1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
|
//===--- RewriteSystem.cpp - Generics with term rewriting -----------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/AST/Decl.h"
#include "swift/AST/Types.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <vector>
#include "PropertyMap.h"
#include "RewriteContext.h"
#include "RewriteLoop.h"
#include "RewriteSystem.h"
#include "Rule.h"
#include "Trie.h"
using namespace swift;
using namespace rewriting;
RewriteSystem::RewriteSystem(RewriteContext &ctx)
: Context(ctx), Debug(ctx.getDebugOptions()) {
Initialized = 0;
Complete = 0;
Minimized = 0;
Frozen = 0;
RecordLoops = 0;
LongestInitialRule = 0;
DeepestInitialRule = 0;
}
RewriteSystem::~RewriteSystem() {
Trie.updateHistograms(Context.RuleTrieHistogram,
Context.RuleTrieRootHistogram);
}
/// Initialize the rewrite system using rewrite rules built by the RuleBuilder.
///
/// - recordLoops: Whether this is a rewrite system built from user-written
/// requirements, in which case we will perform minimization using rewrite
/// loops recorded during completion.
///
/// - protos: If this is a rewrite system built from a protocol connected
/// component, this contains the members of the protocol. For a rewrite
/// system built from a generic signature, this is empty. Used by
/// RewriteSystem::isInMinimizationDomain().
///
/// These parameters should be populated from the corresponding fields of the
/// RuleBuilder instance:
///
/// - writtenRequirements: The user-written requirements, if any, used to
/// track source locations for redundancy diagnostics.
///
/// - importedRules: Rewrite rules for referenced protocols. These come from
/// the Requirement Machine instances for these protocols' connected
/// components, so they are already confluent and can be imported verbatim.
///
/// - permanentRules: Permanent rules, such as associated type introduction
/// rules for associated types defined in protocols in this connected
/// component.
///
/// - requirementRules: Rules corresponding to generic requirements written
/// by the user.
///
/// This can only be called once. It adds the rules to the rewrite system,
/// allowing computeConfluentCompletion() to be called to compute the
/// complete rewrite system.
void RewriteSystem::initialize(
bool recordLoops, ArrayRef<const ProtocolDecl *> protos,
std::vector<Rule> &&importedRules,
std::vector<std::pair<MutableTerm, MutableTerm>> &&permanentRules,
std::vector<std::pair<MutableTerm, MutableTerm>> &&requirementRules) {
assert(!Initialized);
Initialized = 1;
RecordLoops = recordLoops;
Protos = protos;
addRules(std::move(importedRules),
std::move(permanentRules),
std::move(requirementRules));
for (const auto &rule : getLocalRules()) {
LongestInitialRule = std::max(LongestInitialRule, rule.getDepth());
DeepestInitialRule = std::max(DeepestInitialRule, rule.getNesting());
}
}
/// Reduce a term by applying all rewrite rules until fixed point.
///
/// If \p path is non-null, records the series of rewrite steps taken.
bool RewriteSystem::simplify(MutableTerm &term, RewritePath *path) const {
bool changed = false;
MutableTerm original;
RewritePath subpath;
bool debug = false;
if (Debug.contains(DebugFlags::Simplify)) {
original = term;
debug = true;
}
while (true) {
bool tryAgain = false;
auto from = term.begin();
auto end = term.end();
while (from < end) {
auto ruleID = Trie.find(from, end);
if (ruleID) {
const auto &rule = getRule(*ruleID);
auto to = from + rule.getLHS().size();
assert(std::equal(from, to, rule.getLHS().begin()));
unsigned startOffset = (unsigned)(from - term.begin());
unsigned endOffset = term.size() - rule.getLHS().size() - startOffset;
term.rewriteSubTerm(from, to, rule.getRHS());
if (path || debug) {
subpath.add(RewriteStep::forRewriteRule(startOffset, endOffset, *ruleID,
/*inverse=*/false));
}
changed = true;
tryAgain = true;
break;
}
++from;
}
if (!tryAgain)
break;
}
if (debug) {
if (changed) {
llvm::dbgs() << "= Simplified " << original << " to " << term << " via ";
subpath.dump(llvm::dbgs(), original, *this);
llvm::dbgs() << "\n";
} else {
llvm::dbgs() << "= Irreducible term: " << term << "\n";
}
}
if (path != nullptr) {
assert(changed != subpath.empty());
path->append(subpath);
}
return changed;
}
/// Adds a rewrite rule, returning true if the new rule was non-trivial.
///
/// If both sides simplify to the same term, the rule is trivial and discarded,
/// and this method returns false.
///
/// If \p path is non-null, the new rule is derived from existing rules in the
/// rewrite system; the path records a series of rewrite steps which transform
/// \p lhs to \p rhs.
bool RewriteSystem::addRule(MutableTerm lhs, MutableTerm rhs,
const RewritePath *path) {
assert(!Frozen);
assert(!lhs.empty());
assert(!rhs.empty());
if (Debug.contains(DebugFlags::Add)) {
llvm::dbgs() << "# Adding rule " << lhs << " == " << rhs << "\n\n";
}
// Now simplify both sides as much as possible with the rules we have so far.
//
// This avoids unnecessary work in the completion algorithm.
RewritePath lhsPath;
RewritePath rhsPath;
simplify(lhs, &lhsPath);
simplify(rhs, &rhsPath);
RewritePath loop;
if (path) {
// Produce a path from the simplified lhs to the simplified rhs.
// (1) First, apply lhsPath in reverse to produce the original lhs.
lhsPath.invert();
loop.append(lhsPath);
// (2) Now, apply the path from the original lhs to the original rhs
// given to us by the completion procedure.
loop.append(*path);
// (3) Finally, apply rhsPath to produce the simplified rhs, which
// is the same as the simplified lhs.
loop.append(rhsPath);
}
// If the left hand side and right hand side are already equivalent, we're
// done.
std::optional<int> result = lhs.compare(rhs, Context);
if (*result == 0) {
// If this rule is a consequence of existing rules, add a homotopy
// generator.
if (path) {
// We already have a loop, since the simplified lhs is identical to the
// simplified rhs.
recordRewriteLoop(lhs, loop);
if (Debug.contains(DebugFlags::Add)) {
llvm::dbgs() << "## Recorded trivial loop at " << lhs << ": ";
loop.dump(llvm::dbgs(), lhs, *this);
llvm::dbgs() << "\n\n";
}
}
return false;
}
// Orient the two terms so that the left hand side is greater than the
// right hand side.
if (*result < 0) {
std::swap(lhs, rhs);
loop.invert();
}
assert(*lhs.compare(rhs, Context) > 0);
if (Debug.contains(DebugFlags::Add)) {
llvm::dbgs() << "## Simplified and oriented rule " << lhs << " => " << rhs << "\n\n";
}
unsigned newRuleID = Rules.size();
Rules.emplace_back(Term::get(lhs, Context), Term::get(rhs, Context));
if (path) {
// We have a rewrite path from the simplified lhs to the simplified rhs;
// add a rewrite step applying the new rule in reverse to close the loop.
loop.add(RewriteStep::forRewriteRule(/*startOffset=*/0, /*endOffset=*/0,
newRuleID, /*inverse=*/true));
recordRewriteLoop(lhs, loop);
if (Debug.contains(DebugFlags::Add)) {
llvm::dbgs() << "## Recorded non-trivial loop at " << lhs << ": ";
loop.dump(llvm::dbgs(), lhs, *this);
llvm::dbgs() << "\n\n";
}
}
auto oldRuleID = Trie.insert(lhs.begin(), lhs.end(), newRuleID);
if (oldRuleID) {
llvm::errs() << "Duplicate rewrite rule!\n";
const auto &oldRule = getRule(*oldRuleID);
llvm::errs() << "Old rule #" << *oldRuleID << ": ";
oldRule.dump(llvm::errs());
llvm::errs() << "\nTrying to replay what happened when I simplified this term:\n";
Debug |= DebugFlags::Simplify;
MutableTerm term = lhs;
simplify(lhs);
dump(llvm::errs());
abort();
}
// Tell the caller that we added a new rule.
return true;
}
/// Add a new rule, marking it permanent.
bool RewriteSystem::addPermanentRule(MutableTerm lhs, MutableTerm rhs) {
bool added = addRule(std::move(lhs), std::move(rhs));
if (added)
Rules.back().markPermanent();
return added;
}
/// Add a new rule, marking it explicit.
bool RewriteSystem::addExplicitRule(MutableTerm lhs, MutableTerm rhs) {
bool added = addRule(std::move(lhs), std::move(rhs));
if (added)
Rules.back().markExplicit();
return added;
}
/// Add a set of rules from a RuleBuilder.
///
/// This is used when building a rewrite system in initialize() above.
///
/// It is also used when conditional requirement inference pulls in additional
/// protocols after the fact.
void RewriteSystem::addRules(
std::vector<Rule> &&importedRules,
std::vector<std::pair<MutableTerm, MutableTerm>> &&permanentRules,
std::vector<std::pair<MutableTerm, MutableTerm>> &&requirementRules) {
unsigned ruleCount = Rules.size();
if (ruleCount == 0) {
// Fast path if this is called from initialization; just steal the
// underlying storage of the imported rule vector.
Rules = std::move(importedRules);
}
else {
// Otherwise, copy the imported rules in.
Rules.insert(Rules.end(), importedRules.begin(), importedRules.end());
}
// If this is the initial call, note the first non-imported rule so that
// we can skip over imported rules later.
if (ruleCount == 0)
FirstLocalRule = Rules.size();
// Add the imported rules to the trie.
for (unsigned newRuleID = ruleCount, e = Rules.size();
newRuleID < e; ++newRuleID) {
const auto &newRule = Rules[newRuleID];
// Skip simplified rules. At the very least we need to skip RHS-simplified
// rules since their left hand sides might duplicate existing rules; the
// others are skipped purely as an optimization. We can't skip subst-
// simplified rules, since property map construction considers them.
if (newRule.isLHSSimplified() ||
newRule.isRHSSimplified())
continue;
auto oldRuleID = Trie.insert(newRule.getLHS().begin(),
newRule.getLHS().end(),
newRuleID);
if (oldRuleID) {
llvm::errs() << "Imported rules have duplicate left hand sides!\n";
llvm::errs() << "New rule #" << newRuleID << ": " << newRule << "\n";
const auto &oldRule = getRule(*oldRuleID);
llvm::errs() << "Old rule #" << *oldRuleID << ": " << oldRule << "\n\n";
dump(llvm::errs());
abort();
}
}
// Now add our own rules.
for (const auto &rule : permanentRules)
addPermanentRule(rule.first, rule.second);
for (const auto &rule : requirementRules)
addExplicitRule(rule.first, rule.second);
}
/// Delete any rules whose left hand sides can be reduced by other rules.
///
/// Must be run after the completion procedure, since the deletion of
/// rules is only valid to perform if the rewrite system is confluent.
void RewriteSystem::simplifyLeftHandSides() {
assert(Complete);
for (unsigned ruleID = FirstLocalRule, e = Rules.size(); ruleID < e; ++ruleID) {
auto &rule = getRule(ruleID);
if (rule.isLHSSimplified())
continue;
// First, see if the left hand side of this rule can be reduced using
// some other rule.
auto lhs = rule.getLHS();
auto begin = lhs.begin();
auto end = lhs.end();
while (begin < end) {
if (auto otherRuleID = Trie.find(begin++, end)) {
// A rule does not obsolete itself.
if (*otherRuleID == ruleID)
continue;
// Ignore other deleted rules.
const auto &otherRule = getRule(*otherRuleID);
if (otherRule.isLHSSimplified())
continue;
if (Debug.contains(DebugFlags::Completion)) {
const auto &otherRule = getRule(*otherRuleID);
llvm::dbgs() << "$ Deleting rule " << rule << " because "
<< "its left hand side contains " << otherRule
<< "\n";
}
rule.markLHSSimplified();
break;
}
}
}
}
/// Reduce the right hand sides of all remaining rules as much as
/// possible.
///
/// Must be run after the completion procedure, since the deletion of
/// rules is only valid to perform if the rewrite system is confluent.
void RewriteSystem::simplifyRightHandSides() {
assert(Complete);
for (unsigned ruleID = FirstLocalRule, e = Rules.size(); ruleID < e; ++ruleID) {
auto &rule = getRule(ruleID);
if (rule.isRHSSimplified())
continue;
// Now, try to reduce the right hand side.
RewritePath rhsPath;
MutableTerm rhs(rule.getRHS());
if (!simplify(rhs, &rhsPath))
continue;
auto lhs = rule.getLHS();
// We're adding a new rule, so the old rule won't apply anymore.
rule.markRHSSimplified();
unsigned newRuleID = Rules.size();
if (Debug.contains(DebugFlags::Add)) {
llvm::dbgs() << "## RHS simplification adds a rule " << lhs << " => " << rhs << "\n\n";
}
// Add a new rule with the simplified right hand side.
Rules.emplace_back(lhs, Term::get(rhs, Context));
auto oldRuleID = Trie.insert(lhs.begin(), lhs.end(), newRuleID);
assert(oldRuleID == ruleID);
(void) oldRuleID;
// Produce a loop at the original lhs.
RewritePath loop;
// (1) First, apply the original rule to produce the original rhs.
loop.add(RewriteStep::forRewriteRule(/*startOffset=*/0, /*endOffset=*/0,
ruleID, /*inverse=*/false));
// (2) Next, apply rhsPath to produce the simplified rhs.
loop.append(rhsPath);
// (3) Finally, apply the new rule in reverse to produce the original lhs.
loop.add(RewriteStep::forRewriteRule(/*startOffset=*/0, /*endOffset=*/0,
newRuleID, /*inverse=*/true));
if (Debug.contains(DebugFlags::Completion)) {
llvm::dbgs() << "$ Right hand side simplification recorded a loop at ";
llvm::dbgs() << lhs << ": ";
loop.dump(llvm::dbgs(), MutableTerm(lhs), *this);
llvm::dbgs() << "\n";
}
recordRewriteLoop(MutableTerm(lhs), loop);
}
}
/// When minimizing a generic signature, we only care about loops where the
/// basepoint is a generic parameter symbol.
///
/// When minimizing protocol requirement signatures, we only care about loops
/// where the basepoint is a protocol symbol or associated type symbol whose
/// protocol is part of the connected component.
///
/// All other loops can be discarded since they do not encode redundancies
/// that are relevant to us.
bool RewriteSystem::isInMinimizationDomain(const ProtocolDecl *proto) const {
assert(Protos.empty() || proto != nullptr);
if (proto == nullptr && Protos.empty())
return true;
if (std::find(Protos.begin(), Protos.end(), proto) != Protos.end())
return true;
return false;
}
void RewriteSystem::recordRewriteLoop(MutableTerm basepoint,
RewritePath path) {
assert(!Frozen);
RewriteLoop loop(basepoint, path);
loop.verify(*this);
if (!RecordLoops)
return;
// Ignore the rewrite loop if it is not part of our minimization domain.
//
// Completion might record a rewrite loop where the basepoint is just
// the term [shape]. In this case though, we know it's in our domain,
// since completion only checks local rules for overlap. Other callers
// of recordRewriteLoop() always pass in a valid basepoint, so we
// check.
if (basepoint[0].getKind() != Symbol::Kind::Shape &&
!isInMinimizationDomain(basepoint.getRootProtocol())) {
return;
}
Loops.push_back(loop);
}
void RewriteSystem::verifyRewriteRules(ValidityPolicy policy) const {
#define ASSERT_RULE(expr) \
if (!(expr)) { \
llvm::errs() << "&&& Malformed rewrite rule: " << rule << "\n"; \
llvm::errs() << "&&& " << #expr << "\n\n"; \
dump(llvm::errs()); \
abort(); \
}
for (const auto &rule : getLocalRules()) {
const auto &lhs = rule.getLHS();
const auto &rhs = rule.getRHS();
for (unsigned index : indices(lhs)) {
auto symbol = lhs[index];
// The left hand side can contain a single name symbol if it has the form
// T.N or T.N.[p], where T is some prefix that does not contain name
// symbols, N is a name symbol, and [p] is an optional property symbol.
//
// In the latter case, we have a protocol typealias, or a rule derived
// via resolving a critical pair involving a protocol typealias.
//
// Any other valid occurrence of a name symbol should have been reduced by
// an associated type introduction rule [P].N, marking the rule as
// LHS-simplified.
if (!rule.isLHSSimplified() &&
(rule.isPropertyRule()
? index != lhs.size() - 2
: index != lhs.size() - 1)) {
// This is only true if the input requirements were valid.
if (policy == DisallowInvalidRequirements) {
ASSERT_RULE(symbol.getKind() != Symbol::Kind::Name);
} else {
// FIXME: Assert that we diagnosed an error
}
}
if (index != lhs.size() - 1) {
ASSERT_RULE(symbol.getKind() != Symbol::Kind::Layout);
ASSERT_RULE(symbol.getKind() != Symbol::Kind::Superclass);
ASSERT_RULE(symbol.getKind() != Symbol::Kind::ConcreteType);
ASSERT_RULE(symbol.getKind() != Symbol::Kind::Shape);
}
if (!rule.isLHSSimplified() &&
index != lhs.size() - 1) {
ASSERT_RULE(symbol.getKind() != Symbol::Kind::ConcreteConformance);
}
if (index != 0) {
ASSERT_RULE(symbol.getKind() != Symbol::Kind::GenericParam);
}
if (!rule.isLHSSimplified() &&
index != 0 && index != lhs.size() - 1) {
ASSERT_RULE(symbol.getKind() != Symbol::Kind::Protocol);
}
}
for (unsigned index : indices(rhs)) {
auto symbol = rhs[index];
// The right hand side can contain a single name symbol if it has the form
// T.N, where T is some prefix that does not contain name symbols, and
// N is a name symbol.
//
// In this case, we have a protocol typealias, or a rule derived via
// resolving a critical pair involving a protocol typealias.
//
// Any other valid occurrence of a name symbol should have been reduced by
// an associated type introduction rule [P].N, marking the rule as
// RHS-simplified.
if (!rule.isRHSSimplified() &&
index != rhs.size() - 1) {
// This is only true if the input requirements were valid.
if (policy == DisallowInvalidRequirements) {
ASSERT_RULE(symbol.getKind() != Symbol::Kind::Name);
} else {
// FIXME: Assert that we diagnosed an error
}
}
ASSERT_RULE(symbol.getKind() != Symbol::Kind::Layout);
ASSERT_RULE(symbol.getKind() != Symbol::Kind::Superclass);
ASSERT_RULE(symbol.getKind() != Symbol::Kind::ConcreteType);
if (index != rhs.size() - 1) {
ASSERT_RULE(symbol.getKind() != Symbol::Kind::Shape);
}
// Completion can introduce a rule of the form
//
// (T.[P] => T.[concrete: C : P])
//
// Such rules are immediately simplified away. Otherwise, we should
// never see a symbol with substitutions (concrete type, superclass,
// concrete conformance) on the right hand side of a rule.
if (!(rule.isRHSSimplified() &&
index == rhs.size() - 1)) {
ASSERT_RULE(symbol.getKind() != Symbol::Kind::Superclass);
ASSERT_RULE(symbol.getKind() != Symbol::Kind::ConcreteType);
ASSERT_RULE(symbol.getKind() != Symbol::Kind::ConcreteConformance);
}
if (index != 0) {
ASSERT_RULE(symbol.getKind() != Symbol::Kind::GenericParam);
}
if (!rule.isRHSSimplified() &&
index != 0) {
ASSERT_RULE(symbol.getKind() != Symbol::Kind::Protocol);
}
}
if (rhs.size() == 1 && rhs[0].getKind() == Symbol::Kind::Shape) {
// We can have a rule like T.[shape] => [shape].
ASSERT_RULE(lhs.back().getKind() == Symbol::Kind::Shape);
} else {
// Otherwise, LHS and RHS must have the same domain.
auto lhsDomain = lhs.getRootProtocol();
auto rhsDomain = rhs.getRootProtocol();
ASSERT_RULE(lhsDomain == rhsDomain);
}
}
#undef ASSERT_RULE
}
/// Free up memory by purging unused data structures after completion
/// (for a rewrite system built from a generic signature) or minimization
/// (for a rewrite system built from user-written requirements).
void RewriteSystem::freeze() {
assert(Complete);
assert(!Frozen);
for (unsigned ruleID = FirstLocalRule, e = Rules.size();
ruleID < e; ++ruleID) {
getRule(ruleID).freeze();
}
CheckedOverlaps.clear();
RelationMap.clear();
Relations.clear();
DifferenceMap.clear();
Differences.clear();
CheckedDifferences.clear();
Loops.clear();
RedundantRules.clear();
ConflictingRules.clear();
}
void RewriteSystem::dump(llvm::raw_ostream &out) const {
out << "Rewrite system: {\n";
for (const auto &rule : Rules) {
out << "- " << rule << "\n";
}
out << "}\n";
if (!Relations.empty()) {
out << "Relations: {\n";
for (const auto &relation : Relations) {
out << "- " << relation.first << " =>> " << relation.second << "\n";
}
out << "}\n";
}
if (!Differences.empty()) {
out << "Type differences: {\n";
for (const auto &difference : Differences) {
difference.dump(out);
out << "\n";
}
out << "}\n";
}
if (!Loops.empty()) {
out << "Rewrite loops: {\n";
for (unsigned loopID : indices(Loops)) {
const auto &loop = Loops[loopID];
if (loop.isDeleted())
continue;
out << "- (#" << loopID << ") ";
loop.dump(out, *this);
out << "\n";
}
out << "}\n";
}
}
|