1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
|
//===--- Symbol.cpp - The generics rewrite system alphabet ---------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/AST/Decl.h"
#include "swift/AST/Types.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <vector>
#include "RewriteContext.h"
#include "Symbol.h"
#include "Term.h"
using namespace swift;
using namespace rewriting;
const StringRef Symbol::Kinds[] = {
"conformance",
"protocol",
"assocty",
"generic",
"name",
"shape",
"layout",
"super",
"concrete"
};
/// Symbols are uniqued and immutable, stored as a single pointer;
/// the Storage type is the allocated backing storage.
struct Symbol::Storage final
: public llvm::FoldingSetNode,
public llvm::TrailingObjects<Storage, unsigned, Term> {
friend class Symbol;
Symbol::Kind Kind;
const ProtocolDecl *Proto = nullptr;
union {
Identifier Name;
CanType ConcreteType;
LayoutConstraint Layout;
GenericTypeParamType *GenericParam;
};
explicit Storage(Identifier name) {
Kind = Symbol::Kind::Name;
Name = name;
}
explicit Storage(LayoutConstraint layout) {
Kind = Symbol::Kind::Layout;
Layout = layout;
}
explicit Storage(const ProtocolDecl *proto) {
Kind = Symbol::Kind::Protocol;
Proto = proto;
}
explicit Storage(GenericTypeParamType *param) {
Kind = Symbol::Kind::GenericParam;
GenericParam = param;
}
/// A dummy type for overload resolution of the
/// 'shape' constructor for Storage.
struct ForShape {};
explicit Storage(ForShape shape) {
Kind = Kind::Shape;
}
Storage(const ProtocolDecl *proto, Identifier name) {
Kind = Symbol::Kind::AssociatedType;
Proto = proto;
Name = name;
}
Storage(Symbol::Kind kind, CanType type, ArrayRef<Term> substitutions) {
assert(kind == Symbol::Kind::Superclass ||
kind == Symbol::Kind::ConcreteType);
assert(!type->hasUnboundGenericType());
assert(!type->hasTypeVariable());
assert(type->hasTypeParameter() != substitutions.empty());
Kind = kind;
ConcreteType = type;
*getTrailingObjects<unsigned>() = substitutions.size();
for (unsigned i : indices(substitutions))
getSubstitutions()[i] = substitutions[i];
}
Storage(CanType type, ArrayRef<Term> substitutions, const ProtocolDecl *proto) {
assert(!type->hasTypeVariable());
assert(type->hasTypeParameter() != substitutions.empty());
Kind = Symbol::Kind::ConcreteConformance;
Proto = proto;
*getTrailingObjects<unsigned>() = substitutions.size();
ConcreteType = type;
for (unsigned i : indices(substitutions))
getSubstitutions()[i] = substitutions[i];
}
size_t numTrailingObjects(OverloadToken<unsigned>) const {
return (Kind == Symbol::Kind::Superclass ||
Kind == Symbol::Kind::ConcreteType ||
Kind == Symbol::Kind::ConcreteConformance);
}
size_t numTrailingObjects(OverloadToken<Term>) const {
return getNumSubstitutions();
}
unsigned getNumSubstitutions() const {
assert(numTrailingObjects(OverloadToken<unsigned>()) == 1);
return *getTrailingObjects<unsigned>();
}
MutableArrayRef<Term> getSubstitutions() {
return {getTrailingObjects<Term>(), getNumSubstitutions()};
}
ArrayRef<Term> getSubstitutions() const {
return {getTrailingObjects<Term>(), getNumSubstitutions()};
}
void Profile(llvm::FoldingSetNodeID &id) const;
};
Symbol::Kind Symbol::getKind() const {
return Ptr->Kind;
}
/// Get the identifier associated with an unbound name symbol or an
/// associated type symbol.
Identifier Symbol::getName() const {
assert(getKind() == Kind::Name ||
getKind() == Kind::AssociatedType);
return Ptr->Name;
}
/// Get the protocol declaration associated with a protocol or associated type
/// symbol.
const ProtocolDecl *Symbol::getProtocol() const {
assert(getKind() == Kind::Protocol ||
getKind() == Kind::AssociatedType ||
getKind() == Kind::ConcreteConformance);
return Ptr->Proto;
}
/// Get the generic parameter associated with a generic parameter symbol.
GenericTypeParamType *Symbol::getGenericParam() const {
assert(getKind() == Kind::GenericParam);
return Ptr->GenericParam;
}
/// Get the layout constraint associated with a layout constraint symbol.
LayoutConstraint Symbol::getLayoutConstraint() const {
assert(getKind() == Kind::Layout);
return Ptr->Layout;
}
/// Get the concrete type associated with a superclass, concrete type or
/// concrete conformance symbol.
CanType Symbol::getConcreteType() const {
assert(getKind() == Kind::Superclass ||
getKind() == Kind::ConcreteType ||
getKind() == Kind::ConcreteConformance);
return Ptr->ConcreteType;
}
/// Get the list of substitution terms associated with a superclass,
/// concrete type or concrete conformance symbol.
ArrayRef<Term> Symbol::getSubstitutions() const {
return Ptr->getSubstitutions();
}
/// Creates a new name symbol.
Symbol Symbol::forName(Identifier name,
RewriteContext &ctx) {
llvm::FoldingSetNodeID id;
id.AddInteger(unsigned(Kind::Name));
id.AddPointer(name.get());
void *insertPos = nullptr;
if (auto *symbol = ctx.Symbols.FindNodeOrInsertPos(id, insertPos))
return symbol;
unsigned size = Storage::totalSizeToAlloc<unsigned, Term>(0, 0);
void *mem = ctx.Allocator.Allocate(size, alignof(Storage));
auto *symbol = new (mem) Storage(name);
#ifndef NDEBUG
llvm::FoldingSetNodeID newID;
symbol->Profile(newID);
assert(id == newID);
#endif
ctx.Symbols.InsertNode(symbol, insertPos);
ctx.SymbolHistogram.add(unsigned(Kind::Name));
return symbol;
}
/// Creates a new protocol symbol.
Symbol Symbol::forProtocol(const ProtocolDecl *proto,
RewriteContext &ctx) {
assert(proto != nullptr);
llvm::FoldingSetNodeID id;
id.AddInteger(unsigned(Kind::Protocol));
id.AddPointer(proto);
void *insertPos = nullptr;
if (auto *symbol = ctx.Symbols.FindNodeOrInsertPos(id, insertPos))
return symbol;
unsigned size = Storage::totalSizeToAlloc<unsigned, Term>(0, 0);
void *mem = ctx.Allocator.Allocate(size, alignof(Storage));
auto *symbol = new (mem) Storage(proto);
#ifndef NDEBUG
llvm::FoldingSetNodeID newID;
symbol->Profile(newID);
assert(id == newID);
#endif
ctx.Symbols.InsertNode(symbol, insertPos);
ctx.SymbolHistogram.add(unsigned(Kind::Protocol));
return symbol;
}
/// Creates a new associated type symbol.
Symbol Symbol::forAssociatedType(const ProtocolDecl *proto,
Identifier name,
RewriteContext &ctx) {
llvm::FoldingSetNodeID id;
id.AddInteger(unsigned(Kind::AssociatedType));
id.AddPointer(proto);
id.AddPointer(name.get());
void *insertPos = nullptr;
if (auto *symbol = ctx.Symbols.FindNodeOrInsertPos(id, insertPos))
return symbol;
unsigned size = Storage::totalSizeToAlloc<unsigned, Term>(0, 0);
void *mem = ctx.Allocator.Allocate(size, alignof(Storage));
auto *symbol = new (mem) Storage(proto, name);
#ifndef NDEBUG
llvm::FoldingSetNodeID newID;
symbol->Profile(newID);
assert(id == newID);
#endif
ctx.Symbols.InsertNode(symbol, insertPos);
ctx.SymbolHistogram.add(unsigned(Kind::AssociatedType));
return symbol;
}
/// Creates a generic parameter symbol, representing a generic
/// parameter in the top-level generic signature from which the
/// rewrite system is built.
Symbol Symbol::forGenericParam(GenericTypeParamType *param,
RewriteContext &ctx) {
assert(param->isCanonical());
llvm::FoldingSetNodeID id;
id.AddInteger(unsigned(Kind::GenericParam));
id.AddPointer(param);
void *insertPos = nullptr;
if (auto *symbol = ctx.Symbols.FindNodeOrInsertPos(id, insertPos))
return symbol;
unsigned size = Storage::totalSizeToAlloc<unsigned, Term>(0, 0);
void *mem = ctx.Allocator.Allocate(size, alignof(Storage));
auto *symbol = new (mem) Storage(param);
#ifndef NDEBUG
llvm::FoldingSetNodeID newID;
symbol->Profile(newID);
assert(id == newID);
#endif
ctx.Symbols.InsertNode(symbol, insertPos);
ctx.SymbolHistogram.add(unsigned(Kind::GenericParam));
return symbol;
}
Symbol Symbol::forShape(RewriteContext &ctx) {
if (auto *symbol = ctx.TheShapeSymbol)
return symbol;
unsigned size = Storage::totalSizeToAlloc<unsigned, Term>(0, 0);
void *mem = ctx.Allocator.Allocate(size, alignof(Storage));
auto *symbol = new (mem) Storage(Storage::ForShape());
return (ctx.TheShapeSymbol = symbol);
}
/// Creates a layout symbol, representing a layout constraint.
Symbol Symbol::forLayout(LayoutConstraint layout,
RewriteContext &ctx) {
llvm::FoldingSetNodeID id;
id.AddInteger(unsigned(Kind::Layout));
id.AddPointer(layout.getPointer());
void *insertPos = nullptr;
if (auto *symbol = ctx.Symbols.FindNodeOrInsertPos(id, insertPos))
return symbol;
unsigned size = Storage::totalSizeToAlloc<unsigned, Term>(0, 0);
void *mem = ctx.Allocator.Allocate(size, alignof(Storage));
auto *symbol = new (mem) Storage(layout);
#ifndef NDEBUG
llvm::FoldingSetNodeID newID;
symbol->Profile(newID);
assert(id == newID);
#endif
ctx.Symbols.InsertNode(symbol, insertPos);
ctx.SymbolHistogram.add(unsigned(Kind::Layout));
return symbol;
}
/// Creates a superclass symbol, representing a superclass constraint.
Symbol Symbol::forSuperclass(CanType type, ArrayRef<Term> substitutions,
RewriteContext &ctx) {
llvm::FoldingSetNodeID id;
id.AddInteger(unsigned(Kind::Superclass));
id.AddPointer(type.getPointer());
id.AddInteger(unsigned(substitutions.size()));
for (auto substitution : substitutions)
id.AddPointer(substitution.getOpaquePointer());
void *insertPos = nullptr;
if (auto *symbol = ctx.Symbols.FindNodeOrInsertPos(id, insertPos))
return symbol;
unsigned size = Storage::totalSizeToAlloc<unsigned, Term>(
1, substitutions.size());
void *mem = ctx.Allocator.Allocate(size, alignof(Storage));
auto *symbol = new (mem) Storage(Kind::Superclass, type, substitutions);
#ifndef NDEBUG
llvm::FoldingSetNodeID newID;
symbol->Profile(newID);
assert(id == newID);
#endif
ctx.Symbols.InsertNode(symbol, insertPos);
ctx.SymbolHistogram.add(unsigned(Kind::Superclass));
return symbol;
}
/// Creates a concrete type symbol, representing a superclass constraint.
Symbol Symbol::forConcreteType(CanType type, ArrayRef<Term> substitutions,
RewriteContext &ctx) {
llvm::FoldingSetNodeID id;
id.AddInteger(unsigned(Kind::ConcreteType));
id.AddPointer(type.getPointer());
id.AddInteger(unsigned(substitutions.size()));
for (auto substitution : substitutions)
id.AddPointer(substitution.getOpaquePointer());
void *insertPos = nullptr;
if (auto *symbol = ctx.Symbols.FindNodeOrInsertPos(id, insertPos))
return symbol;
unsigned size = Storage::totalSizeToAlloc<unsigned, Term>(
1, substitutions.size());
void *mem = ctx.Allocator.Allocate(size, alignof(Storage));
auto *symbol = new (mem) Storage(Kind::ConcreteType, type, substitutions);
#ifndef NDEBUG
llvm::FoldingSetNodeID newID;
symbol->Profile(newID);
assert(id == newID);
#endif
ctx.Symbols.InsertNode(symbol, insertPos);
ctx.SymbolHistogram.add(unsigned(Kind::ConcreteType));
return symbol;
}
/// Creates a concrete type symbol, representing a superclass constraint.
Symbol Symbol::forConcreteConformance(CanType type,
ArrayRef<Term> substitutions,
const ProtocolDecl *proto,
RewriteContext &ctx) {
llvm::FoldingSetNodeID id;
id.AddInteger(unsigned(Kind::ConcreteConformance));
id.AddPointer(proto);
id.AddPointer(type.getPointer());
id.AddInteger(unsigned(substitutions.size()));
for (auto substitution : substitutions)
id.AddPointer(substitution.getOpaquePointer());
void *insertPos = nullptr;
if (auto *symbol = ctx.Symbols.FindNodeOrInsertPos(id, insertPos))
return symbol;
unsigned size = Storage::totalSizeToAlloc<unsigned, Term>(
1, substitutions.size());
void *mem = ctx.Allocator.Allocate(size, alignof(Storage));
auto *symbol = new (mem) Storage(type, substitutions, proto);
#ifndef NDEBUG
llvm::FoldingSetNodeID newID;
symbol->Profile(newID);
assert(id == newID);
#endif
ctx.Symbols.InsertNode(symbol, insertPos);
ctx.SymbolHistogram.add(unsigned(Kind::ConcreteConformance));
return symbol;
}
/// Given that this symbol is the first symbol of a term, return the
/// "domain" of the term.
///
/// - If the first symbol is a protocol symbol [P] or associated type
/// symbol [P:T], the domain is P.
/// - If the first symbol is a generic parameter symbol, the domain is
/// nullptr.
/// - Anything else will assert.
const ProtocolDecl *Symbol::getRootProtocol() const {
switch (getKind()) {
case Symbol::Kind::Protocol:
case Symbol::Kind::AssociatedType:
return getProtocol();
case Symbol::Kind::GenericParam:
return nullptr;
case Symbol::Kind::Name:
case Symbol::Kind::Layout:
case Symbol::Kind::Superclass:
case Symbol::Kind::ConcreteType:
case Symbol::Kind::ConcreteConformance:
case Symbol::Kind::Shape:
break;
}
llvm_unreachable("Bad root symbol");
}
/// Linear order on symbols, returning -1, 0, 1 or None if the symbols are
/// incomparable.
///
/// First, we order different kinds as follows, from smallest to largest:
///
/// - ConcreteConformance
/// - Protocol
/// - AssociatedType
/// - GenericParam
/// - Name
/// - Layout
/// - Superclass
/// - ConcreteType
///
/// Then we break ties when both symbols have the same kind as follows:
///
/// * For associated type symbols, we compare the name first, followed by
/// the protocols, which are compared just like protocol symbols,
/// described below.
///
/// * For generic parameter symbols, we first order by depth, then index.
///
/// * For unbound name symbols, we compare identifiers lexicographically.
///
/// * For protocol symbols, protocols with more inherited protocols are ordered
/// before those with fewer inherited protocols. The type order defined in
/// TypeDecl::compare() is used to break ties; based on the protocol name
/// and parent module.
///
/// * For layout symbols, we use LayoutConstraint::compare().
///
/// * For concrete conformance symbols with distinct protocols, we compare
/// the protocols.
///
/// All other symbol kinds are incomparable, in which case we return None.
std::optional<int> Symbol::compare(Symbol other, RewriteContext &ctx) const {
// Exit early if the symbols are equal.
if (Ptr == other.Ptr)
return 0;
auto kind = getKind();
auto otherKind = other.getKind();
if (kind != otherKind)
return int(kind) < int(otherKind) ? -1 : 1;
int result = 0;
switch (kind) {
case Kind::Name:
result = getName().compare(other.getName());
break;
case Kind::Protocol:
result = ctx.compareProtocols(getProtocol(), other.getProtocol());
break;
case Kind::AssociatedType: {
if (getName() != other.getName())
return getName().compare(other.getName());
result = ctx.compareProtocols(getProtocol(), other.getProtocol());
break;
}
case Kind::Shape:
case Kind::GenericParam: {
auto *param = getGenericParam();
auto *otherParam = other.getGenericParam();
if (param->getDepth() != otherParam->getDepth())
return param->getDepth() < otherParam->getDepth() ? -1 : 1;
if (param->getIndex() != otherParam->getIndex())
return param->getIndex() < otherParam->getIndex() ? -1 : 1;
break;
}
case Kind::Layout:
result = getLayoutConstraint().compare(other.getLayoutConstraint());
break;
case Kind::ConcreteConformance: {
auto *proto = getProtocol();
auto *otherProto = other.getProtocol();
// For concrete conformance symbols, order by protocol first.
result = ctx.compareProtocols(proto, otherProto);
if (result != 0)
return result;
// Then, check if they have the same concrete type and order
// substitutions.
LLVM_FALLTHROUGH;
}
case Kind::Superclass:
case Kind::ConcreteType: {
if (getConcreteType() == other.getConcreteType()) {
// If the concrete types are identical, compare substitution terms.
assert(getSubstitutions().size() == other.getSubstitutions().size());
for (unsigned i : indices(getSubstitutions())) {
auto term = getSubstitutions()[i];
auto otherTerm = other.getSubstitutions()[i];
std::optional<int> result = term.compare(otherTerm, ctx);
if (!result.has_value() || *result != 0)
return result;
}
break;
}
// We don't support comparing arbitrary concrete types.
return std::nullopt;
}
}
if (result == 0) {
llvm::errs() << "Two distinct symbols should not compare equal\n";
llvm::errs() << "LHS: " << *this << "\n";
llvm::errs() << "RHS: " << other << "\n";
abort();
}
return result;
}
Symbol Symbol::withConcreteSubstitutions(
ArrayRef<Term> substitutions,
RewriteContext &ctx) const {
switch (getKind()) {
case Kind::Superclass:
return Symbol::forSuperclass(getConcreteType(), substitutions, ctx);
case Kind::ConcreteType:
return Symbol::forConcreteType(getConcreteType(), substitutions, ctx);
case Kind::ConcreteConformance:
return Symbol::forConcreteConformance(getConcreteType(), substitutions,
getProtocol(), ctx);
case Kind::GenericParam:
case Kind::Name:
case Kind::Protocol:
case Kind::AssociatedType:
case Kind::Shape:
case Kind::Layout:
break;
}
llvm::errs() << "Bad symbol kind: " << *this << "\n";
abort();
}
/// For a superclass or concrete type symbol
///
/// [concrete: Foo<X1, ..., Xn>]
/// [superclass: Foo<X1, ..., Xn>]
///
/// Return a new symbol where the function fn is applied to each of the
/// substitutions:
///
/// [concrete: Foo<fn(X1), ..., fn(Xn)>]
/// [superclass: Foo<fn(X1), ..., fn(Xn)>]
///
/// Asserts if this is not a superclass or concrete type symbol.
Symbol Symbol::transformConcreteSubstitutions(
llvm::function_ref<Term(Term)> fn,
RewriteContext &ctx) const {
assert(hasSubstitutions());
if (getSubstitutions().empty())
return *this;
bool anyChanged = false;
SmallVector<Term, 2> substitutions;
for (auto term : getSubstitutions()) {
auto newTerm = fn(term);
if (newTerm != term)
anyChanged = true;
substitutions.push_back(newTerm);
}
if (!anyChanged)
return *this;
return withConcreteSubstitutions(substitutions, ctx);
}
/// Print the symbol using our mnemonic representation.
void Symbol::dump(llvm::raw_ostream &out) const {
llvm::DenseMap<CanType, Identifier> substitutionNames;
if (hasSubstitutions()) {
auto &ctx = getConcreteType()->getASTContext();
for (unsigned index : indices(getSubstitutions())) {
Term substitution = getSubstitutions()[index];
std::string s;
llvm::raw_string_ostream os(s);
os << substitution;
auto key = CanType(GenericTypeParamType::get(
/*isParameterPack=*/false, 0, index, ctx));
substitutionNames[key] = ctx.getIdentifier(s);
}
}
PrintOptions opts;
opts.AlternativeTypeNames = &substitutionNames;
opts.OpaqueReturnTypePrinting =
PrintOptions::OpaqueReturnTypePrintingMode::StableReference;
switch (getKind()) {
case Kind::Name:
out << getName();
return;
case Kind::Protocol:
out << "[" << getProtocol()->getName() << "]";
return;
case Kind::AssociatedType: {
out << "[" << getProtocol()->getName() << ":" << getName() << "]";
return;
}
case Kind::GenericParam: {
out << Type(getGenericParam());
return;
}
case Kind::Layout:
out << "[layout: ";
getLayoutConstraint()->print(out);
out << "]";
return;
case Kind::Superclass:
out << "[superclass: ";
getConcreteType().print(out, opts);
out << "]";
return;
case Kind::ConcreteType:
out << "[concrete: ";
getConcreteType().print(out, opts);
out << "]";
return;
case Kind::ConcreteConformance:
out << "[concrete: ";
getConcreteType().print(out, opts);
out << " : ";
out << getProtocol()->getName();
out << "]";
return;
case Kind::Shape: {
out << "[shape]";
return;
}
}
llvm_unreachable("Bad symbol kind");
}
void Symbol::Storage::Profile(llvm::FoldingSetNodeID &id) const {
id.AddInteger(unsigned(Kind));
switch (Kind) {
case Symbol::Kind::Name:
id.AddPointer(Name.get());
return;
case Symbol::Kind::Layout:
id.AddPointer(Layout.getPointer());
return;
case Symbol::Kind::Protocol:
id.AddPointer(Proto);
return;
case Symbol::Kind::GenericParam:
id.AddPointer(GenericParam);
return;
case Symbol::Kind::Shape:
// Nothing more to add.
return;
case Symbol::Kind::AssociatedType: {
id.AddPointer(Proto);
id.AddPointer(Name.get());
return;
}
case Symbol::Kind::Superclass:
case Symbol::Kind::ConcreteType: {
id.AddPointer(ConcreteType.getPointer());
id.AddInteger(getNumSubstitutions());
for (auto term : getSubstitutions())
id.AddPointer(term.getOpaquePointer());
return;
}
case Symbol::Kind::ConcreteConformance: {
id.AddPointer(Proto);
id.AddPointer(ConcreteType.getPointer());
id.AddInteger(getNumSubstitutions());
for (auto term : getSubstitutions())
id.AddPointer(term.getOpaquePointer());
return;
}
}
llvm_unreachable("Bad symbol kind");
}
|