File: RewriteLoop.h

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (600 lines) | stat: -rw-r--r-- 20,186 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
//===--- RewriteLoop.h - Identities between rewrite rules -------*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//

#ifndef SWIFT_REWRITELOOP_H
#define SWIFT_REWRITELOOP_H

#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"

#include "Symbol.h"
#include "Term.h"

namespace llvm {
  class raw_ostream;
}

namespace swift {

namespace rewriting {

class RewriteSystem;
struct RewritePathEvaluator;


/// Records an evaluation step in a rewrite path.
struct RewriteStep {
  enum StepKind : unsigned {
    ///
    /// *** Rewrite step kinds introduced by Knuth-Bendix completion ***
    ///

    /// Apply a rewrite rule to the term at the top of the primary stack.
    ///
    /// Formally, this is a whiskered, oriented rewrite rule. For example,
    /// given a rule (X => Y) and the term A.X.B, the application at
    /// offset 1 yields A.Y.B.
    ///
    /// This can be represented as A.(X => Y).B.
    ///
    /// Similarly, going in the other direction, if we start from A.Y.B
    /// and apply the inverse rule, we get A.(Y => X).B.
    ///
    /// The StartOffset field encodes the offset where to apply the rule.
    ///
    /// The Arg field encodes the rule to apply.
    Rule,

    /// The term at the top of the primary stack must be a term ending with a
    /// superclass or concrete type symbol.
    ///
    /// If not inverted: prepend the prefix to each substitution.
    ///
    /// If inverted: strip the prefix from each substitution.
    ///
    /// The StartOffset field encodes the length of the prefix.
    PrefixSubstitutions,

    ///
    /// *** Rewrite step kinds introduced by simplifySubstitutions() ***
    ///

    /// Move a term from the primary stack to the secondary stack (if not
    /// inverted) or the secondary stack to primary stack (if inverted).
    Shift,

    /// If not inverted: the top of the primary stack must be a term ending
    /// with a superclass or concrete type symbol:
    ///
    ///    T.[concrete: C<...> with <X1, X2...>]
    ///
    /// Each concrete substitution Xn is pushed onto the primary stack,
    /// producing:
    ///
    ///    T.[concrete: C<...> with <X1, X2...>] X1 X2...
    ///
    /// If inverted: pop concrete substitutions Xn from the primary stack,
    /// which must follow a term ending with a superclass or concrete type
    /// symbol:
    ///
    ///    T.[concrete: C<...> with <X1, X2...>] X1 X2...
    ///
    /// The Arg field encodes the number of substitutions.
    ///
    /// Used by RewriteSystem::simplifyLeftHandSideSubstitutions().
    Decompose,

    ///
    /// *** Rewrite step kinds introduced by the property map ***
    ///

    /// If not inverted: the top of the primary stack must be a term T.[p1].[p2]
    /// ending in a pair of property symbols [p1] and [p2], where [p1] < [p2].
    /// The symbol [p2] is dropped, leaving behind the term T.[p1].
    ///
    /// If inverted: the top of the primary stack must be a term T.[p1]
    /// ending in a property symbol [p1]. The rewrite system must have a
    /// recorded relation for the pair ([p1], [p2]). The symbol [p2] is added
    /// to the end of the term, leaving behind the term T.[p1].[p2].
    ///
    /// The Arg field stores the result of calling
    /// RewriteSystem::recordRelation().
    Relation,

    /// A generalization of `Decompose` that can replace structural components
    /// of the type with concrete types, using a TypeDifference that has been
    /// computed previously.
    ///
    /// The Arg field is a TypeDifference ID, returned from
    /// RewriteSystem::registerTypeDifference().
    ///
    /// Say the TypeDifference LHS is [concrete: C<...> with <X1, X2...>], and
    /// say the TypeDifference RHS is [concrete: C'<...> with <X', X2', ...>].
    ///
    /// Note that the LHS and RHS may have a different number of substitutions.
    ///
    /// If not inverted: the top of the primary stack must be a term ending
    /// with the RHS of the TypeDifference:
    ///
    ///    T.[concrete: C'<...> with <X1', X2'...>]
    ///
    /// First, the symbol at the end of the term is replaced by the LHS of the
    /// TypeDifference:
    ///
    ///    T.[concrete: C<...> with <X1, X2...>]
    ///
    /// Then, each substitution of the LHS is pushed on the primary stack, with
    /// the transforms of the TypeDifference applied:
    ///
    /// - If (n, f(Xn)) appears in TypeDifference::SameTypes, then we push
    ///   f(Xn).
    /// - If (n, [concrete: D]) appears in TypeDifference::ConcreteTypes, then
    ///   we push Xn.[concrete: D].
    /// - Otherwise, we push Xn.
    ///
    /// This gives you something like:
    ///
    ///    T.[concrete: C<...> with <X1, X2, X3...>] X1 f(X2) X3.[concrete: D]
    ///
    /// If inverted: the above is performed in reverse, leaving behind the
    /// term ending with the TypeDifference RHS at the top of the primary stack:
    ///
    ///    T.[concrete: C'<...> with <X1', X2'...>]
    ///
    /// Used by RewriteSystem::simplifyLeftHandSideSubstitutions().
    DecomposeConcrete,

    /// For decomposing the left hand side of an induced rule in concrete type
    /// unification, using a TypeDifference that has been computed previously.
    ///
    /// The Arg field is a TypeDifference ID together with a substitution index
    /// of the TypeDifference LHS which identifies the induced rule.
    ///
    /// Say the TypeDifference LHS is [concrete: C<...> with <X1, X2...>], and
    /// say the TypeDifference RHS is [concrete: C'<...> with <X', X2', ...>].
    ///
    /// Note that the LHS and RHS may have a different number of substitutions.
    ///
    /// Furthermore, let T be the base term of the TypeDifference, meaning that
    /// the TypeDifference was derived from a pair of concrete type rules
    /// (T.[LHS] => T) and (T.[RHS] => T).
    ///
    /// If not inverted: the top of the primary stack must be the term Xn,
    /// where n is the substitution index of the type difference.
    ///
    /// Then, the term T.[LHS] is pushed on the primary stack.
    ///
    /// If inverted: the top of the primary stack must be T.[LHS], which is
    /// popped. The next term must be the term Xn.
    ///
    /// Used by buildRewritePathForInducedRule() in PropertyMap.cpp.
    LeftConcreteProjection,

    /// For introducing the right hand side of an induced rule in concrete type
    /// unification, using a TypeDifference that has been computed previously.
    ///
    /// If not inverted: the top of the primary stack must be the term f(Xn),
    /// where n is the substitution index of the type difference. There are
    /// three cases:
    ///
    /// - The substitution index appears in the SameTypes list of the
    ///   TypeDifference. In this case, f(Xn) is the right hand side of the
    ///   entry in the SameTypes list.
    ///
    /// - The substitution index appears in the ConcreteTypes list of the
    ///   TypeDifference. In this case, f(Xn) is Xn.[concrete: D] where D
    ///   is the right hand side of the entry in the ConcreteTypes list.
    ///
    /// - The substitution index does not appear in either list, in which case
    ///   it is unchanged and f(Xn) == Xn.
    ///
    /// The term f(Xn) is replaced with the original substitution Xn at the
    /// top of the primary stack.
    ///
    /// Then, the term T.[RHS] is pushed on the primary stack.
    ///
    /// If inverted: the top of the primary stack must be T.[RHS], which is
    /// popped. The next term must be the term f(Xn), which is replaced with
    /// Xn.
    ///
    /// Used by buildRewritePathForInducedRule() in PropertyMap.cpp.
    RightConcreteProjection
  };

  /// The rewrite step kind.
  StepKind Kind : 4;

  /// If false, the step replaces an occurrence of the rule's left hand side
  /// with the right hand side. If true, vice versa.
  unsigned Inverse : 1;

  /// The size of the left whisker, which is the position within the term where
  /// the rule is being applied. In A.(X => Y).B, this is |A|=1.
  unsigned StartOffset : 13;

  /// The size of the right whisker, which is the length of the remaining suffix
  /// after the rule is applied. In A.(X => Y).B, this is |B|=1.
  unsigned EndOffset : 13;

  /// If Kind is Rule, the index of the rule in the rewrite system.
  ///
  /// If Kind is PrefixSubstitutions, the length of the prefix to add or remove
  /// at the beginning of each concrete substitution.
  ///
  /// If Kind is Decompose, the number of substitutions to push or pop.
  ///
  /// If Kind is Relation, the relation index returned from
  /// RewriteSystem::recordRelation().
  ///
  /// If Kind is DecomposeConcrete, the type difference ID returned from
  /// RewriteSystem::recordTypeDifference().
  ///
  /// If Kind is LeftConcreteProjection or RightConcreteProjection, the
  /// type difference returned from RewriteSystem::recordTypeDifference()
  /// in the most significant 16 bits, together with the substitution index
  /// in the least significant 16 bits. See getConcreteProjectionArg(),
  /// getTypeDifference() and getSubstitutionIndex().
  unsigned Arg;

  RewriteStep(StepKind kind, unsigned startOffset, unsigned endOffset,
              unsigned arg, bool inverse) {
    Kind = kind;

    StartOffset = startOffset;
    assert(StartOffset == startOffset && "Overflow");
    EndOffset = endOffset;
    assert(EndOffset == endOffset && "Overflow");
    Arg = arg;
    assert(Arg == arg && "Overflow");
    Inverse = inverse;
  }

  static RewriteStep forRewriteRule(unsigned startOffset, unsigned endOffset,
                                    unsigned ruleID, bool inverse) {
    return RewriteStep(Rule, startOffset, endOffset, ruleID, inverse);
  }

  static RewriteStep forPrefixSubstitutions(unsigned length, unsigned endOffset,
                                            bool inverse) {
    return RewriteStep(PrefixSubstitutions, /*startOffset=*/0, endOffset,
                       /*arg=*/length, inverse);
  }

  static RewriteStep forShift(bool inverse) {
    return RewriteStep(Shift, /*startOffset=*/0, /*endOffset=*/0,
                       /*arg=*/0, inverse);
  }

  static RewriteStep forDecompose(unsigned numSubstitutions, bool inverse) {
    return RewriteStep(Decompose, /*startOffset=*/0, /*endOffset=*/0,
                       /*arg=*/numSubstitutions, inverse);
  }

  static RewriteStep forRelation(unsigned startOffset, unsigned relationID,
                                 bool inverse) {
    return RewriteStep(Relation, startOffset, /*endOffset=*/0,
                       /*arg=*/relationID, inverse);
  }

  static RewriteStep forDecomposeConcrete(unsigned differenceID, bool inverse) {
    return RewriteStep(DecomposeConcrete, /*startOffset=*/0, /*endOffset=*/0,
                       /*arg=*/differenceID, inverse);
  }

  static RewriteStep forLeftConcreteProjection(unsigned differenceID,
                                               unsigned substitutionIndex,
                                               bool inverse) {
    unsigned arg = getConcreteProjectionArg(differenceID, substitutionIndex);
    return RewriteStep(LeftConcreteProjection,
                       /*startOffset=*/0, /*endOffset=*/0,
                       arg, inverse);
  }

  static RewriteStep forRightConcreteProjection(unsigned differenceID,
                                                unsigned substitutionIndex,
                                                bool inverse) {
    unsigned arg = getConcreteProjectionArg(differenceID, substitutionIndex);
    return RewriteStep(RightConcreteProjection,
                       /*startOffset=*/0, /*endOffset=*/0,
                       arg, inverse);
  }

  bool isInContext() const {
    return StartOffset > 0 || EndOffset > 0;
  }

  bool pushesTermsOnStack() const {
    switch (Kind) {
    case RewriteStep::Rule:
    case RewriteStep::PrefixSubstitutions:
    case RewriteStep::Relation:
    case RewriteStep::Shift:
      return false;

    case RewriteStep::Decompose:
    case RewriteStep::DecomposeConcrete:
    case RewriteStep::LeftConcreteProjection:
    case RewriteStep::RightConcreteProjection:
      return true;
    }

    llvm_unreachable("Bad step kind");
  }

  void invert() {
    Inverse = !Inverse;
  }

  unsigned getRuleID() const {
    assert(Kind == RewriteStep::Rule);
    return Arg;
  }

  unsigned getTypeDifferenceID() const {
    assert(Kind == RewriteStep::LeftConcreteProjection ||
           Kind == RewriteStep::RightConcreteProjection);
    return (Arg >> 16) & 0xffff;
  }

  unsigned getSubstitutionIndex() const {
    assert(Kind == RewriteStep::LeftConcreteProjection ||
           Kind == RewriteStep::RightConcreteProjection);
    return Arg & 0xffff;
  }

  void dump(llvm::raw_ostream &out,
            RewritePathEvaluator &evaluator,
            const RewriteSystem &system) const;

  bool isInverseOf(const RewriteStep &other) const;

  bool maybeSwapRewriteSteps(RewriteStep &other,
                             const RewriteSystem &system);

private:
  static unsigned getConcreteProjectionArg(unsigned differenceID,
                                           unsigned substitutionIndex) {
    assert(differenceID <= 0xffff);
    assert(substitutionIndex <= 0xffff);

    return (differenceID << 16) | substitutionIndex;
  }
};

/// Records a sequence of zero or more rewrite rules applied to a term.
class RewritePath {
  llvm::SmallVector<RewriteStep, 3> Steps;

public:
  bool empty() const {
    return Steps.empty();
  }

  unsigned size() const {
    return Steps.size();
  }

  void add(RewriteStep step) {
    Steps.push_back(step);
  }

  // Horizontal composition of paths.
  void append(const RewritePath &other) {
    Steps.append(other.begin(), other.end());
  }

  void resize(unsigned newSize) {
    assert(newSize <= size());
    Steps.erase(Steps.begin() + newSize, Steps.end());
  }

  decltype(Steps)::const_iterator begin() const {
    return Steps.begin();
  }

  decltype(Steps)::const_iterator end() const {
    return Steps.end();
  }

  RewritePath splitCycleAtRule(unsigned ruleID) const;

  bool replaceRulesWithPaths(llvm::function_ref<const RewritePath *(unsigned)> fn);

  bool replaceRuleWithPath(unsigned ruleID, const RewritePath &path);

  llvm::SmallVector<unsigned, 1>
  findRulesAppearingOnceInEmptyContext(const MutableTerm &term,
                                       const RewriteSystem &system) const;

  void invert();

  bool computeFreelyReducedForm();

  bool computeCyclicallyReducedForm(MutableTerm &basepoint,
                                    const RewriteSystem &system);

  bool computeLeftCanonicalForm(const RewriteSystem &system);

  bool computeNormalForm(const RewriteSystem &system);

  void dump(llvm::raw_ostream &out,
            MutableTerm term,
            const RewriteSystem &system) const;

  void dumpLong(llvm::raw_ostream &out,
                MutableTerm term,
                const RewriteSystem &system) const;
};

/// A loop (3-cell) that rewrites the basepoint back to the basepoint.
class RewriteLoop {
public:
  MutableTerm Basepoint;
  RewritePath Path;

private:
  /// Cached value for findRulesAppearingOnceInEmptyContext().
  llvm::SmallVector<unsigned, 1> RulesInEmptyContext;

  /// Cached value for getProjectionCount().
  unsigned ProjectionCount : 15;

  /// Cached value for getDecomposeCount().
  unsigned DecomposeCount : 15;

  /// Cached value for hasConcreteTypeAliasRule().
  unsigned HasConcreteTypeAliasRule : 1;

  /// A useful loop contains at least one rule in empty context, even if that
  /// rule appears multiple times or also in non-empty context. The only loops
  /// that are elimination candidates contain a rule in empty context *exactly
  /// once*. A useful loop can become an elimination candidate after
  /// normalization.
  unsigned Useful : 1;

  /// Loops are deleted once they are no longer useful, as defined above.
  unsigned Deleted : 1;

  /// If true, Useful, RulesInEmptyContext, ProjectionCount, and DecomposeCount
  /// should be recomputed.
  unsigned Dirty : 1;

  void recompute(const RewriteSystem &system);

public:
  RewriteLoop(MutableTerm basepoint, RewritePath path)
    : Basepoint(basepoint), Path(path) {
    ProjectionCount = 0;
    DecomposeCount = 0;
    HasConcreteTypeAliasRule = 0;
    Useful = 0;
    Deleted = 0;

    // Initially, cached values are not valid because they have not been
    // computed yet.
    Dirty = 1;
  }

  bool isDeleted() const {
    return Deleted;
  }

  void markDeleted() {
    assert(!Deleted);
    Deleted = 1;
  }

  /// This must be called after changing 'Path'.
  void markDirty() {
    Dirty = 1;
  }

  bool isUseful(const RewriteSystem &system) const;

  llvm::ArrayRef<unsigned>
  findRulesAppearingOnceInEmptyContext(const RewriteSystem &system) const;

  unsigned getProjectionCount(const RewriteSystem &system) const;

  unsigned getDecomposeCount(const RewriteSystem &system) const;

  bool hasConcreteTypeAliasRule(const RewriteSystem &system) const;

  void computeNormalForm(const RewriteSystem &system);

  void verify(const RewriteSystem &system) const;

  void dump(llvm::raw_ostream &out, const RewriteSystem &system) const;
};

/// Return value of RewritePathEvaluator::applyRewriteRule();
struct AppliedRewriteStep {
  Term lhs;
  Term rhs;
  MutableTerm prefix;
  MutableTerm suffix;
};

/// A rewrite path is a list of instructions for a two-stack interpreter.
///
/// - Shift moves a term from the primary stack to the secondary stack
///   (if not inverted) or secondary to primary (if inverted).
///
/// - Decompose splits off the substitutions from a superclass or concrete type
///   symbol at the top of the primary stack (if not inverted) or assembles a
///   new superclass or concrete type symbol at the top of the primary stack
///   (if inverted).
///
/// - All other rewrite step kinds manipulate the term at the top of the primary
///   stack.
///
struct RewritePathEvaluator {
  /// The primary stack. Most rewrite steps operate on the top of this stack.
  llvm::SmallVector<MutableTerm, 2> Primary;

  /// The secondary stack. The 'Shift' rewrite step moves terms between the
  /// primary and secondary stacks.
  llvm::SmallVector<MutableTerm, 2> Secondary;

  explicit RewritePathEvaluator(const MutableTerm &term) {
    Primary.push_back(term);
  }

  void checkPrimary() const;
  void checkSecondary() const;

  MutableTerm &getCurrentTerm();

  /// We're "in context" if we're in the middle of rewriting concrete
  /// substitutions.
  bool isInContext() const {
    assert(Primary.size() > 0);
    return (Primary.size() > 1 || Secondary.size() > 0);
  }

  void apply(const RewriteStep &step,
             const RewriteSystem &system);

  AppliedRewriteStep applyRewriteRule(const RewriteStep &step,
                                      const RewriteSystem &system);

  std::pair<MutableTerm, MutableTerm>
  applyPrefixSubstitutions(const RewriteStep &step,
                           const RewriteSystem &system);

  void applyShift(const RewriteStep &step,
                  const RewriteSystem &system);

  void applyDecompose(const RewriteStep &step,
                      const RewriteSystem &system);

  AppliedRewriteStep
  applyRelation(const RewriteStep &step,
                const RewriteSystem &system);

  void applyDecomposeConcrete(const RewriteStep &step,
                              const RewriteSystem &system);

  void applyLeftConcreteProjection(const RewriteStep &step,
                                   const RewriteSystem &system);

  void applyRightConcreteProjection(const RewriteStep &step,
                                    const RewriteSystem &system);

  void dump(llvm::raw_ostream &out) const;
};

} // end namespace rewriting

} // end namespace swift

#endif