1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
|
//===--- SimplifySubstitutions.cpp - Simplify concrete type rules ---------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Implements a pass for simplifying substitutions in concrete type symbols.
// Substitutions can be simplified in one of two ways; either a substitution
// term can be replaced by a more canonical term, or it can be replaced by a
// concrete type.
//
// For example, given pair of rewrite rules:
//
// T.[concrete: G<Y>] => T
// Y => X
//
// We can apply (Y => X) to the term appearing in the concrete type symbol
// [concrete: G<Y>] to obtain the rule:
//
// T.[concrete: G<X>] => T
//
// Similarly, if we have a pair of rewrite rules:
//
// T.[concrete: G<Y>] => T
// Y.[concrete: Int] => Y
//
// We can obtain the new rule:
//
// T.[concrete: G<Int>] => T
//
// Substitution simplification occurs during the Knuth-Bendix completion
// procedure, and after property map construction.
//
// In the first case, no property map is available yet, so substitution terms
// are simplified to other terms, but concrete type replacement is not
// performed. In the second case, the property map is consulted to perform
// concrete type replacement where appropriate.
//
// Either the new rule or the old rule can become redundant; they are related
// by rewrite loops. Additionally, rewrite loops are introduced for each
// transformation applied to the substitutions to relate them to the concrete
// type rules via "projections".
//
// These rewrite loops are in a sense dual to the property map's concrete type
// unification, and share a lot of the code; whereas the property map will
// relate two rules (T.[concrete: G<X>] => T) with (T.[concrete: G<Y>] => T)
// and add the induced rule (Y => X), substitution simplification will use
// (Y => X) to transform (T.[concrete: G<Y>] => T) into
// (T.[concrete: G<X>] => T).
//
// This logic (and concrete type unification) heavily relies on the "type
// difference" abstraction implemented in TypeDifference.cpp. Technical details
// about the various rewrite loops introduced here can be found in comments at
// the top of various functions below.
//
//===----------------------------------------------------------------------===//
#include "PropertyMap.h"
#include "RewriteSystem.h"
using namespace swift;
using namespace rewriting;
/// Given a rule (V.[LHS] => V) and a rewrite path (T.[RHS] => T) where
/// T == U.V, build a rewrite path from T.[RHS] to T.[LHS].
void RewriteSystem::buildRewritePathForUnifier(Term key,
unsigned lhsRuleID,
const RewritePath &rhsPath,
RewritePath *path) const {
unsigned lhsLength = getRule(lhsRuleID).getRHS().size();
unsigned lhsPrefix = key.size() - lhsLength;
path->append(rhsPath);
// Apply the inverted rule U.(V => V.[LHS]).
path->add(RewriteStep::forRewriteRule(
/*startOffset=*/lhsPrefix, /*endOffset=*/0,
/*ruleID=*/lhsRuleID, /*inverse=*/true));
// If the rule was actually (V.[LHS] => V) with T == U.V for some
// |U| > 0, prefix each substitution of [LHS] with U.
if (lhsPrefix > 0) {
path->add(RewriteStep::forPrefixSubstitutions(/*prefix=*/lhsPrefix,
/*endOffset=*/0,
/*inverse=*/false));
}
}
/// Build a rewrite path for a rule induced by concrete type unification.
///
/// Consider two concrete type rules (T.[LHS] => T) and (T.[RHS] => T), a
/// TypeDifference describing the transformation from LHS to RHS, and the
/// index of a substitution Xn from [C] which is transformed into its
/// replacement f(Xn).
///
/// The rewrite path should allow us to eliminate the induced rule
/// (f(Xn) => Xn), so the induced rule will appear without context, and
/// the concrete type rules (T.[LHS] => T) and (T.[RHS] => T) will appear
/// in context.
///
/// There are two cases:
///
/// a) The substitution Xn remains a type parameter in [RHS], but becomes
/// a canonical term Xn', so f(Xn) = Xn'.
///
/// In the first case, the induced rule (Xn => Xn'), described by a
/// rewrite path as follows:
///
/// Xn
/// Xn' T.[RHS] // RightConcreteProjection(n) pushes T.[RHS]
/// Xn' T // Application of (T.[RHS] => T) in context
/// Xn' T.[LHS] // Application of (T => T.[LHS]) in context
/// Xn' // LeftConcreteProjection(n) pops T.[LHS]
///
/// Now when this path is composed with a rewrite step for the inverted
/// induced rule (Xn' => Xn), we get a rewrite loop at Xn in which the
/// new rule appears in empty context.
///
/// b) The substitution Xn becomes a concrete type [D] in [C'], so
/// f(Xn) = Xn.[D].
///
/// In the second case, the induced rule is (Xn.[D] => Xn), described
/// by a rewrite path (going in the other direction) as follows:
///
/// Xn
/// Xn.[D] T.[RHS] // RightConcreteProjection(n) pushes T.[RHS]
/// Xn.[D] T // Application of (T.[RHS] => T) in context
/// Xn.[D] T.[LHS] // Application of (T => T.[LHS]) in context
/// Xn.[D] // LeftConcreteProjection(n) pops T.[LHS]
///
/// Now when this path is composed with a rewrite step for the induced
/// rule (Xn.[D] => Xn), we get a rewrite loop at Xn in which the
/// new rule appears in empty context.
///
/// There is a minor complication; the concrete type rules T.[LHS] and
/// T.[RHS] might actually be T.[LHS] and V.[RHS] where V is a suffix of
/// T, so T = U.V for some |U| > 0, (or vice versa). In this case we need
/// an additional step in the middle to prefix the concrete substitutions
/// of [LHS] (or [LHS]) with U.
static void buildRewritePathForInducedRule(Term key,
unsigned differenceID,
unsigned lhsRuleID,
const RewritePath &rhsPath,
unsigned substitutionIndex,
const RewriteSystem &system,
RewritePath *path) {
// Replace f(Xn) with Xn and push T.[RHS] on the stack.
path->add(RewriteStep::forRightConcreteProjection(
differenceID, substitutionIndex, /*inverse=*/false));
system.buildRewritePathForUnifier(key, lhsRuleID, rhsPath, path);
// Pop T.[LHS] from the stack, leaving behind Xn.
path->add(RewriteStep::forLeftConcreteProjection(
differenceID, substitutionIndex, /*inverse=*/true));
}
/// Given that LHS and RHS are known to simplify to the same term, build a
/// rewrite path from RHS to LHS.
void RewriteSystem::buildRewritePathForJoiningTerms(MutableTerm lhsTerm,
MutableTerm rhsTerm,
RewritePath *path) const {
(void) simplify(rhsTerm, path);
RewritePath lhsPath;
(void) simplify(lhsTerm, &lhsPath);
lhsPath.invert();
path->append(lhsPath);
assert(lhsTerm == rhsTerm);
}
/// Given two concrete type rules (T.[LHS] => T) and (T.[RHS] => T) and
/// TypeDifference describing the transformation from LHS to RHS,
/// record rules for transforming each substitution of LHS into a
/// more canonical type parameter or concrete type from RHS.
///
/// This also records rewrite paths relating induced rules to the original
/// concrete type rules, since the concrete type rules imply the induced
/// rules and make them redundant.
///
/// Finally, builds a rewrite loop relating the two concrete type rules
/// via the induced rules.
void RewriteSystem::processTypeDifference(const TypeDifference &difference,
unsigned differenceID,
unsigned lhsRuleID,
const RewritePath &rhsPath) {
if (!CheckedDifferences.insert(differenceID).second)
return;
bool debug = Debug.contains(DebugFlags::ConcreteUnification);
if (debug) {
difference.dump(llvm::dbgs());
}
RewritePath unificationPath;
auto substitutions = difference.LHS.getSubstitutions();
// The term is at the top of the primary stack. Push all substitutions onto
// the primary stack.
unificationPath.add(RewriteStep::forDecompose(substitutions.size(),
/*inverse=*/false));
// Move all substitutions but the first one to the secondary stack.
for (unsigned i = 1; i < substitutions.size(); ++i)
unificationPath.add(RewriteStep::forShift(/*inverse=*/false));
for (unsigned index : indices(substitutions)) {
// Move the next substitution from the secondary stack to the primary stack.
if (index != 0)
unificationPath.add(RewriteStep::forShift(/*inverse=*/true));
auto lhsTerm = difference.getReplacementSubstitution(index);
auto rhsTerm = difference.getOriginalSubstitution(index);
RewritePath inducedRulePath;
buildRewritePathForInducedRule(difference.BaseTerm, differenceID,
lhsRuleID, rhsPath, index,
*this, &inducedRulePath);
if (debug) {
llvm::dbgs() << "%% Induced rule " << lhsTerm
<< " => " << rhsTerm << " with path ";
inducedRulePath.dump(llvm::dbgs(), lhsTerm, *this);
llvm::dbgs() << "\n";
}
addRule(lhsTerm, rhsTerm, &inducedRulePath);
buildRewritePathForJoiningTerms(lhsTerm, rhsTerm, &unificationPath);
}
// All simplified substitutions are now on the primary stack. Collect them to
// produce the new term.
unificationPath.add(RewriteStep::forDecomposeConcrete(differenceID,
/*inverse=*/true));
// We now have a unification path from T.[RHS] to T.[LHS] using the
// newly-recorded induced rules. Close the loop with a path from
// T.[RHS] to R.[LHS] via the concrete type rules being unified.
buildRewritePathForUnifier(difference.BaseTerm, lhsRuleID, rhsPath,
&unificationPath);
// Record a rewrite loop at T.[LHS].
MutableTerm basepoint(difference.BaseTerm);
basepoint.add(difference.LHS);
recordRewriteLoop(basepoint, unificationPath);
// Optimization: If the LHS rule applies to the entire base term and not
// a suffix, mark it substitution-simplified so that we can skip recording
// the same rewrite loop in concretelySimplifyLeftHandSideSubstitutions().
auto &lhsRule = getRule(lhsRuleID);
if (lhsRule.getRHS() == difference.BaseTerm &&
!lhsRule.isSubstitutionSimplified()) {
if (lhsRule.isFrozen()) {
llvm::errs() << "Frozen rule should already be subst-simplified: "
<< lhsRule << "\n\n";
dump(llvm::errs());
abort();
}
lhsRule.markSubstitutionSimplified();
}
}
/// Simplify terms appearing in the substitutions of the last symbol of \p term,
/// which must be a superclass or concrete type symbol.
///
/// Additionally, if \p map is non-null, any terms which become concrete types
/// will cause the corresponding generic parameter in the concrete type symbol
/// to be replaced.
///
/// Returns None if the concrete type symbol cannot be simplified further.
///
/// Otherwise returns an index which can be passed to
/// RewriteSystem::getTypeDifference().
std::optional<unsigned> RewriteSystem::simplifySubstitutions(
Term baseTerm, Symbol symbol, const PropertyMap *map, RewritePath *path) {
assert(symbol.hasSubstitutions());
// Fast path if the type is fully concrete.
auto substitutions = symbol.getSubstitutions();
if (substitutions.empty())
return std::nullopt;
// Save the original rewrite path length so that we can reset if if we don't
// find anything to simplify.
unsigned oldSize = (path ? path->size() : 0);
if (path) {
// The term is at the top of the primary stack. Push all substitutions onto
// the primary stack.
path->add(RewriteStep::forDecompose(substitutions.size(),
/*inverse=*/false));
// Move all substitutions but the first one to the secondary stack.
for (unsigned i = 1; i < substitutions.size(); ++i)
path->add(RewriteStep::forShift(/*inverse=*/false));
}
// Simplify and collect substitutions.
llvm::SmallVector<std::pair<unsigned, Term>, 1> sameTypes;
llvm::SmallVector<std::pair<unsigned, Symbol>, 1> concreteTypes;
for (unsigned index : indices(substitutions)) {
// Move the next substitution from the secondary stack to the primary stack.
if (index != 0 && path)
path->add(RewriteStep::forShift(/*inverse=*/true));
auto term = symbol.getSubstitutions()[index];
MutableTerm mutTerm(term);
// Note that it's of course possible that the term both requires
// simplification, and the simplified term has a concrete type.
//
// This isn't handled with our current representation of
// TypeDifference, but that should be fine since the caller
// has to iterate until fixed point anyway.
//
// This should be rare in practice.
if (simplify(mutTerm, path)) {
// Record a mapping from this substitution to the simplified term.
sameTypes.emplace_back(index, Term::get(mutTerm, Context));
} else if (map) {
auto *props = map->lookUpProperties(mutTerm);
if (props && props->isConcreteType()) {
auto concreteSymbol = props->concretelySimplifySubstitution(
mutTerm, Context, path);
// Record a mapping from this substitution to the concrete type.
concreteTypes.emplace_back(index, concreteSymbol);
}
}
}
// If nothing changed, we don't have to build the type difference.
if (sameTypes.empty() && concreteTypes.empty()) {
if (path) {
// The rewrite path should consist of a Decompose, followed by a number
// of Shifts, followed by a Compose.
#ifndef NDEBUG
for (auto iter = path->begin() + oldSize; iter < path->end(); ++iter) {
assert(iter->Kind == RewriteStep::Shift ||
iter->Kind == RewriteStep::Decompose);
}
#endif
path->resize(oldSize);
}
return std::nullopt;
}
auto difference = buildTypeDifference(baseTerm, symbol,
sameTypes, concreteTypes,
Context);
assert(difference.LHS != difference.RHS);
unsigned differenceID = recordTypeDifference(difference);
// All simplified substitutions are now on the primary stack. Collect them to
// produce the new term.
if (path) {
path->add(RewriteStep::forDecomposeConcrete(differenceID,
/*inverse=*/true));
}
return differenceID;
}
/// Simplify substitution terms in superclass, concrete type and concrete
/// conformance symbols.
///
/// During completion, \p map will be null. After completion, the property map
/// is built, and a final simplification pass is performed with \p map set to
/// the new property map.
void RewriteSystem::simplifyLeftHandSideSubstitutions(const PropertyMap *map) {
for (unsigned ruleID = FirstLocalRule, e = Rules.size(); ruleID < e; ++ruleID) {
auto &rule = getRule(ruleID);
if (rule.isSubstitutionSimplified())
continue;
auto optSymbol = rule.isPropertyRule();
if (!optSymbol || !optSymbol->hasSubstitutions())
continue;
auto symbol = *optSymbol;
auto differenceID = simplifySubstitutions(rule.getRHS(), symbol, map);
if (!differenceID)
continue;
auto difference = getTypeDifference(*differenceID);
assert(difference.LHS == symbol);
assert(difference.RHS != symbol);
MutableTerm rhs(rule.getRHS());
MutableTerm lhs(rhs);
lhs.add(difference.RHS);
addRule(lhs, rhs);
RewritePath path;
buildRewritePathForJoiningTerms(rhs, lhs, &path);
processTypeDifference(difference, *differenceID, ruleID, path);
}
}
|