term.end() - step.EndOffset, term.end());
term = newTerm;
for (unsigned n : indices(substitutions))
Primary.push_back(difference.getReplacementSubstitution(n));
} else {
unsigned numSubstitutions = substitutions.size();
if (Primary.size() < numSubstitutions + 1)
bug("Not enough terms on the stack");
for (unsigned n : indices(substitutions)) {
const auto &otherSubstitution = *(Primary.end() - numSubstitutions + n);
auto expectedSubstitution = difference.getReplacementSubstitution(n);
if (otherSubstitution != expectedSubstitution) {
llvm::errs() << "Got: " << otherSubstitution << "\n";
llvm::errs() << "Expected: " << expectedSubstitution << "\n";
bug("Unexpected substitution term on the stack");
}
}
Primary.resize(Primary.size() - numSubstitutions);
auto &term = getCurrentTerm();
auto concreteSymbol = *(term.end() - step.EndOffset - 1);
if (concreteSymbol != difference.LHS)
bug("Concrete symbol not equal to expected LHS");
MutableTerm newTerm(term.begin(), term.end() - step.EndOffset - 1);
newTerm.add(difference.RHS);
newTerm.append(term.end() - step.EndOffset, term.end());
term = newTerm;
}
}
void
RewritePathEvaluator::applyLeftConcreteProjection(const RewriteStep &step,
const RewriteSystem &system) {
assert(step.Kind == RewriteStep::LeftConcreteProjection);
const auto &difference = system.getTypeDifference(step.getTypeDifferenceID());
unsigned index = step.getSubstitutionIndex();
auto leftProjection = difference.getOriginalSubstitution(index);
MutableTerm leftBaseTerm(difference.BaseTerm);
leftBaseTerm.add(difference.LHS);
auto bug = [&](StringRef msg) {
llvm::errs() << msg << "\n";
llvm::errs() << "- StartOffset: " << step.StartOffset << "\n";
llvm::errs() << "- EndOffset: " << step.EndOffset << "\n";
llvm::errs() << "- SubstitutionIndex: " << index << "\n";
llvm::errs() << "- LeftProjection: " << leftProjection << "\n";
llvm::errs() << "- LeftBaseTerm: " << leftBaseTerm << "\n";
llvm::errs() << "- DifferenceID: " << step.getTypeDifferenceID() << "\n";
llvm::errs() << "\nType difference:\n";
difference.dump(llvm::errs());
llvm::errs() << ":\n";
difference.dump(llvm::errs());
llvm::errs() << "\nEvaluator state:\n";
dump(llvm::errs());
abort();
};
if (!step.Inverse) {
const auto &term = getCurrentTerm();
MutableTerm subTerm(term.begin() + step.StartOffset,
term.end() - step.EndOffset);
if (subTerm != MutableTerm(leftProjection))
bug("Incorrect left projection term");
Primary.push_back(leftBaseTerm);
} else {
if (Primary.size() < 2)
bug("Too few elements on the primary stack");
if (Primary.back() != leftBaseTerm)
bug("Incorrect left base term");
Primary.pop_back();
const auto &term = getCurrentTerm();
MutableTerm subTerm(term.begin() + step.StartOffset,
term.end() - step.EndOffset);
if (subTerm != leftProjection)
bug("Incorrect left projection term");
}
}
void
RewritePathEvaluator::applyRightConcreteProjection(const RewriteStep &step,
const RewriteSystem &system) {
assert(step.Kind == RewriteStep::RightConcreteProjection);
const auto &difference = system.getTypeDifference(step.getTypeDifferenceID());
unsigned index = step.getSubstitutionIndex();
auto leftProjection = difference.getOriginalSubstitution(index);
auto rightProjection = difference.getReplacementSubstitution(index);
MutableTerm leftBaseTerm(difference.BaseTerm);
leftBaseTerm.add(difference.LHS);
MutableTerm rightBaseTerm(difference.BaseTerm);
rightBaseTerm.add(difference.RHS);
auto bug = [&](StringRef msg) {
llvm::errs() << msg << "\n";
llvm::errs() << "- StartOffset: " << step.StartOffset << "\n";
llvm::errs() << "- EndOffset: " << step.EndOffset << "\n";
llvm::errs() << "- SubstitutionIndex: " << index << "\n";
llvm::errs() << "- LeftProjection: " << leftProjection << "\n";
llvm::errs() << "- RightProjection: " << rightProjection << "\n";
llvm::errs() << "- LeftBaseTerm: " << leftBaseTerm << "\n";
llvm::errs() << "- RightBaseTerm: " << rightBaseTerm << "\n";
llvm::errs() << "- DifferenceID: " << step.getTypeDifferenceID() << "\n";
llvm::errs() << "\nType difference:\n";
difference.dump(llvm::errs());
llvm::errs() << "\nEvaluator state:\n";
dump(llvm::errs());
abort();
};
if (!step.Inverse) {
auto &term = getCurrentTerm();
MutableTerm subTerm(term.begin() + step.StartOffset,
term.end() - step.EndOffset);
if (subTerm != rightProjection)
bug("Incorrect right projection term");
MutableTerm newTerm(term.begin(), term.begin() + step.StartOffset);
newTerm.append(leftProjection);
newTerm.append(term.end() - step.EndOffset, term.end());
term = newTerm;
Primary.push_back(rightBaseTerm);
} else {
if (Primary.size() < 2)
bug("Too few elements on the primary stack");
if (Primary.back() != rightBaseTerm)
bug("Incorrect right base term");
Primary.pop_back();
auto &term = getCurrentTerm();
MutableTerm subTerm(term.begin() + step.StartOffset,
term.end() - step.EndOffset);
if (subTerm != leftProjection)
bug("Incorrect left projection term");
MutableTerm newTerm(term.begin(), term.begin() + step.StartOffset);
newTerm.append(rightProjection);
newTerm.append(term.end() - step.EndOffset, term.end());
term = newTerm;
}
}
void RewritePathEvaluator::apply(const RewriteStep &step,
const RewriteSystem &system) {
switch (step.Kind) {
case RewriteStep::Rule:
(void) applyRewriteRule(step, system);
break;
case RewriteStep::PrefixSubstitutions:
(void) applyPrefixSubstitutions(step, system);
break;
case RewriteStep::Shift:
applyShift(step, system);
break;
case RewriteStep::Decompose:
applyDecompose(step, system);
break;
case RewriteStep::Relation:
applyRelation(step, system);
break;
case RewriteStep::DecomposeConcrete:
applyDecomposeConcrete(step, system);
break;
case RewriteStep::LeftConcreteProjection:
applyLeftConcreteProjection(step, system);
break;
case RewriteStep::RightConcreteProjection:
applyRightConcreteProjection(step, system);
break;
}
}
|