File: RuleBuilder.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (561 lines) | stat: -rw-r--r-- 19,669 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
//===--- RuleBuilder.cpp - Lowering desugared requirements to rules -------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements lowering of desugared requirements to rewrite rules,
// as well as rule sharing, which imports confluent rewrite rules from a
// protocol connected component into a rewrite system which references that
// protocol.
//
//===----------------------------------------------------------------------===//

#include "RuleBuilder.h"
#include "swift/AST/Decl.h"
#include "swift/AST/Requirement.h"
#include "swift/AST/RequirementSignature.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SetVector.h"
#include "RequirementMachine.h"
#include "RewriteContext.h"
#include "RewriteSystem.h"
#include "Symbol.h"
#include "Term.h"

using namespace swift;
using namespace rewriting;

/// For building a rewrite system for a generic signature from canonical
/// requirements.
void RuleBuilder::initWithGenericSignature(
    ArrayRef<GenericTypeParamType *> genericParams,
    ArrayRef<Requirement> requirements) {
  assert(!Initialized);
  Initialized = 1;

  // Collect all protocols transitively referenced from these requirements.
  for (auto req : requirements) {
    if (req.getKind() == RequirementKind::Conformance) {
      addReferencedProtocol(req.getProtocolDecl());
    }
  }

  collectRulesFromReferencedProtocols();
  collectPackShapeRules(genericParams);

  // Add rewrite rules for all top-level requirements.
  for (const auto &req : requirements)
    addRequirement(req, /*proto=*/nullptr);
}

/// For building a rewrite system for a generic signature from user-written
/// requirements.
void RuleBuilder::initWithWrittenRequirements(
    ArrayRef<GenericTypeParamType *> genericParams,
    ArrayRef<StructuralRequirement> requirements) {
  assert(!Initialized);
  Initialized = 1;

  // Collect all protocols transitively referenced from these requirements.
  for (auto req : requirements) {
    if (req.req.getKind() == RequirementKind::Conformance) {
      addReferencedProtocol(req.req.getProtocolDecl());
    }
  }

  collectRulesFromReferencedProtocols();
  collectPackShapeRules(genericParams);

  // Add rewrite rules for all top-level requirements.
  for (const auto &req : requirements)
    addRequirement(req, /*proto=*/nullptr);
}

/// For building a rewrite system for a protocol connected component from
/// a previously-built requirement signature.
///
/// Will trigger requirement signature computation if we haven't built
/// requirement signatures for this connected component yet, in which case we
/// will recursively end up building another rewrite system for this component
/// using initWithProtocolWrittenRequirements().
void RuleBuilder::initWithProtocolSignatureRequirements(
    ArrayRef<const ProtocolDecl *> protos) {
  assert(!Initialized);
  Initialized = 1;

  // Add all protocols to the referenced set, so that subsequent calls
  // to addReferencedProtocol() with one of these protocols don't add
  // them to the import list.
  for (auto *proto : protos) {
    ReferencedProtocols.insert(proto);
  }

  for (auto *proto : protos) {
    if (Dump) {
      llvm::dbgs() << "protocol " << proto->getName() << " {\n";
    }

    addPermanentProtocolRules(proto);

    auto reqs = proto->getRequirementSignature();

    // If completion failed, we'll have a totally empty requirement signature,
    // but to maintain invariants around what constitutes a valid rewrite term
    // between getTypeForTerm() and isValidTypeParameter(), we need to add rules
    // for inherited protocols.
    if (reqs.getErrors().contains(GenericSignatureErrorFlags::CompletionFailed)) {
      for (auto *inheritedProto : Context.getInheritedProtocols(proto)) {
        Requirement req(RequirementKind::Conformance,
                        proto->getSelfInterfaceType(),
                        inheritedProto->getDeclaredInterfaceType());

        addRequirement(req.getCanonical(), proto);
      }
    }

    for (auto req : reqs.getRequirements())
      addRequirement(req.getCanonical(), proto);
    for (auto alias : reqs.getTypeAliases())
      addTypeAlias(alias, proto);

    for (auto *otherProto : proto->getProtocolDependencies())
      addReferencedProtocol(otherProto);

    if (Dump) {
      llvm::dbgs() << "}\n";
    }
  }

  // Collect all protocols transitively referenced from this connected component
  // of the protocol dependency graph.
  collectRulesFromReferencedProtocols();
}

/// For building a rewrite system for a protocol connected component from
/// user-written requirements. Used when actually building requirement
/// signatures.
void RuleBuilder::initWithProtocolWrittenRequirements(
    ArrayRef<const ProtocolDecl *> component,
    const llvm::DenseMap<const ProtocolDecl *,
                         SmallVector<StructuralRequirement, 4>> protos) {
  assert(!Initialized);
  Initialized = 1;

  // Add all protocols to the referenced set, so that subsequent calls
  // to addReferencedProtocol() with one of these protocols don't add
  // them to the import list.
  for (const auto *proto : component)
    ReferencedProtocols.insert(proto);

  for (const auto *proto : component) {
    auto found = protos.find(proto);
    assert(found != protos.end());
    const auto &reqs = found->second;

    if (Dump) {
      llvm::dbgs() << "protocol " << proto->getName() << " {\n";
    }

    addPermanentProtocolRules(proto);

    for (auto req : reqs)
      addRequirement(req, proto);

    for (auto *otherProto : proto->getProtocolDependencies())
      addReferencedProtocol(otherProto);

    if (Dump) {
      llvm::dbgs() << "}\n";
    }
  }

  // Collect all protocols transitively referenced from this connected component
  // of the protocol dependency graph.
  collectRulesFromReferencedProtocols();
}

/// For adding conditional conformance requirements to an existing rewrite
/// system. This might pull in additional protocols that we haven't seen
/// before.
///
/// The interface types in the requirements are converted to terms relative
/// to the given array of substitutions, using
/// RewriteContext::getRelativeTermForType().
///
/// For example, given a concrete conformance rule:
///
///    X.Y.[concrete: Array<X.Z> : Equatable]
///
/// The substitutions are {τ_0_0 := X.Z}, and the Array : Equatable conformance
/// has a conditional requirement 'τ_0_0 : Equatable', so the following
/// conformance rule will be added:
///
///    X.Z.[Equatable] => X.Z
void RuleBuilder::initWithConditionalRequirements(
    ArrayRef<Requirement> requirements,
    ArrayRef<Term> substitutions) {
  assert(!Initialized);
  Initialized = 1;

  // Collect all protocols transitively referenced from these requirements.
  for (auto req : requirements) {
    if (req.getKind() == RequirementKind::Conformance) {
      addReferencedProtocol(req.getProtocolDecl());
    }
  }

  collectRulesFromReferencedProtocols();

  // Add rewrite rules for all top-level requirements.
  for (const auto &req : requirements)
    addRequirement(req.getCanonical(), /*proto=*/nullptr, substitutions);
}

/// Add permanent rules for a protocol, consisting of:
///
/// - The identity conformance rule [P].[P] => [P].
/// - An associated type introduction rule for each associated type.
/// - An inherited associated type introduction rule for each associated
///   type of each inherited protocol.
void RuleBuilder::addPermanentProtocolRules(const ProtocolDecl *proto) {
  MutableTerm lhs;
  lhs.add(Symbol::forProtocol(proto, Context));
  lhs.add(Symbol::forProtocol(proto, Context));

  MutableTerm rhs;
  rhs.add(Symbol::forProtocol(proto, Context));

  PermanentRules.emplace_back(lhs, rhs);

  for (auto *assocType : proto->getAssociatedTypeMembers())
    addAssociatedType(assocType, proto);

  for (auto *inheritedProto : Context.getInheritedProtocols(proto)) {
    for (auto *assocType : inheritedProto->getAssociatedTypeMembers())
      addAssociatedType(assocType, proto);
  }
}

/// For an associated type T in a protocol P, we add a rewrite rule:
///
///   [P].T => [P:T]
///
/// Intuitively, this means "if a type conforms to P, it has a nested type
/// named T".
void RuleBuilder::addAssociatedType(const AssociatedTypeDecl *type,
                                    const ProtocolDecl *proto) {
  MutableTerm lhs;
  lhs.add(Symbol::forProtocol(proto, Context));
  lhs.add(Symbol::forName(type->getName(), Context));

  MutableTerm rhs;
  rhs.add(Symbol::forAssociatedType(proto, type->getName(), Context));

  PermanentRules.emplace_back(lhs, rhs);
}

/// Lowers a desugared generic requirement to a rewrite rule.
///
/// Convert a requirement to a rule and add it to the builder.
///
/// The types in the requirement must be canonical.
///
/// If \p proto is null and \p substitutions is None, this is a generic
/// requirement from the top-level generic signature. The added rewrite
/// rule will be rooted in a generic parameter symbol.
///
/// If \p proto is non-null, this is a generic requirement in the protocol's
/// requirement signature. The added rewrite rule will be rooted in a
/// protocol symbol.
///
/// If \p substitutions is not None, this is a conditional requirement
/// added by conditional requirement inference. The added rewrite rule
/// will be added in the corresponding term from the substitution array.
void RuleBuilder::addRequirement(const Requirement &req,
                                 const ProtocolDecl *proto,
                                 std::optional<ArrayRef<Term>> substitutions) {
  if (Dump) {
    llvm::dbgs() << "+ ";
    req.dump(llvm::dbgs());
    llvm::dbgs() << "\n";
  }

  assert(!substitutions.has_value() || proto == nullptr && "Can't have both");

  // Compute the left hand side.
  auto subjectType = CanType(req.getFirstType());
  auto subjectTerm = (substitutions
                      ? Context.getRelativeTermForType(
                          subjectType, *substitutions)
                      : Context.getMutableTermForType(
                          subjectType, proto));

  // Compute the right hand side.
  MutableTerm constraintTerm;

  switch (req.getKind()) {
  case RequirementKind::SameShape: {
    // A same-shape requirement T.shape == U.shape
    // becomes a rewrite rule:
    //
    //    T.[shape] => U.[shape]
    auto otherType = CanType(req.getSecondType());
    assert(otherType->isParameterPack());

    constraintTerm = (substitutions
                      ? Context.getRelativeTermForType(
                            otherType, *substitutions)
                      : Context.getMutableTermForType(
                            otherType, proto));

    // Add the [shape] symbol to both sides.
    subjectTerm.add(Symbol::forShape(Context));
    constraintTerm.add(Symbol::forShape(Context));
    break;
  }

  case RequirementKind::Conformance: {
    // A conformance requirement T : P becomes a rewrite rule
    //
    //   T.[P] == T
    //
    // Intuitively, this means "any type ending with T conforms to P".
    auto *proto = req.getProtocolDecl();

    constraintTerm = subjectTerm;
    constraintTerm.add(Symbol::forProtocol(proto, Context));
    break;
  }

  case RequirementKind::Superclass: {
    // A superclass requirement T : C<X, Y> becomes a rewrite rule
    //
    //   T.[superclass: C<X, Y>] => T
    auto otherType = CanType(req.getSecondType());

    // Build the symbol [superclass: C<X, Y>].
    SmallVector<Term, 1> result;
    otherType = (substitutions
                 ? Context.getRelativeSubstitutionSchemaFromType(
                    otherType, *substitutions, result)
                 : Context.getSubstitutionSchemaFromType(
                    otherType, proto, result));
    auto superclassSymbol = Symbol::forSuperclass(otherType, result, Context);

    // Build the term T.[superclass: C<X, Y>].
    constraintTerm = subjectTerm;
    constraintTerm.add(superclassSymbol);
    break;
  }

  case RequirementKind::Layout: {
    // A layout requirement T : L becomes a rewrite rule
    //
    //   T.[layout: L] == T
    constraintTerm = subjectTerm;
    constraintTerm.add(Symbol::forLayout(req.getLayoutConstraint(), Context));
    break;
  }

  case RequirementKind::SameType: {
    auto otherType = CanType(req.getSecondType());

    if (!otherType->isTypeParameter()) {
      // A concrete same-type requirement T == C<X, Y> becomes a
      // rewrite rule
      //
      //   T.[concrete: C<X, Y>] => T
      SmallVector<Term, 1> result;
      otherType = (substitutions
                   ? Context.getRelativeSubstitutionSchemaFromType(
                        otherType, *substitutions, result)
                   : Context.getSubstitutionSchemaFromType(
                        otherType, proto, result));

      constraintTerm = subjectTerm;
      constraintTerm.add(Symbol::forConcreteType(otherType, result, Context));
      break;
    }

    constraintTerm = (substitutions
                      ? Context.getRelativeTermForType(
                            otherType, *substitutions)
                      : Context.getMutableTermForType(
                            otherType, proto));
    break;
  }
  }

  RequirementRules.emplace_back(std::move(subjectTerm), std::move(constraintTerm));
}

void RuleBuilder::addRequirement(const StructuralRequirement &req,
                                 const ProtocolDecl *proto) {
  addRequirement(req.req.getCanonical(), proto, /*substitutions=*/std::nullopt);
}

/// Lowers a protocol typealias to a rewrite rule.
void RuleBuilder::addTypeAlias(const ProtocolTypeAlias &alias,
                               const ProtocolDecl *proto) {
  // Build the term [P].T, where P is the protocol and T is a name symbol.
  MutableTerm subjectTerm;
  subjectTerm.add(Symbol::forProtocol(proto, Context));
  subjectTerm.add(Symbol::forName(alias.getName(), Context));

  auto constraintType = alias.getUnderlyingType()->getCanonicalType();
  MutableTerm constraintTerm;

  if (constraintType->isTypeParameter()) {
    // If the underlying type of the typealias is a type parameter X, build
    // a rule [P].T => X, where X,
    constraintTerm = Context.getMutableTermForType(
        constraintType, proto);
  } else {
    // If the underlying type of the typealias is a concrete type C, build
    // a rule [P].T.[concrete: C] => [P].T.
    constraintTerm = subjectTerm;

    SmallVector<Term, 1> result;
    auto concreteType =
        Context.getSubstitutionSchemaFromType(
            constraintType, proto, result);

    constraintTerm.add(Symbol::forConcreteType(concreteType, result, Context));
  }

  RequirementRules.emplace_back(subjectTerm, constraintTerm);
}

/// If we haven't seen this protocol yet, save it for later so that we can
/// import the rewrite rules from its connected component.
void RuleBuilder::addReferencedProtocol(const ProtocolDecl *proto) {
  if (ReferencedProtocols.insert(proto).second)
    ProtocolsToImport.push_back(proto);
}

/// Compute the transitive closure of the set of all protocols referenced from
/// the right hand sides of conformance requirements, and import the rewrite
/// rules from the requirement machine for each protocol component.
void RuleBuilder::collectRulesFromReferencedProtocols() {
  // Compute the transitive closure.
  unsigned i = 0;
  while (i < ProtocolsToImport.size()) {
    auto *proto = ProtocolsToImport[i++];
    for (auto *depProto : proto->getProtocolDependencies()) {
      addReferencedProtocol(depProto);
    }
  }

  // If this is a rewrite system for a generic signature, add rewrite rules for
  // each referenced protocol.
  //
  // if this is a rewrite system for a connected component of the protocol
  // dependency graph, add rewrite rules for each referenced protocol not part
  // of this connected component.
  llvm::DenseSet<RequirementMachine *> machines;

  // Now visit each protocol component requirement machine and pull in its rules.
  for (auto *proto : ProtocolsToImport) {
    // This will trigger requirement signature computation for this protocol,
    // if necessary, which will cause us to re-enter into a new RuleBuilder
    // instance under RuleBuilder::initWithProtocolWrittenRequirements().
    if (Dump) {
      llvm::dbgs() << "importing protocol " << proto->getName() << "\n";
    }

    auto *machine = Context.getRequirementMachine(proto);
    if (!machines.insert(machine).second) {
      // We've already seen this protocol component.
      continue;
    }

    // We grab the machine's local rules, not *all* of its rules, to avoid
    // duplicates in case multiple machines share a dependency on a downstream
    // protocol component.
    auto localRules = machine->getLocalRules();
    ImportedRules.insert(ImportedRules.end(),
                         localRules.begin(),
                         localRules.end());
  }
}

void RuleBuilder::collectPackShapeRules(ArrayRef<GenericTypeParamType *> genericParams) {
  if (Dump) {
    llvm::dbgs() << "adding shape rules\n";
  }

  if (!llvm::any_of(genericParams,
                    [](GenericTypeParamType *t) {
                      return t->isParameterPack();
                    })) {
    return;
  }

  // Each non-pack generic parameter is part of the "scalar shape class", represented
  // by the empty term.
  for (auto *genericParam : genericParams) {
    if (genericParam->isParameterPack())
      continue;

    // Add the rule (τ_d_i.[shape] => [shape]).
    MutableTerm lhs;
    lhs.add(Symbol::forGenericParam(
        cast<GenericTypeParamType>(genericParam->getCanonicalType()), Context));
    lhs.add(Symbol::forShape(Context));

    MutableTerm rhs;
    rhs.add(Symbol::forShape(Context));

    PermanentRules.emplace_back(lhs, rhs);
  }

  // A member type T.[P:A] is part of the same shape class as its base type T.
  llvm::DenseSet<Symbol> visited;

  auto addMemberShapeRule = [&](const ProtocolDecl *proto, AssociatedTypeDecl *assocType) {
    auto symbol = Symbol::forAssociatedType(proto, assocType->getName(), Context);
    if (!visited.insert(symbol).second)
      return;

    // Add the rule ([P:A].[shape] => [shape]).
    MutableTerm lhs;
    lhs.add(symbol);
    lhs.add(Symbol::forShape(Context));

    MutableTerm rhs;
    rhs.add(Symbol::forShape(Context));

    // Consider it an imported rule, since it is not part of our minimization
    // domain. It would be more logical if we added these in the protocol component
    // machine for this protocol, but instead we add them in the "leaf" generic
    // signature machine. This avoids polluting machines that do not involve
    // parameter packs with these extra rules, which would otherwise just slow
    // things down.
    Rule rule(Term::get(lhs, Context), Term::get(rhs, Context));
    rule.markPermanent();
    ImportedRules.push_back(rule);
  };

  for (auto *proto : ProtocolsToImport) {
    if (Dump) {
      llvm::dbgs() << "adding member shape rules for protocol " << proto->getName() << "\n";
    }

    for (auto *assocType : proto->getAssociatedTypeMembers()) {
      addMemberShapeRule(proto, assocType);
    }

    for (auto *inheritedProto : Context.getInheritedProtocols(proto)) {
      for (auto *assocType : inheritedProto->getAssociatedTypeMembers()) {
        addMemberShapeRule(proto, assocType);
      }
    }
  }
}